Autocomplete functionality using elastic search - elasticsearch

I have an elastic search index with following documents and I want to have an autocomplete functionality over the specified fields:
mapping: https://gist.github.com/anonymous/0609b1d110d91dceb9a90faa76d1d5d4
Usecase:
My query is of the form prefix type eg "sta", "star", "star w" .."start war" etc with an additional filter as tags = "science fiction". Also there queries could match other fields like description, actors(in cast field, not this is nested). I also want to know which field it matched to.
I investigated 2 ways for doing that but non of the methods seem to address the usecase above:
1) Suggester autocomplete:
https://www.elastic.co/guide/en/elasticsearch/reference/1.7/search-suggesters-completion.html
With this it seems I have to add another field called "suggest" replicating the data which is not desirable.
2) using a prefix filter/query:
https://www.elastic.co/guide/en/elasticsearch/reference/1.7/query-dsl-prefix-filter.html
this gives the whole document back not the exact matching terms.
Is there a clean way of achieving this, please advise.

Don't create mapping separately, insert data directly into index. It will create default mapping for that. Use below query for autocomplete.
GET /netflix/movie/_search
{
"query": {
"query_string": {
"query": "sta*"
}
}
}

I think completion suggester would be the cleanest way but if that is undesirable you could use aggregations on name field.
This is a sample index(I am assuming you are using ES 1.7 from your question
PUT netflix
{
"settings": {
"analysis": {
"analyzer": {
"prefix_analyzer": {
"tokenizer": "keyword",
"filter": [
"lowercase",
"trim",
"edge_filter"
]
},
"keyword_analyzer": {
"tokenizer": "keyword",
"filter": [
"lowercase",
"trim"
]
}
},
"filter": {
"edge_filter": {
"type": "edge_ngram",
"min_gram": 1,
"max_gram": 20
}
}
}
},
"mappings": {
"movie":{
"properties": {
"name":{
"type": "string",
"fields": {
"prefix":{
"type":"string",
"index_analyzer" : "prefix_analyzer",
"search_analyzer" : "keyword_analyzer"
},
"raw":{
"type": "string",
"analyzer": "keyword_analyzer"
}
}
},
"tags":{
"type": "string", "index": "not_analyzed"
}
}
}
}
}
Using multi-fields, name field is analyzed in different ways. name.prefix is using keyword tokenizer with edge ngram filter
so that string star wars can be broken into s, st, sta etc. but while searching, keyword_analyzer is used so that search query does not get broken into multiple small tokens. name.raw will be used for aggregation.
The following query will give top 10 suggestions.
GET netflix/movie/_search
{
"query": {
"filtered": {
"filter": {
"term": {
"tags": "sci-fi"
}
},
"query": {
"match": {
"name.prefix": "sta"
}
}
}
},
"size": 0,
"aggs": {
"unique_movie_name": {
"terms": {
"field": "name.raw",
"size": 10
}
}
}
}
Results will be something like
"aggregations": {
"unique_movie_name": {
"doc_count_error_upper_bound": 0,
"sum_other_doc_count": 0,
"buckets": [
{
"key": "star trek",
"doc_count": 1
},
{
"key": "star wars",
"doc_count": 1
}
]
}
}
UPDATE :
You could use highlighting for this purpose I think. Highlight section will get you the whole word and which field it matched. You can also use inner hits and highlighting inside it to get nested docs also.
{
"query": {
"query_string": {
"query": "sta*"
}
},
"_source": false,
"highlight": {
"fields": {
"*": {}
}
}
}

