How do I find 'n' max elements of a fibonacci heap? - data-structures

Max Fibonacci heaps can have one pointer to the max element of the structure. But how do I find 'n' of these? As in, how do I find the next max element after the current one?
One caveat is that I cannot remove elements from the structure as the structure might be queried again, for a different number of max elements. For example, I might be asked for the top 3 elements one time and then be queried about top 5 elements.
Or does this necessitate a remove and reinsert? If that's the case, am I better off storing the max elements in a stack/queue and then reinsert them once we serve the query? Also, wouldn't this alter the structure of the tree?

Related

picking the 10 largest values in array

I want to pick the 10 largest values in an array (size~1e9 elements) in fortran 90. what is the most time efficient way to do this? I was looking into efficient sorting algorithm, is it the way to go? Do I need to sort the entire array?
Sorting 109 elements to pick 101 from the top sounds like an overkill: log2N factor will be about 30, and the process of sorting will move a lot of data.
Make an array of ten items for the result, fill it with the first ten elements from the big array, and sort your 10-element array. Now walk the big array starting at element 11. If the current element is greater than the smallest item in the 10-element array, find the insertion point, shift ten-element array to make space for the new element, and place it in the array. Once you are done with the big array, the small array contains ten largest values.
For "larger values of ten" you can get a significant performance improvement by switching to a max-heap data structure. Construct a heap from the first ten items of the big array; store the smallest number for future reference. Then for each number in the big array above the smallest number in the heap so far do the following:
Replace the smallest number with the new number,
Follow the heap structure up to the root to place the number in the correct spot,
Store the location of the new smallest number in the heap.
Once you are done, the heap will contain ten largest items from the big array.
Sorting is not needed. You just need a priority queue of size 10, cost O(n) while the best sort is O(nlogn).
No, you don't need to perform a full sorting. You can drop parts of an input array as soon as you know they contain only items from those largest 10, or none of them.
You could for example adapt a quicksort algorithm in such a way that you recursively process only partitions covering the border between the 10-th and the 11-th highest items. Eventually you'll get 10 largest items at 10 last positions (not necessarily ordered by value, though) and all other items below (not in order, either).
Anyway in pessimistic case (wrong pivot selection or too many equal items) it may take too long.
The best solution is passing the big array through a 10-item priority queue, as #J63 mentions in the answer.

Data structure that supports random access by index and key, insertion, deletion in logaritmic time with order maintained

I'm looking for the data structure that stores an ordered list of E = (K, V) elements and supports the following operations in at most O(log(N)) time where N is the number of elements. Memory usage is not a problem.
E get(index) // get element by index
int find(K) // find the index of the element whose K matches
delete(index) // delete element at index, the following elements have their indexes decreased by 1
insert(index, E) // insert element at index, the following elements have their indexes increased by 1
I have considered the following incorrect solutions:
Use array: find, delete, and insert will still O(N)
Use array + map of K to index: delete and insert will still cost O(N) for shifting elements and updating map
Use linked list + map of K to element address: get and find will still cost O(N)
In my imagination, the last solution is the closest, but instead of linked list, a self-balancing tree where each node stores the number of elements on the left of it will make it possible for us to do get in O(log(N)).
However I'm not sure if I'm correct, so I want to ask whether my imagination is correct and whether there is a name for this kind of data structure so I can look for off-the-shelf solution.
The closest data structure i could think of is treaps.
Implicit treap is a simple modification of the regular treap which is a very powerful data structure. In fact, implicit treap can be considered as an array with the following procedures implemented (all in O(logN)O(log⁡N) in the online mode):
Inserting an element in the array in any location
Removal of an arbitrary element
Finding sum, minimum / maximum element etc. on an arbitrary interval
Addition, painting on an arbitrary interval
Reversing elements on an arbitrary interval
Using modification with implicit keys allows you to do all operation except the second one (find the index of the element whose K matches). I'll edit this answer if i come up with a better idea :)

