Kentico transactions and rollback of data - parallel-processing

I am performing an import of data wrapped in a CMSTransactionScope.
What would be the most efficient and practical way to import data in parallel and rollback if any errors? The problem I see is that, with it being parallel, I don't know if I can have the inserted objects be part of the transaction if they are apart of a new thread.
Is there any way to do this or should it be handled differently?

If you're running the code in parallel in order to achieve better performance and you are basically inserting rows one by one then it's unlikely that it'll perform any better than it would while running in a single thread.
In this case I'd recommend using one thread in combination with CMSTransactionScope, and potentially ConnectionHelper.BulkInsert.
Anyway, if you still want to run your queries in parallel then you need to implement some kind of synchronization (locking, for instance) to ensure that all statements are executed before the code hits CMSTransactionScope.Commit() (this basically means a performance loss). Otherwise, queries would get executed in separate transactions. Moreover, you have to make sure that the CMSTransactionScope object always gets instantiated with the same IDataConnection (this should happen by default when you don't pass a connection to the constructor).
The second approach seems error prone to me and I'd rather take a look at different ways of optimizing the code (using async, etc.)

Related

CQRS Where to Query for business logic/Internal Processes

I'm currently looking at implementing CQRS driven by events (not yet event sourcing) in for a service at work; the reasoning being:
I need aggregate data to support a RestAPI coming out of this service (which will be used to populate views)- however the aggregated data will not be used by the application logic/processing (ie the data originating outside this service, the bits that of the aggregate originating within it will be used)
I need to stream events to other systems so that they can react to the data (will produce to a Kafka topic, so the 'read'/'projection' side of this system will consume the same events as the external systems, from these Kafka topics
I will be consuming events from internal systems to help populate the aggregate for the views in first point (ie it's data from this service and other's)
The reason for not going event sourced currently is that a) we're in a bit of a time crunch, and b) due to still learning about it. Having said which, it is something that we are looking to do in the future- though currently, we have a static DB in the 'Command' side of the system, which will just store current state
I'm pretty confident with the concept of using the aggregate data to provide the Rest API; however my confusion is coming from when I want to change a resource from within the system (for example via a cron job triggered 5 times a day) Example:
If I have resource of class x, which (given some data), wants a piece of state changing
I need to select instances of the class x which meet the requirements (from one of the DB's). Think select * from {class x} where last_changed_ date > 5 days ago;
Then create a command to change the state of these instances of x (in my case, the static command DB would be updated, as well as an event made to update the read DB)
The middle bullet point is what is confusing me. If I pull the data out of the Read DB, and check some information on it, then decide to change a property; I then have to convert the object from the 'Read Object' to the 'Command Object', so that I can then persist it and create an event? With my current architecture- I could query the command DB no problem, to find all the instances of {class x} that match the criteria, however I don't know if a) this is the right thing to do, and b) how this would work if I was using an event store as a DB? I'd have to query a table with millions of rows to find the most recent bit of state about the objects, to then see if they match?
Lots of what I read online has been very conceptual- so I think when it comes to implementations it maybe seems more difficult than it is? Anyhow, if anyone has any advice it would be hugely appreciated!
TIA :)
CQRS can be interpreted in a "permissive" way: rather than saying "thou shalt not query the command/write side", it says "it's OK to have a query/read side that's separate from the command/write side". Because you have this permission to do such separation, it follows that one can optimize the command/write side for a more write-heavy workload (in practice, there are always some reads in the command/write side: since command validation is typically done against some state, that requires some means of getting the state!). From this, it's extremely likely that there will be some queries which can be performed efficiently against the command/write side and some that can't be (without deoptimizing the command/write side). From this perspective, it's OK to perform the first kind of query against the command/write side: you can get the benefit of strong consistency by doing that, though be sure to make sure that you're not affecting the command/write side's primary raison d'etre of taking writes.
Event sourcing is in many ways the maximally optimized persistence model for a command/write side, especially if you have some means of keeping the absolute latest state cached and ensuring concurrency control. This is because you can then have many times more writes than reads. The tradeoff in event sourcing is that nearly all reads become rather more expensive than in an update-in-place model: it's thus generally the case that CQRS doesn't force event sourcing but event sourcing tends to force CQRS (and in turn, event sourcing can simplify ensuring that a CQRS system is eventually consistent, which can be difficult to ensure with update-in-place).
In an event-sourced system, you would tend to have a read-side which subscribes to the event stream and tracks the mapping of X ID to last updated and which periodically queries and issues commands. Alternatively, you can have a scheduler service that lets you say "issue this command at this time, unless canceled or rescheduled before then" and a read-side which subscribes to updates and schedules a command for the given ID 5 days from now after canceling the command from the previous update.