Related

how to query for phrases(shingles) in Elasticsearch

I have the following string "Word1 Word2 StopWord1 StopWord2 Word3 Word4".
When I query for this string using ["bool"]["must"]["match"], I would like to return all text that matches "Word1Word2" and/or "Word3Word4".
I have created an analyzer that I would like to use for indexing and searching.
Using analyze API, I have confirmed that indexing is being done correctly. The shingles returned are "Word1Word2" and "Word3Word4"
I want to query so that text matching "Word1Word2" and/or "Word3Word4" are returned. How can I do this dynamically - meaning, I don't know up front how many shingles will be generated, so I don't know how many match_phrase to code up in a query.
"should":[
{ "match_phrase" : {"content": phrases[0]}},
{ "match_phrase" : {"content": phrases[1]}}
]
To query for shingles(and unigrams), you could set up your mappings to handle them cleanly in separate fields. In the example below, the field "shingles" will be used to analyze and retrieve shingles, while the implicit field will be used to handle unigrams.
PUT /my_index
{
"settings": {
"number_of_shards": 1,
"analysis": {
"filter": {
"my_shingle_filter": {
"type": "shingle",
"min_shingle_size": 2,
"max_shingle_size": 2,
"output_unigrams": false
}
},
"analyzer": {
"my_shingle_analyzer": {
"type": "custom",
"tokenizer": "standard",
"filter": [
"lowercase",
"my_shingle_filter"
]
}
}
}
}
}
PUT /my_index/_mapping/my_type
{
"my_type": {
"properties": {
"title": {
"type": "string",
"fields": {
"shingles": {
"type": "string",
"analyzer": "my_shingle_analyzer"
}
}
}
}
}
}
GET /my_index/my_type/_search
{
"query": {
"bool": {
"must": {
"match": {
"title": "<your query string>"
}
},
"should": {
"match": {
"title.shingles": "<your query string"
}
}
}
}
}
Ref. Elasticsearch: The Definitive Guide....

Could I combine wildcard and fulltext search in Elasticsearch?

For example, I have some titles data in Elasticsearch likes this,
gamexxx_nightmare,
gamexxx_little_guy
Then I input
game => search out gamexxx_nightmare and gamexxx_little_guy
little guy => search out gamexxx_little_guy ?
first I think I will use a wildcard to make game match gamexxx, the second it is fulltext search?
How to combine them in one DSL??
While Jaspreet's answer is right but doesn't combine both the requirements in one query DSL as asked by OP in his question How to combine them in one DSL??.
It's an enhancement to Jaspreet's solution as I am also not using the wild-card and even avoiding the n-gram analyzer which is too costly(increases the index size) and requires re-indexing if requirement changes.
One Search query to combine both the requirement can be done as below:
Index mapping
{
"settings": {
"analysis": {
"analyzer": {
"my_analyzer": {
"tokenizer": "standard",
"char_filter": [
"replace_underscore" -->note this
]
}
},
"char_filter": {
"replace_underscore": {
"type": "mapping",
"mappings": [
"_ => \\u0020"
]
}
}
}
},
"mappings": {
"properties": {
"title": {
"type": "text",
"analyzer" : "my_analyzer"
}
}
}
}
Index your sample docs
{
"title" : "gamexxx_little_guy"
}
And
{
"title" : "gamexxx_nightmare"
}
Single Search query
{
"query": {
"bool": {
"must": [ --> note this
{
"bool": {
"must": [
{
"prefix": {
"title": {
"value": "game"
}
}
}
]
}
},
{
"bool": {
"must": [
{
"match": {
"title": {
"query": "little guy"
}
}
}
]
}
}
]
}
}
}
Result
{
"_index": "so-46873023",
"_type": "_doc",
"_id": "2",
"_score": 2.2814486,
"_source": {
"title": "gamexxx_little_guy"
}
}
Important points:
The first part of the query is prefix query, which would match the game in both the documents. (This would avoid costly regex).
The second part is allowing the full-text search, to enable this, I used custom analyzer which replaces the _ with whitespace, so you don't need expensive (n-grams in index) and simple match query would fetch the results.
Above query, returns result matching both the criteria, you can change the high level, bool clause to should from must if, you want to return matching any criteria.
NGrams have better performance than wildcards. For wild card all documents have to be scanned to see which match the pattern. Ngrams break a text in small tokens. Ex Quick Foxes will stored as [ Qui, uic, ick, Fox, oxe, xes ] depending on min_gram and max_gram size.
PUT my_index
{
"settings": {
"analysis": {
"analyzer": {
"my_analyzer": {
"tokenizer": "my_tokenizer"
}
},
"tokenizer": {
"my_tokenizer": {
"type": "ngram",
"min_gram": 3,
"max_gram": 3,
"token_chars": [
"letter",
"digit"
]
}
}
}
},
"mappings": {
"properties": {
"text":{
"type": "text",
"analyzer": "my_analyzer"
}
}
}
}
Query
GET my_index/_search
{
"query": {
"match": {
"text": "little guy"
}
}
}
If you want to go with wildcard only then you can search on not_analyzed string. This will handle spaces between words
"wildcard": {
"text.keyword": {
"value": "*gamexxx*"
}
}

