Maximum bounty from two paths through a rectangular grid - algorithm

I am trying to solve problem similar to this problem at GeeksforGeeks, yet different:
Given a rectangular 2-d grid with some coin value present in each cell, the task is to start from the top-left and bottom-right corner going right or down, and from bottom-right to top-left going left or up, maximizing the combined amount of coin picked. Coin in each cell can be picked only once.
The solution in the link is to start both traversal simultaneously but that's not going to work here.
How should I solve this? The brute force way of doing this would be enumerating all paths and picking two paths that maximizes the sum of coins picked but that's not going to work for large input.

We can solve this problem by making three observations:
First, rather than starting at two different points, we can reverse the direction of the second person, so the problem become two people start at the top left corner and move toward bottom right corner simultaneously.
Second, if we make an assumption that, two persons will make their move at the same speed, the state of these two can be represented by only three parameters: x1, x2 and y1. As we can easily calculate the number of move the first person had made based on his current location (sum x1 + y1, as he can only move right or down), so, we can also figure out the current location of second person (y2 = x1 + y1 - x2). Keep in mind that, both need to make same number of step to reach the bottom right, so both will have same number of move in any given time.
Lastly, We should notice that, a person cannot visit a location more than one, as the only directions each can take are right or down. Further more, in any state, the number of move each person made are equaled, so, if there exists location(s) visited by both persons, they will visit this location at the same time (and only when x1 = x2), thus, we can easily count the number of coins collected.
From these observations, it can be easily reduced to a similar problem to the problem in OP's link:
Starting from state (x1, x2, y1), as each person can only move right or down, we will have following next states:
(x1 + 1, x2 + 1, y1) : Both move to the right.
(x1 + 1, x2, y1) : First person move right, second move down
(x1, x2 + 1, y1 + 1) : First move down, second move right
(x1, x2, y1 + 1) : Both move down.
So, we have our dynamic programming formula:
dp[x1][x2][y1] = coin[x1][y1] + (x2 != x1 ? coin[x2][y2] : 0 ) + max(dp[x1 + 1][x2 + 1][y1], dp[x1 + 1][x2][y1], dp[x1][x2 + 1][y1 + 1], dp[x1][x2][y1 + 1])

I'm not clear on the exact requirements for the 2 traversals you need but for any given traversal here is what I would suggest. Use Dijkstra's algorithm but build it such that instead of having the determining factor being the length/weight of a connection between 2 nodes make it the values of the grid square. It is also important to make sure it checks for the path with the max value instead of the min value.
Taking this approach should make it so that if there is more than one way to get to a square (which there will be most of the time) the algorithm will ignore all but the path that has accumulated the max value thereby reducing the number of paths that need to be checked.
ex:
Input :
int arr[R][C] = {{3, 6, 8},
{5, 2, 4},
{5, 1, 20},
{5, 1, 20, 10},
};
start:
(0,0) 3
first step:
P1: (0,0) 3 , (1,1) 2 Total = 5
P2: (0,0) 3 , (1,0) 5 Total = 8
both are still in the running for the best path.
Step 2:
both P1 and P2 can have their next step to (2,1) 1 in the brute force method you would have both paths continues through the rest of the graph but in this method we see P2 has a greater value than P1 so there is no need to continue with P1 and from that square onward just continue with P2.

Related

Maximum possible number of rectangles that can be crossed with a single straight line