Can't serialize due to concurrent operations: memgraph

I am performing mix of queries(reads/write/updates/deletes) to a single memgraph instance.
To do the same I am using Java client by Neo4j, all the APIs I am currently using are sync APIs from the driver.
Nature of queries in my case is such that I can execute them concurrently with no side effects. For better performance I am firing the queries in parallel. The error I am getting is for a CREATE operation where I am creating an edge between two nodes. This is consistent as I tried running this same setup multiple times and every time, all queries go through except it crashes when it comes to this create edge stage.
Query for reference:
OPTIONAL MATCH (node1) WHERE id(node1) = $nodeId1
OPTIONAL MATCH (node2) WHERE id(node2) = $nodeId2
CREATE (node1)-[:KNOWS]-> (node2)
I am not able to find any documentation around any such error. Please point me to some document like this or any workaround using which I can ask memgraph to put the query on hold if same objects are being operated by some other query.
One approach I am thinking is just implement retry for any such failed queries, but I am looking for a cleaner approach.
P.S. I was running the same setup on Neo4j earlier and did not encounter any problems with it.
Yep, in the case of this error, the code should retry the query. I think an equivalent issue can happen in Neo4j, but since Memgraph is more optimistic about locking, sometimes the error might happen more often. In general, the correct approach is to have error handling for this case implemented.

Batching stores transparently

We are using the following frameworks and versions:
jOOQ 3.11.1
Spring Boot 2.3.1.RELEASE
Spring 5.2.7.RELEASE
I have an issue where some of our business logic is divided into logical units that look as follows:
Request containing a user transaction is received
This request contains various information, such as the type of transaction, which products are part of this transaction, what kind of payments were done, etc.
These attributes are then stored individually in the database.
In code, this looks approximately as follows:
TransactionRecord transaction = transactionRepository.create();
transaction.create(creationCommand);`
In Transaction#create (which runs transactionally), something like the following occurs:
storeTransaction();
storePayments();
storeProducts();
// ... other relevant information
A given transaction can have many different types of products and attributes, all of which are stored. Many of these attributes result in UPDATE statements, while some may result in INSERT statements - it is difficult to fully know in advance.
For example, the storeProducts method looks approximately as follows:
products.forEach(product -> {
ProductRecord record = productRepository.findProductByX(...);
if (record == null) {
record = productRepository.create();
record.setX(...);
record.store();
} else {
// do something else
}
});
If the products are new, they are INSERTed. Otherwise, other calculations may take place. Depending on the size of the transaction, this single user transaction could obviously result in up to O(n) database calls/roundtrips, and even more depending on what other attributes are present. In transactions where a large number of attributes are present, this may result in upwards of hundreds of database calls for a single request (!). I would like to bring this down as close as possible to O(1) so as to have more predictable load on our database.
Naturally, batch and bulk inserts/updates come to mind here. What I would like to do is to batch all of these statements into a single batch using jOOQ, and execute after successful method invocation prior to commit. I have found several (SO Post, jOOQ API, jOOQ GitHub Feature Request) posts where this topic is implicitly mentioned, and one user groups post that seemed explicitly related to my issue.
Since I am using Spring together with jOOQ, I believe my ideal solution (preferably declarative) would look something like the following:
#Batched(100) // batch size as parameter, potentially
#Transactional
public void createTransaction(CreationCommand creationCommand) {
// all inserts/updates above are added to a batch and executed on successful invocation
}
For this to work, I imagine I'd need to manage a scoped (ThreadLocal/Transactional/Session scope) resource which can keep track of the current batch such that:
Prior to entering the method, an empty batch is created if the method is #Batched,
A custom DSLContext (perhaps extending DefaultDSLContext) that is made available via DI has a ThreadLocal flag which keeps track of whether any current statements should be batched or not, and if so
Intercept the calls and add them to the current batch instead of executing them immediatelly.
However, step 3 would necessitate having to rewrite a large portion of our code from the (IMO) relatively readable:
records.forEach(record -> {
record.setX(...);
// ...
record.store();
}
to:
userObjects.forEach(userObject -> {
dslContext.insertInto(...).values(userObject.getX(), ...).execute();
}
which would defeat the purpose of having this abstraction in the first place, since the second form can also be rewritten using DSLContext#batchStore or DSLContext#batchInsert. IMO however, batching and bulk insertion should not be up to the individual developer and should be able to be handled transparently at a higher level (e.g. by the framework).
I find the readability of the jOOQ API to be an amazing benefit of using it, however it seems that it does not lend itself (as far as I can tell) to interception/extension very well for cases such as these. Is it possible, with the jOOQ 3.11.1 (or even current) API, to get behaviour similar to the former with transparent batch/bulk handling? What would this entail?
EDIT:
One possible but extremely hacky solution that comes to mind for enabling transparent batching of stores would be something like the following:
Create a RecordListener and add it as a default to the Configuration whenever batching is enabled.
In RecordListener#storeStart, add the query to the current Transaction's batch (e.g. in a ThreadLocal<List>)
The AbstractRecord has a changed flag which is checked (org.jooq.impl.UpdatableRecordImpl#store0, org.jooq.impl.TableRecordImpl#addChangedValues) prior to storing. Resetting this (and saving it for later use) makes the store operation a no-op.
Lastly, upon successful method invocation but prior to commit:
Reset the changes flags of the respective records to the correct values
Invoke org.jooq.UpdatableRecord#store, this time without the RecordListener or while skipping the storeStart method (perhaps using another ThreadLocal flag to check whether batching has already been performed).
As far as I can tell, this approach should work, in theory. Obviously, it's extremely hacky and prone to breaking as the library internals may change at any time if the code depends on Reflection to work.
Does anyone know of a better way, using only the public jOOQ API?
jOOQ 3.14 solution
You've already discovered the relevant feature request #3419, which will solve this on the JDBC level starting from jOOQ 3.14. You can either use the BatchedConnection directly, wrapping your own connection to implement the below, or use this API:
ctx.batched(c -> {
// Make sure all records are attached to c, not ctx, e.g. by fetching from c.dsl()
records.forEach(record -> {
record.setX(...);
// ...
record.store();
}
});
jOOQ 3.13 and before solution
For the time being, until #3419 is implemented (it will be, in jOOQ 3.14), you can implement this yourself as a workaround. You'd have to proxy a JDBC Connection and PreparedStatement and ...
... intercept all:
Calls to Connection.prepareStatement(String), returning a cached proxy statement if the SQL string is the same as for the last prepared statement, or batch execute the last prepared statement and create a new one.
Calls to PreparedStatement.executeUpdate() and execute(), and replace those by calls to PreparedStatement.addBatch()
... delegate all:
Calls to other API, such as e.g. Connection.createStatement(), which should flush the above buffered batches, and then call the delegate API instead.
I wouldn't recommend hacking your way around jOOQ's RecordListener and other SPIs, I think that's the wrong abstraction level to buffer database interactions. Also, you will want to batch other statement types as well.
Do note that by default, jOOQ's UpdatableRecord tries to fetch generated identity values (see Settings.returnIdentityOnUpdatableRecord), which is something that prevents batching. Such store() calls must be executed immediately, because you might expect the identity value to be available.