elasticsearch synonyms analyzer gives 0 results

I am using elasticsearch 7.0.0.
I am trying to work on synonyms with this configuration while creating index.
{
"settings": {
"index": {
"analysis": {
"analyzer": {
"synonym": {
"tokenizer": "whitespace",
"filter": [
"synonym"
]
}
},
"filter": {
"synonym": {
"type": "synonym",
"synonyms_path": "synonyms.txt"
}
}
}
}
},
"mappings": {
"properties": {
"address.state": {
"type": "text",
"analyzer": "synonym"
},
"location": {
"type": "geo_point"
}
}
}
}
Here's a document inserted into the index:
{
"name": "Berry's Burritos",
"description": "Best burritos in New York",
"address": {
"street": "230 W 4th St",
"city": "New York",
"state": "NY",
"zip": "10014"
},
"location": [
40.7543385,
-73.976313
],
"tags": [
"mexican",
"tacos",
"burritos"
],
"rating": "4.3"
}
Also content in synonyms.txt:
ny, new york, big apple
When I tried searching for anything in address.state property, I get empty result.
Here's the query:
{
"query": {
"bool": {
"filter": {
"range": {
"rating": {
"gte": 4
}
}
},
"must": {
"match": {
"address.state": "ny"
}
}
}
}
}
Even with ny (as it is:no synonym) in query, the result is empty.
Before, when I created index without mappings, the query used to give the result, only except for synonyms.
But now with mappings, the result is empty even though the term is present.
This query is working though:
{
"query": {
"query_string": {
"query": "tacos",
"fields": [
"tags"
]
}
}
}
I looked and researched into many articles/tutorials and came up this far.
What am I missing here now?
While indexing you are passing the value as "state":"NY". Notice the case of NY. The analyzer synonym define in the settings has only one filter i.e. synonym. NY doesn't match any set of synonyms in defined in synonym.txt due to case. NOTE that NY isn't equal to ny. To overcome this problem (or we can call making it case insensitive) add lowercase filter before synonym filter to synonym analyzer. This will ensure that any input text is lower cased first and then synonym filter is applied. Same will happen when you search on that field using full text search queries.
So you settings will be as below:
"settings": {
"index": {
"analysis": {
"analyzer": {
"synonym": {
"tokenizer": "whitespace",
"filter": [
"lowercase",
"synonym"
]
}
},
"filter": {
"synonym": {
"type": "synonym",
"synonyms_path": "synonyms.txt"
}
}
}
}
}
No changes are required in mapping.
Why it initially worked?
Answer to this is because when you haven't defined any mapping, elastic would map address.state as a text field with no explicit analyzer defined for the field. In such case elasticsearch by default uses standard analyzer which uses lowercase token filter as one of the filters. and hence the query matched the document.

