Nested List Issue in Lisp - scheme

So I have to write a method that takes in a list like (nested '(4 5 2 8)) and returns (4 (5 () 2) 8).
I figured I needed to write 3 supporting methods to accomplish this. The first gets the size of the list:
(define (sizeList L)
(if (null? L) 0
(+ 1 (sizeList (cdr L)))))
input : (sizeList '(1 2 3 4 5 6 7))
output: 7
The second drops elements from the list:
(define (drop n L)
(if (= (- n 1) 0) L
(drop (- n 1) (cdr L))))
input : (drop 5 '(1 2 3 4 5 6 7))
output: (5 6 7)
The third removes the last element of a list:
(define (remLast E)
(if (null? (cdr E)) '()
(cons (car E) (remLast (cdr E)))))
input : (remLast '(1 2 3 4 5 6 7))
output: (1 2 3 4 5 6)
For the nested method I think I need to do the car of the first element, then recurse with the drop, and then remove the last element but for the life of me I can't figure out how to do it or maybe Im just continually messing up the parenthesis? Any ideas?

Various recursive solutions are possible, but the problem is that the more intuitive ones have a very bad performance, since they have a cost that depends on the square of the size of the input list.
Consider for instance this simple solution:
; return a copy of list l without the last element
(define (butlast l)
(cond ((null? l) '())
((null? (cdr l)) '())
(else (cons (car l) (butlast (cdr l))))))
; return the last element of list l
(define (last l)
(cond ((null? l) '())
((null? (cdr l)) (car l))
(else (last (cdr l)))))
; nest a linear list
(define (nested l)
(cond ((null? l) '())
((null? (cdr l)) l)
(else (list (car l) (nested (butlast (cdr l))) (last l)))))
At each recursive call of nested, there is a call to butlast and a call to last: this means that for each element in the first half of the list we must scan twice the list, and this requires a number of operations of order O(n2).
Is it possible to find a recursive solution with a number of operations that grows only linearly with the size of the list? The answer is yes, and the key to this solution is to reverse the list, and work in parallel on both the list and its reverse, through an auxiliary function that gets one element from both the lists and recurs on their cdr, and using at the same time a counter to stop the processing when the first halves of both lists have been considered. Here is a possible implementation of this algorithm:
(define (nested l)
(define (aux l lr n)
(cond ((= n 0) '())
((= n 1) (list (car l)))
(else (list (car l) (aux (cdr l) (cdr lr) (- n 2)) (car lr)))))
(aux l (reverse l) (length l)))
Note that the parameter n starts from (length l) and is decreased by 2 at each recursion: this allows to manage both the cases of a list with an even or odd number of elements. reverse is the primitive function that reverses a list, but if you cannot use this primitive function you can implement it with a recursive algorithm in the following way:
(define (reverse l)
(define (aux first-list second-list)
(if (null? first-list)
second-list
(aux (cdr first-list) (cons (car first-list) second-list))))
(aux l '()))