I found this challenge problem which states the following :
Suppose that there are n rectangles on the XY plane. Write a program to calculate the maximum possible number of rectangles that can be crossed with a single straight line drawn on this plane.
I have been brainstorming for quite a time but couldn't find any solution.
Maybe at some stage, we use dynamic programming steps but couldn't figure out how to start.
Here is a sketch of an O(n^2 log n) solution.
First, the preliminaries shared with other answers.
When we have a line passing through some rectangles, we can translate it to any of the two sides until it passes through a corner of some rectangle.
After that, we fix that corner as the center of rotation and rotate the line to any of the two sides until it passes through another corner.
During the whole process, all points of intersection between our line and rectangle sides stayed on these sides, so the number of intersections stayed the same, as did the number of rectangles crossed by the line.
As a result, we can consider only lines which pass through two rectangle corners, which is capped by O(n^2), and is a welcome improvement compared to the infinite space of arbitrary lines.
So, how do we efficiently check all these lines?
First, let us have an outer loop which fixes one point A and then considers all lines passing through A.
There are O(n) choices of A.
Now, we have one point A fixed, and want to consider all lines AB passing through all other corners B.
In order to do that, first sort all other corners B according to the polar angle of AB, or, in other words, angle between axis Ox and vector AB.
Angles are measured from -PI to +PI or from 0 to 2 PI or otherwise, the point in which we cut the circle to sort angles can be arbitrary.
The sorting is done in O(n log n).
Now, we have points B1, B2, ..., Bk sorted by the polar angle around point A (their number k is something like 4n-4, all corners of all rectangles except the one where point A is a corner).
First, look at the line AB1 and count the number of rectangles crossed by that line in O(n).
After that, consider rotating AB1 to AB2, then AB2 to AB3, all the way to ABk.
The events which happen during the rotation are as follows:
When we rotate to ABi, and Bi is the first corner of some rectangle in our order, the number of rectangles crossed increases by 1 as soon as the rotating line hits Bi.
When we rotate to ABj, and Bj is the last corner of some rectangle in our order, the number of rectangles crossed decreases by 1 as soon as the line rotates past Bj.
Which corners are first and last can be established with some O(n) preprocessing, after the sort, but before considering the ordered events.
In short, we can rotate to the next such event and update the number of rectangles crossed in O(1).
And there are k = O(n) events in total.
What's left to do is to track the global maximum of this quantity throughout the whole algorithm.
The answer is just this maximum.
The whole algorithm runs in O(n * (n log n + n + n)), which is O(n^2 log n), just as advertised.
Solution
In the space of all lines in the graph, the lines which pass by a corner are exactly the ones where the number or intersections is about to decrease. In other words, they each form a local maximum.
And for every line which passes by at least one corner, there exist an associated line that passes by two corners that has the same number of intersections.
The conclusion is that we only need to check the lines formed by two rectangle corners as they form a set that fully represents the local maxima of our problem. From those we pick the one which has the most intersections.
Time complexity
This solution first needs to recovers all lines that pass by two corners. The number of such line is O(n^2).
We then need to count the number of intersections between a given line and a rectangle. This can obviously be done in O(n) by comparing to each rectangles.
There might be a more efficient way to proceed, but we know that this algorithm is then at most O(n^3).
Python3 implementation
Here is a Python implementation of this algorithm. I oriented it more toward readability than efficiency, but it does exactly what the above defines.
def get_best_line(rectangles):
"""
Given a set of rectangles, return a line which intersects the most rectangles.
"""
# Recover all corners from all rectangles
corners = set()
for rectangle in rectangles:
corners |= set(rectangle.corners)
corners = list(corners)
# Recover all lines passing by two corners
lines = get_all_lines(corners)
# Return the one which has the highest number of intersections with rectangles
return max(
((line, count_intersections(rectangles, line)) for line in lines),
key=lambda x: x[1])
This implementation uses the following helpers.
def get_all_lines(points):
"""
Return a generator providing all lines generated
by a combination of two points out of 'points'
"""
for i in range(len(points)):
for j in range(i, len(points)):
yield Line(points[i], points[j])
def count_intersections(rectangles, line):
"""
Return the number of intersections with rectangles
"""
count = 0
for rectangle in rectangles:
if line in rectangle:
count += 1
return count
And here are the class definition that serve as data structure for rectangles and lines.
import itertools
from decimal import Decimal
class Rectangle:
def __init__(self, x_range, y_range):
"""
a rectangle is defined as a range in x and a range in y.
By example, the rectangle (0, 0), (0, 1), (1, 0), (1, 1) is given by
Rectangle((0, 1), (0, 1))
"""
self.x_range = sorted(x_range)
self.y_range = sorted(y_range)
def __contains__(self, line):
"""
Return whether 'line' intersects the rectangle.
To do so we check if the line intersects one of the diagonals of the rectangle
"""
c1, c2, c3, c4 = self.corners
x1 = line.intersect(Line(c1, c4))
x2 = line.intersect(Line(c2, c3))
if x1 is True or x2 is True \
or x1 is not None and self.x_range[0] <= x1 <= self.x_range[1] \
or x2 is not None and self.x_range[0] <= x2 <= self.x_range[1]:
return True
else:
return False
#property
def corners(self):
"""Return the corners of the rectangle sorted in dictionary order"""
return sorted(itertools.product(self.x_range, self.y_range))
class Line:
def __init__(self, point1, point2):
"""A line is defined by two points in the graph"""
x1, y1 = Decimal(point1[0]), Decimal(point1[1])
x2, y2 = Decimal(point2[0]), Decimal(point2[1])
self.point1 = (x1, y1)
self.point2 = (x2, y2)
def __str__(self):
"""Allows to print the equation of the line"""
if self.slope == float('inf'):
return "y = {}".format(self.point1[0])
else:
return "y = {} * x + {}".format(round(self.slope, 2), round(self.origin, 2))
#property
def slope(self):
"""Return the slope of the line, returning inf if it is a vertical line"""
x1, y1, x2, y2 = *self.point1, *self.point2
return (y2 - y1) / (x2 - x1) if x1 != x2 else float('inf')
#property
def origin(self):
"""Return the origin of the line, returning None if it is a vertical line"""
x, y = self.point1
return y - x * self.slope if self.slope != float('inf') else None
def intersect(self, other):
"""
Checks if two lines intersect.
Case where they intersect: return the x coordinate of the intersection
Case where they do not intersect: return None
Case where they are superposed: return True
"""
if self.slope == other.slope:
if self.origin != other.origin:
return None
else:
return True
elif self.slope == float('inf'):
return self.point1[0]
elif other.slope == float('inf'):
return other.point1[0]
elif self.slope == 0:
return other.slope * self.origin + other.origin
elif other.slope == 0:
return self.slope * other.origin + self.origin
else:
return (other.origin - self.origin) / (self.slope - other.slope)
Example
Here is a working example of the above code.
rectangles = [
Rectangle([0.5, 1], [0, 1]),
Rectangle([0, 1], [1, 2]),
Rectangle([0, 1], [2, 3]),
Rectangle([2, 4], [2, 3]),
]
# Which represents the following rectangles (not quite to scale)
#
# *
# *
#
# ** **
# ** **
#
# **
# **
We can clearly see that an optimal solution should find a line that passes by three rectangles and that is indeed what it outputs.
print('{} with {} intersections'.format(*get_best_line(rectangles)))