Elasticsearch Edge NGram tokenizer higher score when word begins with n-gram

Suppose there is the following mapping with Edge NGram Tokenizer:
{
"settings": {
"analysis": {
"analyzer": {
"autocomplete_analyzer": {
"tokenizer": "autocomplete_tokenizer",
"filter": [
"standard"
]
},
"autocomplete_search": {
"tokenizer": "whitespace"
}
},
"tokenizer": {
"autocomplete_tokenizer": {
"type": "edge_ngram",
"min_gram": 1,
"max_gram": 10,
"token_chars": [
"letter",
"symbol"
]
}
}
}
},
"mappings": {
"tag": {
"properties": {
"id": {
"type": "long"
},
"name": {
"type": "text",
"analyzer": "autocomplete_analyzer",
"search_analyzer": "autocomplete_search"
}
}
}
}
}
And the following documents are indexed:
POST /tag/tag/_bulk
{"index":{}}
{"name" : "HITS FIND SOME"}
{"index":{}}
{"name" : "TRENDING HI"}
{"index":{}}
{"name" : "HITS OTHER"}
Then searching
{
"query": {
"match": {
"name": {
"query": "HI"
}
}
}
}
yields all with the same score, or TRENDING - HI with a score higher than one of the others.
How can it be configured, to show with a higher score the entries that actually start with the searcher n-gram? In this case, HITS FIND SOME and HITS OTHER to have a higher score than TRENDING HI; at the same time TRENDING HI should be in the results.
Highlighter is also used, so the given solution shouldn't mess it up.
The highlighter used in query is:
"highlight": {
"pre_tags": [
"<"
],
"post_tags": [
">"
],
"fields": {
"name": {}
}
}
Using this with match_phrase_prefix messes up the highlighting, yielding <H><I><T><S> FIND SOME when searching only for H.
You must understand how elasticsearch/lucene analyzes your data and calculate the search score.
1. Analyze API
https://www.elastic.co/guide/en/elasticsearch/reference/current/_testing_analyzers.html this will show you what elasticsearch will store, in your case:
T / TR / TRE /.... TRENDING / / H / HI
2. Score
https://www.elastic.co/guide/en/elasticsearch/reference/current/query-dsl-bool-query.html
The bool query is often used to build complex query where you need a particular use case. Use must to filter document, then should to score. A common use case is to use different analyzers on a same field (by using the keyword fields in the mapping, you can analyze a same field differently).
3. dont mess highlight
According the doc: https://www.elastic.co/guide/en/elasticsearch/reference/current/search-request-highlighting.html#specify-highlight-query
You can add an extra query:
{
"query": {
"bool": {
"must" : [
{
"match": {
"name": "HI"
}
}
],
"should": [
{
"prefix": {
"name": "HI"
}
}
]
}
},
"highlight": {
"pre_tags": [
"<"
],
"post_tags": [
">"
],
"fields": {
"name": {
"highlight_query": {
"match": {
"name": "HI"
}
}
}
}
}
}
In this particular case you could add a match_phrase_prefix term to your query, which does prefix match on the last term in the text:
{
"query": {
"bool": {
"should": [
{
"match": {
"name": "HI"
}
},
{
"match_phrase_prefix": {
"name": "HI"
}
}
]
}
}
}
The match term will match on all three results, but the match_phrase_prefix won't match on TRENDING HI. As a result, you'll get all three items in the results, but TRENDING HI will appear with a lower score.
Quoting the docs:
The match_phrase_prefix query is a poor-man’s autocomplete[...] For better solutions for search-as-you-type see the completion suggester and Index-Time Search-as-You-Type.
On a side note, if you're introducing that bool query, you'll probably want to look at the minimum_should_match option, depending on the results you want.
A possible solution for this problem is to use multifields. They allow for indexing of the same data from your source document in different ways. In your case you could index the name field as default text, then as ngrams and also as edgengrams. Then the query would have to be a bool query comparing with all those different fields.
The final score of documents is composed of the match value for each one. Those matches are also called signals, signalling that there is a match between the query and the document. The document with most signals matching gets the highest score.
In your case all documents would match the ngram HI. But only the HITS FIND SOME and the HITS OTHER document would get the edgengram additional score. This would give those two documents a boost and put them on top. The complication with this is that you have to make sure that the edgengram doesn't split on whitespaces, because then the HI at the end would get the same score as in the beginning of the document.
Here is an example mapping and query for your case:
PUT /tag/
{
"settings": {
"analysis": {
"analyzer": {
"edge_analyzer": {
"tokenizer": "edge_tokenizer"
},
"kw_analyzer": {
"tokenizer": "kw_tokenizer"
},
"ngram_analyzer": {
"tokenizer": "ngram_tokenizer"
},
"autocomplete_analyzer": {
"tokenizer": "autocomplete_tokenizer",
"filter": [
"standard"
]
},
"autocomplete_search": {
"tokenizer": "whitespace"
}
},
"tokenizer": {
"kw_tokenizer": {
"type": "keyword"
},
"edge_tokenizer": {
"type": "edge_ngram",
"min_gram": 2,
"max_gram": 10
},
"ngram_tokenizer": {
"type": "ngram",
"min_gram": 2,
"max_gram": 10,
"token_chars": [
"letter",
"digit"
]
},
"autocomplete_tokenizer": {
"type": "edge_ngram",
"min_gram": 1,
"max_gram": 10,
"token_chars": [
"letter",
"symbol"
]
}
}
}
},
"mappings": {
"tag": {
"properties": {
"id": {
"type": "long"
},
"name": {
"type": "text",
"fields": {
"edge": {
"type": "text",
"analyzer": "edge_analyzer"
},
"ngram": {
"type": "text",
"analyzer": "ngram_analyzer"
}
}
}
}
}
}
}
And a query:
POST /tag/_search
{
"query": {
"bool": {
"should": [
{
"function_score": {
"query": {
"match": {
"name.edge": {
"query": "HI"
}
}
},
"boost": "5",
"boost_mode": "multiply"
}
},
{
"match": {
"name.ngram": {
"query": "HI"
}
}
},
{
"match": {
"name": {
"query": "HI"
}
}
}
]
}
}
}