Maintaining sort while changing random elements

I have come across this problem where I need to efficiently remove the smallest element in a list/array. That would be fairly trivial to solve - a heap would be sufficient.
However, the issue now is that when I remove the smallest element, it would cause changes in other elements in the data structure, which may result in the ordering being changed. An example is this:
I have an array of elements:
[1,3,5,7,9,11,12,15,20,33]
When I remove "1" from the array "5" and "12" get changed to "4" and "17" respectively.
[3,4,7,9,11,17,15,20,33]
And hence the ordering is not maintained.
However, the element that is removed will have pointers to all elements that will be changed, but there is not knowing how many elements will be changed and by how much.
So my question is:
What is the best way to store these elements to maximize performance when removing the smallest element from the data structure while maintaining sort? Or should I just leave it unsorted?
My current implementation is just storing them unsorted in a vector, so the time complexity is O(N^2), O(N) for finding the smallest element, and N removals.
A.
If you have the list M of all changed elements of the ordered list L,
go through M, and for every element
If it is still ordered with its neigbours in M, live it be.
If it is not in order with neighbours, exclude it from the M.
Such excluded elements will create a list N
Order N
Use some algorithm for merging ordered lists. http://en.wikipedia.org/wiki/Merge_algorithm
B.
If you are sure that new elements are few and not strongly changed, simply use the bubble sort.
I would still go with a heap ,backed by an array
In case only a few elements change after each pop,After you perform the pop operation , perform a heapify up/down for any item that reduces in value. It will still be in the order of O(nlog k) values, where k is the size of your array and n the number of elements that have reduced in size.
If a lot of items change in size , then you can consider this as a case where you have an unsorted array and you just create a heap from the array.

Data Structure that supports queue like operations and mode finding

This was an interview question asked to me almost 3 years back and I was pondering about this a while back.
Design a data structure that supports the following operations:
insert_back(), remove_front() and find_mode(). Best complexity
required.
The best solution I could think of was O(logn) for insertion and deletion and O(1) for mode. This is how I solved it: Keep a queue DS for handling which element is inserted and deleted.
Also keep an array which is max heap ordered and a hash table.
The hashtable contains an integer key and an index into the heap array location of that element. The heap array contains an ordered pair (count,element) and is ordered on the count property.
Insertion : Insert the element into the queue. Find the location of the heap array index from the hashtable. If none exists, then add the element to the heap and heapify upwards. Then add the final location into the hashtable. Increment the count in that location and heapify upwards or downwards as needed to restore the heap property.
Deletion : Remove element from the head of the queue. From the hash table, find a location in the heap array index. Decrement the count in the heap and reheapify upward or downwards as needed to restore the heap property.
Find Mode: The element at the head of the array heap (getMax()) will give us the mode.
Can someone please suggest something better. The only optimization I could think of was using a Fibonacci heap but I am not sure if that is a good fit in this problem.
I think there is a solution with O(1) for all operations.
You need a deque, and two hashtables.
The first one is a linked hashtable, where for each element you store its count, the next element in count order and a previous element in count order. Then you can look the next and previous element's entries in that hashtable in a constant time. For this hashtable you also keep and update the element with the largest count. (element -> count, next_element, previous_element)
In the second hashtable for each distinct number of elements, you store the elements with that count in the start and in the end of the range in the first hashtable. Note that the size of this hashtable will be less than n (it's O(sqrt(n)), I think). (count -> (first_element, last_element))
Basically, when you add an element to or remove an element from the deque, you can find its new position in the first hashtable by analyzing its next and previous elements, and the values for the old and new count in the second hashtable in constant time. You can remove and add elements in the first hashtable in constant time, using algorithms for linked lists. You can also update the second hashtable and the element with the maximum count in constant time as well.
I'll try writing pseudocode if needed, but it seems to be quite complex with many special cases.