Related

Scheme - returning first n-elements of an array

I'm trying to write a function in Scheme that returns the first n elements in a list. I'm want to do that without loops, just with this basic structure below.
What I've tried is:
(define n-first
(lambda (lst n)
(if (or(empty? lst) (= n 0))
(list)
(append (car lst) (n-first (cdr lst) (- n 1))))))
But I'm getting an error:
append: contract violation
expected: list?
given: 'in
I've tried to debug it and it looks that the tail of the recursion crashes it, meaning, just after returning the empty list the program crashes.
When replacing "append" operator with "list" I get:
Input: (n-first '(the cat in the hat) 3)
Output:
'(the (cat (in ())))
But I want to get an appended list.
A list that looks like (1 2 3) i constructed like (1 . (2 . (3 . ()))) or if you're more familiar with cons (cons 1 (cons 2 (cons 3 '()))). Thus (list 1 2 3)) does exactly that under the hood. This is crucial information in order to be good at procedures that works on them. Notice that the first cons cannot be applied before the (cons 2 (cons 3 '())) is finished so a list is always created from end to beginning. Also a list is iterated from beginning to end.
So you want:
(define lst '(1 2 3 4 5))
(n-first lst 0) ; == '()
(n-first lst 1) ; == (cons (car lst) (n-first (- 1 1) (cdr lst)))
(n-first lst 2) ; == (cons (car lst) (n-first (- 2 1) (cdr lst)))
append works like this:
(define (append lst1 lst2)
(if (null? lst1)
lst2
(cons (car lst1)
(append (cdr lst1) lst2))))
append is O(n) time complexity so if you use that each iteration of n parts of a list then you get O(n^2). For small lists you won't notice it but even a medium sized lists of a hundred thousand elements you'll notice append uses about 50 times longer to complete than the cons one and for large lists you don't want to wait for the result since it grows exponentially.
try so
(define first-n
(lambda (l)
(lambda (n)
((lambda (s)
(s s l n (lambda (x) x)))
(lambda (s l n k)
(if (or (zero? n)
(null? l))
(k '())
(s s (cdr l) (- n 1)
(lambda (rest)
(k (cons (car l) rest))))))))))
(display ((first-n '(a b c d e f)) 4))
(display ((first-n '(a b)) 4))
In scheme you must compute mentally the types of each expression, as it does not have a type checker/ type inference included.

How do you obtain the largest n elements of a list using Scheme?

I'm stuck on a homework question and could use any hints or suggestions. I need to find the n largest numbers in a list using Scheme. I am trying to do this by creating helper functions that are called by the main function. So far I have this:
(define (get_max_value L)
(if (null? L)
'()
(apply max L)
)
(define (biggest_nums L n)
(if (null? n)
'()
(cons (get_max_value L) (biggest_nums L (- n 1)))
)
)
When I type (biggest_num '(3 1 4 2 5) 3) at the command prompt drRacket just hangs and doesn't even return an error message. Where am I going wrong?
The simplest solution is to first sort the numbers in ascending order and then take the n first. This translates quite literally in Racket code:
(define (biggest_nums L n)
(take (sort L >) n))
It works as expected:
(biggest_nums '(3 1 4 2 5) 3)
=> '(5 4 3)
Two mains problems with your code:
L always stays the same. L doesn't decrease in size when you make the recursive call, so the max will always be the same number in every recursive call.
You don't ever check n to make sure it contains the correct amount of numbers before returning the answer.
To solve these two problems in the most trivial way possible, you can put a (< n 1) condition in the if, and use something like (cdr L) to make L decrease in size in each recursive call by removing an element each time.
(define (biggest-nums n L)
(if (or (empty? L)
(< n 1))
'()
(cons (apply max L) (biggest-nums (- n 1) (cdr L)))))
So when we run it:
> (biggest-nums 3 '(1 59 2 10 33 4 5))
What should the output be?
'(59 33 10)
What is the actual output?
'(59 59 33)
OK, so we got your code running, but there are still some issues with it. Do you know why that's happening? Can you step through the code to figure out what you could do to fix it?
Just sort the list and then return the first n elements.
However, if the list is very long and n is not very large, then you probably don't want to sort the whole list first. In that case, I would suggest something like this:
(define insert-sorted
(lambda (item lst)
(cond ((null? lst)
(list item))
((<= item (car lst))
(cons item lst))
(else
(cons (car lst) (insert-sorted item (cdr lst)))))))
(define largest-n
(lambda (count lst)
(if (<= (length lst) count)
lst
(let loop ((todo (cdr lst))
(result (list (car lst))))
(if (null? todo)
result
(let* ((item (car todo))
(new-result
(if (< (car result) item)
(let ((new-result (insert-sorted item result)))
(if (< count (length new-result))
(cdr new-result)
new-result))
result)))
(loop (cdr todo)
new-result)))))))