# prints: y = 0.50 * x + -5.00 with 3 intersections
(Edit of my earlier answer that considered rotating the plane.)
Here's sketch of the O(n^2) algorithm, which combines Gassa's idea with Evgeny Kluev's reference to dual line arrangements as sorted angular sequences.
We start out with a doubly connected edge list or similar structure, allowing us to split an edge in O(1) time, and a method to traverse the faces we create as we populate a 2-dimensional plane. For simplicity, let's use just three of the twelve corners on the rectangles below:
9| (5,9)___(7,9)
8| | |
7| (4,6)| |
6| ___C | |
5| | | | |
4| |___| | |
3| ___ |___|(7,3)
2| | | B (5,3)
1|A|___|(1,1)
|_ _ _ _ _ _ _ _
1 2 3 4 5 6 7
We insert the three points (corners) in the dual plane according to the following transformation:
point p => line p* as a*p_x - p_y
line l as ax + b => point l* as (a, -b)
Let's enter the points in order A, B, C. We first enter A => y = x - 1. Since there is only one edge so far, we insert B => y = 5x - 3, which creates the vertex, (1/2, -1/2) and splits our edge. (One elegant aspect of this solution is that each vertex (point) in the dual plane is actually the dual point of the line passing through the rectangles' corners. Observe 1 = 1/2*1 + 1/2 and 3 = 1/2*5 + 1/2, points (1,1) and (5,3).)
Entering the last point, C => y = 4x - 6, we now look for the leftmost face (could be an incomplete face) where it will intersect. This search is O(n) time since we have to try each face. We find and create the vertex (-3, -18), splitting the lower edge of 5x - 3 and traverse up the edges to split the right half of x - 1 at vertex (5/3, 2/3). Each insertion has O(n) time since we must first find the leftmost face, then traverse each face to split edges and mark the vertices (intersection points for the line).
In the dual plane we now have:
After constructing the line arrangement, we begin our iteration on our three example points (rectangle corners). Part of the magic in reconstructing a sorted angular sequence in relation to one point is partitioning the angles (each corresponding with an ordered line intersection in the dual plane) into those corresponding with a point on the right (with a greater x-coordinate) and those on the left and concatenating the two sequences to get an ordered sequence from -90 deg to -270 degrees. (The points on the right transform to lines with positive slopes in relation to the fixed point; the ones on left, with negative slopes. Rotate your sevice/screen clockwise until the line for (C*) 4x - 6 becomes horizontal and you'll see that B* now has a positive slope and A* negative.)
Why does it work? If a point p in the original plane is transformed into a line p* in the dual plane, then traversing that dual line from left to right corresponds with rotating a line around p in the original plane that also passes through p. The dual line marks all the slopes of this rotating line by the x-coordinate from negative infinity (vertical) to zero (horizontal) to infinity (vertical again).
(Let's summarize the rectangle-count-logic, updating the count_array for the current rectangle while iterating through the angular sequence: if it's 1, increment the current intersection count; if it's 4 and the line is not directly on a corner, set it to 0 and decrement the current intersection count.)
Pick A, lookup A*
=> x - 1.
Obtain the concatenated sequence by traversing the edges in O(n)
=> [(B*) 5x - 3, (C*) 4x - 6] ++ [No points left of A]
Initialise an empty counter array, count_array of length n-1
Initialise a pointer, ptr, to track rectangle corners passed in
the opposite direction of the current vector.
Iterate:
vertex (1/2, -1/2)
=> line y = 1/2x + 1/2 (AB)
perform rectangle-count-logic
if the slope is positive (1/2 is positive):
while the point at ptr is higher than the line:
perform rectangle-count-logic
else if the slope is negative:
while the point at ptr is lower than the line:
perform rectangle-count-logic
=> ptr passes through the rest of the points up to the corner
across from C, so intersection count is unchanged
vertex (5/3, 2/3)
=> line y = 5/3x - 2/3 (AC)
We can see that (5,9) is above the line through AC (y = 5/3x - 2/3), which means at this point we would have counted the intersection with the rightmost rectangle and not yet reset the count for it, totaling 3 rectangles for this line.
We can also see in the graph of the dual plane, the other angular sequences:
for point B => B* => 5x - 3: [No points right of B] ++ [(C*) 4x - 6, (A*) x - 1]
for point C => C* => 4x - 6: [(B*) 5x - 3] ++ [(A*) x - 1]
(note that we start at -90 deg up to -270 deg)
How about the following algorithm:
RES = 0 // maximum number of intersections
CORNERS[] // all rectangles corners listed as (x, y) points
for A in CORNERS
for B in CORNERS // optimization: starting from corner next to A
RES = max(RES, CountIntersectionsWithLine(A.x, A.y, B.x, B.y))
return RES
In other words, start drawing lines from each rectangle corner to each other rectangle corner and find the maximum number of intersections. As suggested by #weston, we can avoid calculating same line twice by starting inner loop from the corner next to A.
If you consider a rotating line at angle Θ and if you project all rectangles onto this line, you obtain N line segments. The maximum number of rectangles crossed by a perpendicular to this line is easily obtained by sorting the endpoints by increasing abscissa and keeping a count of the intervals met from left to right (keep a trace of whether an endpoint is a start or an end). This is shown in green.
Now two rectangles are intersected by all the lines at an angle comprised between the two internal tangents [example in red], so that all "event" angles to be considered (i.e. all angles for which a change of count can be observed) are these N(N-1) angles.
Then the brute force resolution scheme is
for all limit angles (O(N²) of them),
project the rectangles on the rotating line (O(N) operations),
count the overlaps and keep the largest (O(N Log N) to sort, then O(N) to count).
This takes in total O(N³Log N) operations.
Assuming that the sorts needn't be re-done in full for every angle if we can do them incrementally, we can hope for a complexity lowered to O(N³). This needs to be checked.
Note:
The solutions that restrict the lines to pass through the corner of one rectangle are wrong. If you draw wedges from the four corners of a rectangle to the whole extent of another, there will remain empty space in which can lie a whole rectangle that won't be touched, even though there exists a line through the three of them.
We can have an O(n^2 (log n + m)) dynamic-programming method by adapting Andriy Berestovskyy's idea of iterating over the corners slightly to insert the relationship of the current corner vis a vis all the other rectangles into an interval tree for each of our 4n iteration cycles.
A new tree will be created for the corner we are trying. For each rectangle's four corners we'll iterate over each of the other rectangles. What we'll insert will be the angles marking the arc the paired-rectangle's farthest corners create in relation to the current fixed corner.
In the example directly below, for the fixed lower rectangle's corner R when inserting the record for the middle rectangle, we would insert the angles marking the arc from p2 to p1 in relation to R (about (37 deg, 58 deg)). Then when we check the high rectangle in relation to R, we'll insert the interval of angles marking the arc from p4 to p3 in relation to R (about (50 deg, 62 deg)).
When we insert the next arc record, we'll check it against all intersecting intervals and keep a record of the most intersections.
(Note that because any arc on a 360 degree circle for our purpose has a counterpart rotated 180 degrees, we may need to make an arbitrary cutoff (any alternative insights would be welcome). For example, this means that an arc from 45 degrees to 315 degrees would split into two: [0, 45] and [135, 180]. Any non-split arc could only intersect with one or the other but either way, we may need an extra hash to make sure rectangles are not double-counted.)