return inserted items for a given interval

How would one design a memory efficient system which accepts Items added into it and allows Items to be retrieved given a time interval (i.e. return Items inserted between time T1 and time T2). There is no DB involved. Items stored in-memory. What is the data structure involved and associated algorithm.
Updated:
Assume extremely high insertion rate compared to data query.
You can use a sorted data structure, where key is by time of arrival. Note the following:
items are not remvoed
items are inserted in order [if item i was inserted after item j then key(i)>key(j)].
For this reason, tree is discouraged, since it is "overpower", and insertion in it is O(logn), where you can get an O(1) insertion. I suggest using one of the followings:
(1)Array: the array will be filled up always at its end. When the allocated array is full, reallocate a bigger [double sized] array, and copy existing array to it.
Advantages: good caching is usually expected in arrays, O(1) armotorized insertion, used space is at most 2*elementSize*#elemetns
Disadvantages: high latency: when the array is full, it will take O(n) to add an element, so you need to expect that once in a while, there will be costly operation.
(2)Skip list The skip list also allows you also O(logn) seek and O(1) insertion at the end, but it doesn't have latency issues. However, it will suffer more from cache misses then an array. Space used is on average elementSize*#elements + pointerSize*#elements*2 for a skip list.
Advantages: O(1) insertion, no costly ops.
Distadvantages: bad caching is expected.
Suggestion:
I suggest using an array if latency is not an issue. If it is, you should better use a skip list.
In both, finding the desired interval is:
findInterval(T1,T2):
start <- data.find(T1)
end <- data.find(T2)
for each element in data from T1 to T2:
yield element
Either BTree or Binary Search Tree could be a good in-memory data structure to accomplish the above. Just save the timestamp in each node and you can do a range query.
You can add them all to a simple array and sort them.
Do a binary search to located both T1 and T2. All the array elements between them are what you are looking for.
This is helpful if the searching is done only after all the elements are added. If not you can use an AVL or Red-Black tree
How about a relation interval tree (encode your items as intervals containing only a single element, e.g., [a,a])? Although, it has been said already that the ratio of the anticipated operations matter (a lot actually). But here's my two cents:
I suppose an item X that is inserted at time t(X) is associated with that timestamp, right? Meaning you don't insert an item now which has a timestamp from a week ago or something. If that's the case go for the simple array and do interpolation search or something similar (your items will already be sorted according to the attribute that your query refers to, i.e., the time t(X)).
We already have an answer that suggests trees, but I think we need to be more specific: the only situation in which this is really a good solution is if you are very specific about how you build up the tree (and then I would say it's on par with the skip lists suggested in a different answer; ). The objective is to keep the tree as full as possible to the left - I'll make clearer what that means in the following. Make sure each node has a pointer to its (up to) two children and to its parent and knows the depth of the subtree rooted at that node.
Keep a pointer to the root node so that you are able to do lookups in O(log(n)), and keep a pointer to the last inserted node N (which is necessarily the node with the highest key - its timestamp will be the highest). When you are inserting a node, check how many children N has:
If 0, then replace N with the new node you are inserting and make N its left child. (At this point you'll need to update the tree depth field of at most O(log(n)) nodes.)
If 1, then add the new node as its right child.
If 2, then things get interesting. Go up the tree from N until either you find a node that has only 1 child, or the root. If you find a node with only 1 child (this is necessarily the left child), then add the new node as its new right child. If all nodes up to the root have two children, then the current tree is full. Add the new node as the new root node and the old root node as its left child. Don't change the old tree structure otherwise.
Addendum: in order to make cache behaviour and memory overhead better, the best solution is probably to make a tree or skip list of arrays. Instead of every node having a single time stamp and a single value, make every node have an array of, say, 1024 time stamps and values. When an array fills up you add a new one in the top level data structure, but in most steps you just add a single element to the end of the "current array". This wouldn't affect big-O behaviour with respect to either memory or time, but it would reduce the overhead by a factor of 1024, while latency is still very small.

Resources