Bubble Sorting with Scheme

I'm working on implementing a bubble sorting algorithm in Scheme, and I must say that the functional way of programming is a strange concept and I am struggling a bit to grasp it.
I've successfully created a function that will bubble up the first largest value we come across, but that's about all it does.
(bubbleH '(5 10 9 8 7))
(5 9 8 7 10)
I am struggling with the helper function that is required to completely loop through the list until no swaps have been made.
Here's where I am at so far, obviously it is not correct but I think I am on the right track. I know that I could pass in the number of elements in the list myself, but I am looking for a solution different from that.
(define bubbaS
(lambda (lst)
(cond (( = (length lst) 1) (bubba-help lst))
(else (bubbaS (bubba-help lst))))))
Using the bubble-up and bubble-sort-aux implementations in the possible-duplicate SO question I referenced...
(define (bubble-up L)
(if (null? (cdr L))
L
(if (< (car L) (cadr L))
(cons (car L) (bubble-up (cdr L)))
(cons (cadr L) (bubble-up (cons (car L) (cddr L)))))))
(define (bubble-sort-aux N L)
(cond ((= N 1) (bubble-up L))
(else (bubble-sort-aux (- N 1) (bubble-up L)))))
..., this is simple syntactic sugar:
(define (bubbleH L)
(bubble-sort-aux (length L) L))
With the final bit of syntactic sugar added, you should get exactly what you specified in your question:
(bubbleH '(5 10 9 8 7))
=> (5 7 8 9 10)
You can tinker with everything above in a repl.it session I saved & shared.
Here's my own tail-recursive version.
The inner function will bubble up the largest number just like your bubbleH procedure. But instead of returning a complete list, it will return 2 values:
the unsorted 'rest' list
the largest value that has bubbled up
such as:
> (bsort-inner '(5 1 4 2 8))
'(5 2 4 1)
8
> (bsort-inner '(1 5 4 2 8))
'(5 2 4 1)
8
> (bsort-inner '(4 8 2 5))
'(5 2 4)
8
Now the outer loop just has to cons the second value returned, and iterate on the remaining list.
Code:
(define (bsort-inner lst)
(let loop ((lst lst) (res null))
(let ((ca1 (car lst)) (cd1 (cdr lst)))
(if (null? cd1)
(values res ca1)
(let ((ca2 (car cd1)) (cd2 (cdr cd1)))
(if (<= ca1 ca2)
(loop cd1 (cons ca1 res))
(loop (cons ca1 cd2) (cons ca2 res))))))))
(define (bsort lst)
(let loop ((lst lst) (res null))
(if (null? lst)
res
(let-values (((ls mx) (bsort-inner lst)))
(loop ls (cons mx res))))))
For a recursive version, I prefer one where the smallest value bubbles in front:
(define (bsort-inner lst)
; after one pass, smallest element is in front
(let ((ca1 (car lst)) (cd1 (cdr lst)))
(if (null? cd1)
lst ; just one element => sorted
(let ((cd (bsort-inner cd1))) ; cd = sorted tail
(let ((ca2 (car cd)) (cd2 (cdr cd)))
(if (<= ca1 ca2)
(cons ca1 cd)
(cons ca2 (cons ca1 cd2))))))))
(define (bsort lst)
(if (null? lst)
null
(let ((s (bsort-inner lst)))
(cons (car s) (bsort (cdr s))))))

Scheme return a list with first half of its elements

Write a procedure (first-half lst) that returns a list with the first half of its elements. If the length of the given list is odd, the returned list should have (length - 1) / 2 elements.
I am given these program as a example and as I am new to Scheme I need your help in solving this problem.
(define list-head
(lambda (lst k)
(if (= k 0)
'()
(cons (car lst)(list-head (cdr lst)(- k 1)))))))
(list-head '(0 1 2 3 4) 3)
; list the first 3 element in the list (list 0 1 2)
Also the expected output for the program I want is :
(first-half '(43 23 14 5 9 57 0 125))
(43 23 14 5)
This is pretty simple to implement in terms of existing procedures, check your interpreter's documentation for the availability of the take procedure:
(define (first-half lst)
(take lst (quotient (length lst) 2)))
Apart from that, the code provided in the question is basically reinventing take, and it looks correct. The only detail left to implement would be, how to obtain the half of the lists' length? same as above, just use the quotient procedure:
(define (first-half lst)
(list-head lst (quotient (length lst) 2)))
It looks like you are learning about recursion? One recursive approach is to walk the list with a 'slow' and 'fast' pointer; when the fast pointer reaches the end you are done; use the slow pointer to grow the result. Like this:
(define (half list)
(let halving ((rslt '()) (slow list) (fast list))
(if (or (null? fast) (null? (cdr fast)))
(reverse rslt)
(halving (cons (car slow) rslt)
(cdr slow)
(cdr (cdr fast))))))
Another way to approach it is to have a function that divides the list at a specific index, and then a wrapper to calculate floor(length/2):
(define (cleave_at n a)
(cond
((null? a) '())
((zero? n) (list '() a))
(#t
((lambda (x)
(cons (cons (car a) (car x)) (cdr x)))
(cleave_at (- n 1) (cdr a))))))
(define (first-half a)
(car (cleave_at (floor (/ (length a) 2)) a)))

