I'm using a document query against a percolator that works ok. When I try to filter the percolator queries against which document percolate using queries ids, it doesn't return any result. For example:
{
"doc" : {
"text" : "This is the text within my document"
},
"highlight" : {
"order" : "score",
"pre_tags" : ["<example>"],
"post_tags" : ["</example>"],
"fields" : {
"text" : { "number_of_fragments" : 0 }
}
},
"filter":{"ids":{"values":[11,15]}}
,
"size" : 100
}
I know for sure that those ids are correct, but allways obtain "matches" : [ ]. When I don't use filter, ES retrieves correct matches.
Thanks for your help.
I think I've solved it. It seems that the filter only works on the "metadata" fields, meaning that you have to add customized fields to the queries indexed in the percolator in order to use them to filter when you need.
Using my previous example, I would have to index in percolator queries like:
{
"query" : {
"match_phrase" : {
"text" : "document"
}
},
"id" : 11
}
Adding "manually" a redundant id field in order to use it later as filter reference.
At percolation time, you have to use something like:
{
"doc" : {
"text" : "This is the text within my document"
},
"filter":{"match":{"id":11}},
"highlight" : {
"order" : "score",
"pre_tags" : ["<example>"],
"post_tags" : ["</example>"],
"fields" : {
"text" : { "number_of_fragments" : 0 }
}
},
"size" : 100
}
In order to use only that percolator query. Complementary information can be found here.
Related
I use ElasticSearch 6.8.8. I have 2 fields for suggest, its the key and value field, and using autocomplete type. So my question is, how to search first by key and then by value?
I tried this:
{
"suggest": {
"suggest-first" : {
"prefix" : "Something1",
"completion" : {
"field" : "keySuggester",
"fuzzy" : true,
"size" : 20
}
},
"suggest-second" : {
"prefix" : "Something2",
"completion" : {
"field" : "valueSuggester",
"fuzzy" : true,
"size" : 20
}
}
}
}
But the result is two independed search results. And i want to first search the Key, and then by this key values, search for value for this key.
I've got some documents stored in ElasticSearch like this:
{
"tag" : ["tag1", "tag2", "tag3"]
...
}
I want to search through the "tag" field. I know that It should work with a query like:
{
"query":
{
"match" : {"tag" : "tag1"}
}
}
But, I don't want to use a match, I want to use a fuzzy search through the list, for example, something like:
{
"query":
{
"fuzzy" : {"tag" : "tagg1"}
}
}
The problem is, the above query doesn't return anything. What should I use instead?
What is the type of tag field in your elasticsearch mapping ?
I have tried with following type for tag field & elastisearch version is 7.2
"tag" : {
"type" : "text",
"fields" : {
"keyword" : {
"type" : "keyword",
"ignore_above" : 256
}
}
}
And working well for me.
Query With elastic fuzzy will be :
{
"query":
{
"fuzzy": {"tag" : "tagg1"}
}
}
I have text document data (500k approximately) saved in elasticsearch where the document text is mapped with it's corresponding document number.
I am trying to fetch results in batches for "Sample Text" in particular set of document numbers (300k appoximately) with scoring and i am facing extreme slowness in the result.
Here is the the Mapping
PUT my_index
{
"mappings" : {
"doc_repo" : {
"properties" : {
"doc_number" : {
"type" : "integer"
},
"document" : {
"type" : "string",
"term_vector" : "with_positions_offsets_payloads"
}
}
}
}
}
Here is the request query
{
"query" : {
"bool" : {
"must" : [
{
"terms" : {
"document" : [
"sample text"
]
}
},
{
"terms" : {
"doc_number" : [1,2,3....,300K] //ArrayOf_300K_DocNumbers
}
}
]
}
},
"fields" : [
"doc_number"
],
"size" : 500,
"from" : 0
}
I Tried fetching result in two other ways
Result without scoring in particular set of document numbers(i used filtering for this)
Result with scoring but without any particular set of document numbers (in batches)
Both of these were pretty quick, but problem comes when i am trying achieve both.
Do i need to change mapping or search query or any other ways to achieve this.
Thanks in advance.
Issue was specifically with elasticsearch 2.X, Upgrading elasticsearch solves the issue.
I'd like to know whether Elasticsearch users query results to populate phrase suggestions for direct generator or not?
Or it simply picks tokens from given index?
My queries are based on some permission sets.
So for instance, that'd be my query:
{
"size" : 0,
"query" : {
"filtered" : {
"query" : {
"match_all" : {}
},
"filter" : {
"bool" : {
"must" : [{
"terms" : {
"Permissions" : ["permission1", "permission2", "permission3"
]
}
}
]
}
}
}
},
"suggest" : {
"DidYouMean" : {
"text" : "{{SearchPhrase}}",
"phrase" : {
"field" : "_all",
"analyzer" : "simple",
"size" : 1,
"real_word_error_likelihood" : 0.96,
"max_errors" : 5,
"gram_size" : 3,
"direct_generator" : [{
"field" : "_all",
"suggest_mode" : "popular",
"min_word_length" : 3
}
]
}
}
}
}
How would I ensure that direct generator creates suggestions and doesn't violate my permissions clause?
Is this even possible?
The term suggester and phrase suggester feeds on the tokens for generating suggest results. The query does not affect the suggest results. The suggester directly works on the reverse index and get the tokens from them. So its scope is global and never the query
I'm new using Elastic Search, and i never used Lucene too.
I build this query:
{
"query" : {
"wildcard" : { "referer" : "*.domain.com*" }
},
"filter" : {
"query" : {
"term" : { "first" : "1" }
}
},
"facets" : {
"site_id" : {
"terms" : {
"field" : "site",
"size" : "70"
}
}
}
}
The wildcard is working great, but the term filter was ignored, what i did wrong?
I need to filter the results with both wildcard and term
Thanks!
Assuming what you are trying to do is applying the filter on the wildcard query results,
you can use a FilteredQuery. However, your case might fit better for a filter.
You use a query filter. Instead of that you may directly use a TermFilter in a FilteredQuery rather than making a filter out of a TermQuery. TermFilter should be faster as it directly uses the TermsEnum.
Note that results of Filters are cached in a FilterCache and Filters are faster because they do not do any scoring of documents. In your case, even though the filter part of the FilteredQuery will work fast, but the wildcard query will be unnecessarily do scoring. You may try to use an AND Filter to club both queryfilter(wildcard query) and term filter instead of a FilteredQuery.
To make just the filter work as required by you, try something like below. (Not tried myself)
{
"filtered" : {
"query" : {
"wildcard" : { "referer" : "*.domain.com*" }
},
"filter" : {
"term" : { "first" : "1" }
}
},
"facets" : {
"site_id" : {
"terms" : {
"field" : "site",
"size" : "70"
}
}
}
}