What is the best way to provide transaction operation if I use graphql

If I need to mutate multiple variables as part of a transaction, what is the best approach?
As far as I understand, grapQL will issue individual mutation command sequently behind the scene. What I need to do to make it transactional?
Thanks!
Is this a single mutation that performs multiple DB operations? If so, your mutation resolver is expected to perform all the operations, so it can manage the transaction itself: open, perform multiple operations, close.
If you're performing multiple mutations in a single request, they're always executed serially. In this case, you can simply open the transaction when you start GraphQL processing (e.g. in the controller or servlet or an instrumentation) and close it once you receive the result (or an exception). So the transaction management is around GraphQL execution, but outside of it.
If you want only certain operations from the request to be executed transactionally but not the others, you're already in the territory best left to frameworks. Use something like Spring's transaction management and let that deal with the correct lifecycle.
If you're, on the other hand, trying to implement a transaction spanning multiple distinct requests, this is really not something you should be doing, for many reasons, extremely convoluted transaction management being only one.

mongodb many inserts\updates performance

I am using mongodb to store user's events, there's a document for every user, containing an array of events. The system processes thousands of events a minute and inserts each one of them to mongo.
The problem is that I get poor performance for the update operation, using a profiler, I notice that the WriteResult.getError is the one that incur the performance impact.
That makes sense, the update is async, but if one wants to retrieve the operation result he needs to wait until the operation is completed.
My question, is there a way to keep the update async, but only get an exception if error occurs (99.999 of the times there is no error, so the system waits for nothing). I understand it means the exception will be raised somewhere further down the process flow, but I can live with that.
Any other suggestions?
The application is written in Java so we're using the Java driver, but I am not sure it's related.
have you done indexing on your records?
it may be a problem to your performance.
if not done before you should do Indexing on ur collection like
db.collectionName.ensureIndex({"event.type":1})
for more help visit http://www.mongodb.org/display/DOCS/Indexes

Resources