Optimal algorithm to solve this maze?

I'm currently stuck on a challenge our lecturer gave us over at our university. We've been looking at the most popular pathfinding algorithms such as Dijkstra and A*. Although, I think this challenge exercise requires something else and it has me stumped.
A visual representation of the maze that needs solving:
Color legend
Blue = starting node
Gray = path
Green = destination node
The way it's supposed to be solved is that when movement is done, it has to be done until it collides with either the edge of the maze or an obstacle (the black borders). It would also need to be solved in the least amount of row-movements possible (in this case 7)
My question: Could someone push me in the right direction on what algorithm to look at? I think Dijkstra/A* is not the way to go, considering the shortest path is not always the correct path given the assignment.
It is still solvable with Dijkstra / A*, what needs to be changed is the configuration of neighbors.
A little background, first:
Dijkstra and A* are general path finding algorithms formulated on graphs. When, instead of a graph, we have a character moving on a grid, it might not be that obvious where the graph is. But it's still there, and one way to construct a graph would be the following:
the nodes of the graph correspond to the cells of the grid
there are edges between nodes corresponding to neighboring cells.
Actually, in most problems involving some configurations and transitions between them, it is possible to construct a corresponding graph, and apply Dijkstra/A*. Thus, it is also possible to tackle problems such as sliding puzzle, rubik's cube, etc., which apparently differ significantly from a character moving on a grid. But they have states, and transitions between states, thus it is possible to try graph search methods (these methods, especially the uninformed ones such as Dijkstra's algorithm, might not always be feasible due to the large search space, but in principle it's possible to apply them).
In the problem that you mentioned, the graph would not differ much from the one with typical character movements:
the nodes can still be the cells of the grid
there will now be edges from a node to nodes corresponding to valid movements (ending near a border or an obstacle), which, in this case, will not always coincide with the four spatial immediate neighbors of the grid cell.
As pointed by Tamas Hegedus in the comments section, it's not obvious what heuristic function should be chosen if A* is used.
The standard heuristics based on Manhattan or Euclidean distance would not be valid here, as they might over-estimate the distance to the target.
One valid heuristic would be id(row != destination_row) + id(col != destination_col), where id is the identity function, with id(false) = 0 and id(true) = 1.
Dijkstra/A* are fine. What you need is to carefully think about what you consider graph nodes and graph edges.
Standing in the blue cell (lets call it 5,5), you have three valid moves:
move one cell to the right (to 6,5)
move four cells to the left (to 1,5)
move five cells up (to 5,1)
Note that you can't go from 5,5 to 4,5 or 5,4. Apply the same reasoning to new nodes (eg from 5,1 you can go to 1,1, 10,1 and 5,5) and you will get a graph on which you run your Dijkstra/A*.
You need to evaluate every possible move and take the move that results with the minimum distance. Something like the following:
int minDistance(int x, int y, int prevX, int prevY, int distance) {
if (CollionWithBorder(x, y) // can't take this path
return int.MAX_VALUE;
if (NoCollionWithBorder(x, y) // it's OK to take this path
{
// update the distance only when there is a long change in direction
if (LongDirectionChange(x, y, prevX, prevY))
distance = distance + 1;
)
if (ReachedDestination(x, y) // we're done
return distance;
// find the path with the minimum distance
return min(minDistance(x, y + 1, x, y, distance), // go right
minDistance(x + 1, y, x, y, distance), // go up
minDistance(x - 1, y, x, y, distance), // go down
minDistance(x, y - 1, x, y, distance)); // go left
}
bool LongDirectionChange(x, y, prevX, prevY) {
if (y-2 == prevY && x == prevX) ||(y == prevY && x-2 == prevX)
return true;
return false;
}
This is assuming diagonal moves are not allowed. If they are, add them to the min() call:
minDistance(x + 1, y + 1, distance), // go up diagonally to right
minDistance(x - 1, y - 1, distance), // go down diagonally to left
minDistance(x + 1, y - 1, distance), // go up diagonally to left
minDistance(x - 1, y + 1, distance), // go down diagonally to right