how to delete third element in a list using scheme

This is what I want:
(delete-third1 '(3 7 5)) ==> (3 7)
(delete-third1 '(a b c d)) ==> (a b d)
so I did something like:
(define (delete-third1 LS ) (list(cdr LS)))
which returns
(delete-third1 '(3 7 5))
((7 5))
when it should be (3 7). What am I doing wrong?
Think about what cdr is doing. cdr says that "given a list, chop off the first value and return the rest of the list". So it's removing only the first value, then returning you the rest of that list (which is exactly what you are seeing). Since it returns a list, you don't need a list (cdr LS) there either.
What you want is something like this:
(define (delete-n l n)
(if (= n 0)
(cdr l)
(append (list (car l)) (delete-n (cdr l) (- n 1)))))
(define (delete-third l)
(delete-n l 2))
So how does this work? delete-n will delete the nth element of a list by keeping a running count of what element we are up to. If we're not up to the nth element, then add that element to the list. If we are, then skip that element and add the rest of the elements to our list.
Then we simply define delete-third as delete-n where it removes the 3rd element (which is element 2 when we start counting at 0).
The simplest way would be: cons the first element, the second element and the rest of the list starting from the fourth position. Because this looks like homework I'll only give you the general idea, so you can fill-in the blanks:
(define (delete-third1 lst)
(cons <???> ; first element of the list
(cons <???> ; second element of the list
<???>))) ; rest of the list starting from the fourth element
The above assumes that the list has at least three elements. If that's not always the case, validate first the size of the list and return an appropriate value for that case.
A couple more of hints: in Racket there's a direct procedure for accessing the first element of a list. And another for accessing the second element. Finally, you can always use a sequence of cdrs to reach the rest of the rest of the ... list (but even that can be written more compactly)
From a practical standpoint, and if this weren't a homework, you could implement this functionality easily in terms of other existing procedures, and even make it general enough to remove elements at any given position. For example, for removing the third element (and again assuming there are enough elements in the list):
(append (take lst 2) (drop lst 3))
Or as a general procedure for removing an element from a given 0-based index:
(define (remove-ref lst idx)
(append (take lst idx) (drop lst (add1 idx))))
Here's how we would remove the third element:
(remove-ref '(3 7 5) 2)
=> '(3 7)
This works:
(define (delete-third! l)
(unless (or (null? l)
(null? (cdr l))
(null? (cddr l)))
(set-cdr! (cdr l) (cdddr l)))
l)
if you want a version that does not modify the list:
(define (delete-third l)
(if (not (or (null? l)
(null? (cdr l))
(null? (cddr l))))
(cons (car l) (cons (cadr l) (cdddr l)))
l))
and if you want to do it for any nth element:
(define (list-take list k)
(assert (not (negative? k)))
(let taking ((l list) (n k) (r '()))
(if (or (zero? n) (null? l))
(reverse r)
(taking (cdr l) (- n 1) (cons (car l) r)))))
(define (delete-nth l n)
(assert (positive? n))
(append (list-take l (- n 1))
(if (> n (length l))
'()
(list-tail l n))))
(define (nth-deleter n)
(lambda (l) (delete-nth l n)))
(define delete-3rd (nth-deleter 3))

Resources