Elasticsearch Query aggregated by unique substrings (email domain)

I have an elasticsearch query that queries over an index and then aggregates based on a specific field sender_not_analyzed. I then use a term aggregation on that same field sender_not_analyzed which returns buckets for the top "senders". My query is currently:
{
"size": 0,
"query": {
"regexp": {
"sender_not_analyzed": ".*[#].*"
}
},
"aggs": {
"sender-stats": {
"terms": {
"field": "sender_not_analyzed"
}
}
}
}
which returns buckets that look like:
"aggregations": {
"sender-stats": {
"buckets": [
{
"key": "<Mike <mike#fizzbuzz.com>#MISSING_DOMAIN>",
"doc_count": 5017
},
{
"key": "jon.doe#foo.com",
"doc_count": 3963
},
{
"key": "jane.doe#foo.com",
"doc_count": 2857
},
{
"key": "jon.doe#bar.com",
"doc_count":1544
}
How can I write an aggregation such that I get single bucket for each unique email domain, eg foo.com would have a doc_count of (3963 + 2857) 6820? Can I accomplish this with a regex aggregation or do I need to write some kind of custom analyzer to split the string at the # to the end of string?
This is pretty late, but I think this can be done by using pattern_replace char filter, you capture the domain name with regex, This is my setup
POST email_index
{
"settings": {
"analysis": {
"analyzer": {
"my_custom_analyzer": {
"char_filter": [
"domain"
],
"tokenizer": "keyword",
"filter": [
"lowercase",
"asciifolding"
]
}
},
"char_filter": {
"domain": {
"type": "pattern_replace",
"pattern": ".*#(.*)",
"replacement": "$1"
}
}
}
},
"mappings": {
"your_type": {
"properties": {
"domain": {
"type": "string",
"analyzer": "my_custom_analyzer"
},
"sender_not_analyzed": {
"type": "string",
"index": "not_analyzed",
"copy_to": "domain"
}
}
}
}
}
Here domain char filter will capture the domain name, we need to use keyword tokenizer to get the domain as it is, I am using lowercase filter but it is up to you if you want to use it or not. Using copy_to parameter to copy the value of the sender_not_analyzed to domain field, although _source field won't be modified to include this value but we can query it.
GET email_index/_search
{
"size": 0,
"query": {
"regexp": {
"sender_not_analyzed": ".*[#].*"
}
},
"aggs": {
"sender-stats": {
"terms": {
"field": "domain"
}
}
}
}
This will give you desired result.

Resources