Check if a given sequence of moves for a robot is circular or not

Given a sequence of moves for a robot, check if the sequence is circular or not. A sequence of moves is circular if first and last positions of robot are same. A move can be on of the following.
G - Go one unit
L - Turn left
R - Turn right
Input:path[] = "GLGLGLG"
Output: Given sequence of moves is circular
This question can be solved easily:http://www.geeksforgeeks.org/check-if-a-given-sequence-of-moves-for-a-robot-is-circular-or-not/
My Question is what if we are only given a certain path and the robot can move on to that path infinite times.
Ex:
Input:path[]="GL"
So robot can move on this path 4 times thus a cycle is possible.
Please suggest some approach to check if a cycle is possible or not with the given path.
The result of performing a path from a starting point (x,y) and a starting direction d in {0,1,2,3} is two-fold:
Moving from (x,y) to (x',y')
Changing the direction from d to d'
Case 1: d == d'
There is no direction change. We either move away from the origin or not. In other words: cyclic if and only if (x,y) == (x',y')
Case 2: d == (d' + 2) mod 4
There is 180° direction change. Performing the path a second time will move the exact same vector back from (x',y') to (x,y). Cyclic.
Case 3 (Last): d == (d' + 1) mod 4 or d == (d' + 3) mod 4
There is a 90° direction change (either clockwise or counter-clockwise). Performing the path four times will move the exact same vector around a "rectangle" from (x,y) to (x + dx, y + dy), to (x + dx - dy, y + dy + dx), to (x + dx - dy - dx, y + dy + dx - dy), to (x + dx - dy - dx + dy, y + dy + dx - dy - dx) = (x, y), where dx = x'-x, dy = y'-y. Cyclic.
Thus the algorithm is fairly straight forward:
Simulate path once starting with (x,y) == (0,0) and d = 0
return cyclic iff d' != 0 || (x',y') == (0,0)
You can solve this problem by applying algorithm given in link for given sequence repeated 4 times.
Why?
After each sequence your direction can change:
One to the left/right (in clockwise). Then after next three times
your direction will be same as initial.
Two to the left/right (in clockwise). Then after next sequence your
direction will be same as initial, also after next three.
Zero. Of Course your direction is same as initial, also after next
three.
If after a few sequences your direction is the same as initial it mean the moves you are going to make will be the same as previous and after 4 sequences your direction always will be the same as initial.
Suppose you are not back at origin at the end of your path (that is covered by the original problem).
Now let |L| be the number of left turns and |R| be the number or right turns; and let (x,y) be your position at the end of the path.
switch ( (|L|-|R|) % 4 ) {
case 0: you'll be facing the same direction at the end as you did originally, so you will never get back.
case 1: you'll be facing left at the end, so repeating the path will move you by (-y, x). So you'll get back after 4 repetition of the path while the endpoints of the paths will form a square that you cover in a counter-clockwise order.
case 3: Similar to case 1, just you cover the square in clockwise order.
case 2: you'll be facing backwards, so repeating the path will move you by (-x,-y). "There and back again..."
}
So if all you need is a yes/no answer then just count L's and R's, and look at (|L|-|G|)%4. If that's 0 then you also need to execute the original algorithm to see if you got back to origin.

Fast algorithm for testing if every rectangle built using any two points from a list contains a third point from that list

The problem is as it follows:
Given N (N <= 100,000) points by their Cartesian coordinates, test if every rectangle (with an area > 0) built using any two of them contains at least another point from that list either inside the rectangle or on his margin.
I know the algorithm for O(N^2) time complexity. I want to find the solution for O(N * logN). Memory is not a problem.
When I say two points define a rectangle, I mean that those two points are in two of its opposite corners. The sides of the rectangles are parallel to the Cartesian axes.
Here are two examples:
N = 4
Points:
1 1
3 5
2 4
8 8
INCORRECT: (the rectangle (1, 1) - (2, 4) doesn't have any point inside of it or on its margin).
N = 3
Points:
10 9
13 9
10 8
CORRECT.
Sort the points in order of the max of their coordinate pairs, from lowest to highest (O(n*log(n))). Starting with the lower-left point (lowest max coordinate), if the next point in the ordering does not share either the original point's x-value or its y-value (e.g. (1,2) and (5,2) share a y-coordinate of 2, but (1,2) and (2, 1) have neither coordinate in common), the set of points fails the test. Otherwise, move to the next point. If you reach the final point in this way (O(n)), the set is valid. The algorithm overall is O(n*log(n)).
Explanation
Two points that share a coordinate value lie along a line parallel to one of the axes, so there is no rectangle drawn between them (since such a rectangle would have area=0).
For a given point p1, if the next "bigger" point in the ordering, p2, is directly vertical or horizontal from p1 (i.e. it shares a coordinate value), then all points to the upper-right of p2 form rectangles with p1 that include p2, so there are no rectangles in the set that have p1 as the lower-left corner and lack an internal point.
If, however, the next-bigger point is diagonal from p2, then the p1 <-> p2 rectangle has no points from the set inside it, so the set is invalid.
For every point P = (a, b) in the set, search the nearest points of the form Y = (x, b) and X = (a, y) such that x > a and y > b.
Then, find if the rectangle defined by the two points X, Y contains any* internal point R besides P, X and Y. If that is the case, it's easy to see that the rectangle P, R does not contain any other point in the set.
If no point in the set exists matching the restrictions for X or Y, then you have to use (a, ∞) or (∞, b) respectively instead.
The computational cost of the algorithm is O(NlogN):
Looking for X or Y can be done using binary search [O(logN)] over a presorted list [O(NlogN)].
Looking for R can be done using some spatial tree structure as a quadtree or a k-d tree [O(logN)].
*) If X, Y contains more than one internal point, R should be selected as the nearest to P.
Update: the algorithm above works for rectangles defined by its botton-left and upper-right corners. In order to make it work also for rectangles defined by its botton-right and upper-left corners, a new point X' (such that it is the nearest one to P of the form X' = (a, y') where y' < b) and the corresponding rectangle defined by X', Y should also be considered for every point in the set.

How many integer points within the three points forming a triangle?

Actually this is a classic problem as SO user Victor put it (in another SO question regarding which tasks to ask during an interview).
I couldn't do it in an hour (sigh) so what is the algorithm that calculates the number of integer points within a triangle?
EDIT: Assume that the vertices are at integer coordinates. (otherwise it becomes a problem of finding all points within the triangle and then subtracting all the floating points to be left with only the integer points; a less elegant problem).
Assuming the vertices are at integer coordinates, you can get the answer by constructing a rectangle around the triangle as explained in Kyle Schultz's An Investigation of Pick's Theorem.
For a j x k rectangle, the number of interior points is
I = (j – 1)(k – 1).
For the 5 x 3 rectangle below, there are 8 interior points.
(source: uga.edu)
For triangles with a vertical leg (j) and a horizontal leg (k) the number of interior points is given by
I = ((j – 1)(k – 1) - h) / 2
where h is the number of points interior to the rectangle that are coincident to the hypotenuse of the triangles (not the length).
(source: uga.edu)
For triangles with a vertical side or a horizontal side, the number of interior points (I) is given by
(source: uga.edu)
where j, k, h1, h2, and b are marked in the following diagram
(source: uga.edu)
Finally, the case of triangles with no vertical or horizontal sides can be split into two sub-cases, one where the area surrounding the triangle forms three triangles, and one where the surrounding area forms three triangles and a rectangle (see the diagrams below).
The number of interior points (I) in the first sub-case is given by
(source: uga.edu)
where all the variables are marked in the following diagram
(source: uga.edu)
The number of interior points (I) in the second sub-case is given by
(source: uga.edu)
where all the variables are marked in the following diagram
(source: uga.edu)
Pick's theorem (http://en.wikipedia.org/wiki/Pick%27s_theorem) states that the surface of a simple polygon placed on integer points is given by:
A = i + b/2 - 1
Here A is the surface of the triangle, i is the number of interior points and b is the number of boundary points. The number of boundary points b can be calculated easily by summing the greatest common divisor of the slopes of each line:
b = gcd(abs(p0x - p1x), abs(p0y - p1y))
+ gcd(abs(p1x - p2x), abs(p1y - p2y))
+ gcd(abs(p2x - p0x), abs(p2y - p0y))
The surface can also be calculated. For a formula which calculates the surface see https://stackoverflow.com/a/14382692/2491535 . Combining these known values i can be calculated by:
i = A + 1 - b/2
My knee-jerk reaction would be to brute-force it:
Find the maximum and minimum extent of the triangle in the x and y directions.
Loop over all combinations of integer points within those extents.
For each set of points, use one of the standard tests (Same side or Barycentric techniques, for example) to see if the point lies within the triangle. Since this sort of computation is a component of algorithms for detecting intersections between rays/line segments and triangles, you can also check this link for more info.
This is called the "Point in the Triangle" test.
Here is an article with several solutions to this problem: Point in the Triangle Test.
A common way to check if a point is in a triangle is to find the vectors connecting the point to each of the triangle's three vertices and sum the angles between those vectors. If the sum of the angles is 2*pi (360-degrees) then the point is inside the triangle, otherwise it is not.
Ok I will propose one algorithm, it won't be brilliant, but it will work.
First, we will need a point in triangle test. I propose to use the "Barycentric Technique" as explained in this excellent post:
http://www.blackpawn.com/texts/pointinpoly/default.html
Now to the algorithm:
let (x1,y1) (x2,y2) (x3,y3) be the triangle vertices
let ymin = floor(min(y1,y2,y3)) ymax = ceiling(max(y1,y2,y3)) xmin = floor(min(x1,x2,x3)) ymax = ceiling(max(x1,x2,3))
iterating from xmin to xmax and ymin to ymax you can enumerate all the integer points in the rectangular region that contains the triangle
using the point in triangle test you can test for each point in the enumeration to see if it's on the triangle.
It's simple, I think it can be programmed in less than half hour.
I only have half an answer for a non-brute-force method. If the vertices were integer, you could reduce it to figuring out how to find how many integer points the edges intersect. With that number and the area of the triangle (Heron's formula), you can use Pick's theorem to find the number of interior integer points.
Edit: for the other half, finding the integer points that intersect the edge, I suspect that it's the greatest common denominator between the x and y difference between the points minus one, or if the distance minus one if one of the x or y differences is zero.
Here's another method, not necessarily the best, but sure to impress any interviewer.
First, call the point with the lowest X co-ord 'L', the point with the highest X co-ord 'R', and the remaining point 'M' (Left, Right, and Middle).
Then, set up two instances of Bresenham's line algorithm. Parameterize one instance to draw from L to R, and the second to draw from L to M. Run the algorithms simultaneously for X = X[L] to X[M]. But instead of drawing any lines or turning on any pixels, count the pixels between the lines.
After stepping from X[L] to X[M], change the parameters of the second Bresenham to draw from M to R, then continue to run the algorithms simultaneously for X = X[M] to X[R].
This is very similar to the solution proposed by Erwin Smout 7 hours ago, but using Bresenham instead of a line-slope formula.
I think that in order to count the columns of pixels, you will need to determine whether M lies above or below the line LR, and of course special cases will arise when two points have the same X or Y co-ordinate. But by the time this comes up, your interviewer will be suitably awed and you can move on to the next question.
Quick n'dirty pseudocode:
-- Declare triangle
p1 2DPoint = (x1, y1);
p2 2DPoint = (x2, y2);
p3 2DPoint = (x3, y3);
triangle [2DPoint] := [p1, p2, p3];
-- Bounding box
xmin float = min(triangle[][0]);
xmax float = max(triangle[][0]);
ymin float = min(triangle[][1]);
ymax float = max(triangle[][1]);
result [[float]];
-- Points in bounding box might be inside the triangle
for x in xmin .. xmax {
for y in ymin .. ymax {
if a line starting in (x, y) and going in any direction crosses one, and only one, of the lines between the points in the triangle, or hits exactly one of the corners of the triangle {
result[result.count] = (x, y);
}
}
}
I have this idea -
Let A(x1, y1), B(x2, y2) and C(x3, y3) be the vertices of the triangle. Let 'count' be the number of integer points forming the triangle.
If we need the points on the triangle edges then using Euclidean Distance formula http://en.wikipedia.org/wiki/Euclidean_distance, the length of all three sides can be ascertained.
The sum of length of all three sides - 3, would give that count.
To find the number of points inside the triangle we need to use a triangle fill algorithm and instead of doing the actual rendering i.e. executing drawpixel(x,y), just go through the loops and keep updating the count as we loop though.
A triangle fill algorithm from
Fundamentals of Computer Graphics by
Peter Shirley,Michael Ashikhmin
should help. Its referred here http://www.gidforums.com/t-20838.html
cheers
I'd go like this :
Take the uppermost point of the triangle (the one with the highest Y coordinate). There are two "slopes" starting at that point. It's not the general solution, but for easy visualisation, think of one of both "going to the left" (decreasing x coordinates) and the other one "going to the right".
From those two slopes and any given Y coordinate less than the highest point, you should be able to compute the number of integer points that appear within the bounds set by the slopes. Iterating over decreasing Y coordinates, add all those number of points together.
Stop when your decreasing Y coordinates reach the second-highest point of the triangle.
You have now counted all points "above the second-highest point", and you are now left with the problem of "counting all the points within some (much smaller !!!) triangle, of which you know that its upper side parallels the X-axis.
Repeat the same procedure, but now with taking the "leftmost point" instead of the "uppermost", and with proceedding "by increasing x", instead of by "decreasing y".
After that, you are left with the problem of counting all the integer points within a, once again much smaller, triangle, of which you know that its upper side parallels the X-axis, and its left side parallels the Y-axis.
Keep repeating (recurring), until you count no points in the triangle you're left with.
(Have I now made your homework for you ?)
(wierd) pseudo-code for a bit-better-than-brute-force (it should have O(n))
i hope you understand what i mean
n=0
p1,p2,p3 = order points by xcoordinate(p1,p2,p3)
for int i between p1.x and p2.x do
a = (intersection point of the line p1-p2 and the line with x==i).y
b = (intersection point of the line p1-p3 and the line with x==i).y
n += number of integers between floats (a, b)
end
for i between p2.x+1 and p3.x do
a = (intersection point of the line p2-p3 and the line with x==i).y
b = (intersection point of the line p1-p3 and the line with x==i).y
n += number of integers between floats (a, b)
end
this algorithm is rather easy to extend for vertices of type float (only needs some round at the "for i.." part, with a special case for p2.x being integer (there, rounded down=rounded up))
and there are some opportunities for optimization in a real implementation
Here is a Python implementation of #Prabhala's solution:
from collections import namedtuple
from fractions import gcd
def get_points(vertices):
Point = namedtuple('Point', 'x,y')
vertices = [Point(x, y) for x, y in vertices]
a, b, c = vertices
triangle_area = abs((a.x - b.x) * (a.y + b.y) + (b.x - c.x) * (b.y + c.y) + (c.x - a.x) * (c.y + a.y))
triangle_area /= 2
triangle_area += 1
interior = abs(gcd(a.x - b.x, a.y - b.y)) + abs(gcd(b.x - c.x, b.y - c.y)) + abs(gcd(c.x - a.x, c.y - a.y))
interior /= 2
return triangle_area - interior
Usage:
print(get_points([(-1, -1), (1, 0), (0, 1)])) # 1
print(get_points([[2, 3], [6, 9], [10, 160]])) # 289
I found a quite useful link which clearly explains the solution to this problem. I am weak in coordinate geometry so I used this solution and coded it in Java which works (at least for the test cases I tried..)
Link
public int points(int[][] vertices){
int interiorPoints = 0;
double triangleArea = 0;
int x1 = vertices[0][0], x2 = vertices[1][0], x3 = vertices[2][0];
int y1 = vertices[0][1], y2 = vertices[1][1], y3 = vertices[2][1];
triangleArea = Math.abs(((x1-x2)*(y1+y2))
+ ((x2-x3)*(y2+y3))
+ ((x3-x1)*(y3+y1)));
triangleArea /=2;
triangleArea++;
interiorPoints = Math.abs(gcd(x1-x2,y1-y2))
+ Math.abs(gcd(x2-x3, y2-y3))
+ Math.abs(gcd(x3-x1, y3-y1));
interiorPoints /=2;
return (int)(triangleArea - interiorPoints);
}

Resources