Identify Geometric Constructions - algorithm

I'm looking for some methodology/algorithm to identify geometry constructions doing with compass and straightedge.
In more sophisticated tools, constructing a perpendicular bisector, could be done with a specific tool.
In my case I will get a sequence of lines and arcs (drawn by compass) only, via a computer-based drawing tool. How is it possible to identify that whether there's a perpendicular bisector constructed using that tool? Is there an existing algorithm or methodology for that?
In research literature I found one way of achieving this is to record mouse events and inspecting that (no concrete methodology described).
In my case, I need identify that perpendicular bisector by the sequence of lines and arcs.
PS: perpendicular bisector is one of the constructions I need to identify. There are several others such as angle bisector, Perpendicular across a point on line etc.
Appreciate your answers on this!

If you have a sufficiently advanced description of your construction sequence, you can do randomized proving: take the construction sequence, wriggle some of the input points and check whether the result fits with the angular bisector or whatever, up to small numeric errors. If this is the case for a large number of randomized input positions, you can be reasonably sure that the constructed result is what you think it is.
An SVG description of the resulting construction (as mentioned in some comments) will not be sufficient for this goal, though. At least unless the SVG contains additional data in excess to what the spec requires. If you have an arc in SVG, that doesn't tell you how the arc was constructed.
I know Cinderella does randomized proving internally. If you draw the angle bisector using the built-in tool for it, and then do a ruler-and-compass construction of that same angle bisector, Cinderella will not add a second line, as it can prove internally that the two lines are identical.
I'm currently working on Cinderella internals as part of my job. Actually I'm improving its suitability for certain e-learning environments. So if you have e-learning environments in mind, I suggest you check out Cinderella and its browser-friendly child project CindyJS. The latter doesn't have randomized proving yet, put work towards that goal is underway.

Related

Bidirectional path tracing, algorithm explanation

I'm trying to understand path tracing. So far, I have only dealt with the very basis - when a ray is launched from each intersection point in a random direction within the hemisphere, then again, and so on recursively, until the ray hits the light source. As a result, this approach leads to the fact that in the case of small light sources, the image is extremely noisy.
The following images show the noise level depending on the number of samples (rays) per pixel.
I am also not sure that i am doing everything correctly, because the "Monte Carlo" method, as far as I understand, implies that several rays are launched from each intersection point, and then their result is summed and averaged. But this approach leads to the fact that the number of rays increases exponentially, and after 6 bounces reaches inadequate values, so i decided that it is better to just run several rays per pixel initially (slightly shifted from the center of the pixel in a random direction), but only 1 ray is generated at each intersection. I do not know whether this approach corresponds to "Monte Carlo" or not, but at least this way the rendering does not last forever..
Bidirectional path tracing
I started looking for ways to reduce the amount of noise, and came across bidirectional path tracing. But unfortunately, i couldn't find a detailed explanation of this algorithm in simple words. All I understood is that the rays are generated from both the camera and the light sources, and then there is a check on the possibility of connecting the endpoints of these paths.
As you can see, if the intersection points of the blue ray from the camera and the white ray from the light source can be freely connected (there are no obstacles in the connection path), then we can assume that the ray from the camera can pass through the points y1, y0 directly to the light source.
But there are a lot of questions:
If the light source is not a point, but has some shape, then the point from which the ray is launched must be randomly selected on the surface of this shape? If you take only the center - then there will be no difference from a point light source, right?
Do i need to build a path from the light source for each path from the camera, or should there be only one path from the light source, while several paths (samples) are built from the camera for one pixel at once?
The number of bounces/re-reflections/refractions should be the same for the path from the camera and the light source? Or not?
But the questions don't end there. I have heard that the bidirectional trace method allows you to model caustics well (in comparison with regular path tracing). But I completely did not understand how the method of bidirectional path tracing can somehow help for this.
Example 1
Here the path will eventually be built, but the number of bounces will be extremely large, so no caustics will work here, despite the fact that the ray from the camera is directed almost to the same point where the path of the ray from the light source ends.
Example 2
Here the path will not be built, because there is an obstacle between the endpoints of the paths, although it could be built if point x3 was connected to point y1, but according to the algorithm (if I understand everything correctly), only the last points of the paths are connected.
Question:
What is the use of such an algorithm, if in a significant number of cases the paths either cannot be built, or are unnecessarily long? Maybe I misunderstand something? I came across many articles and documents where this algorithm was somehow described, but mostly it was described mathematically (using all sorts of magical terms like biased-unbiased, PDF, BSDF, and others), and not.. algorithmically. I am not that strong in mathematics and all sorts of mathematical notation and wording, I would just like to understand WHAT TO DO, how to implement it correctly in the code, how these paths are connected, in what order, and so on. This can be explained in simple words, pseudocode, right? I would be extremely grateful if someone would finally shed some light on all this.
Some references that helped me to understand the Path tracing right :
https://www.scratchapixel.com/ (every rendering student should begin with this)
https://en.wikipedia.org/wiki/Path_tracing
If you're looking for more references, path tracing is used for "Global illumination" wich is the opposite as "Direct illumination" that only rely on a straight line from the point to the light.
What's more caustics is well knowned to be a hard problem, so don't begin with it! Monte Carlo method is a good straightforward method to begin with, but it has its limitations (ie Caustics and tiny lights).
Some advices for rendering newbees
Mathematics notations are surely not the coolest ones. Every one will of course prefer a ready to go code. But maths is the most rigourous way to describe the world. It permits also to modelize a whole physic interaction in a small formula instead of plenty of lines of codes that doesn't fit to the real problem. I suggest you to forget you to try reading what you read better as a good mathematic formula is always detailed. If some variables are not specified, don't loose your time and search another reference.

Indefinitely move objects around randomly without collision

I have an application where I need to move a number of objects around on the screen in a random fashion and they can not bump into each other. I'm looking for an algorithm that will allow me to generate the paths that don't create collisions and can continue for an indefinite time (i.e.: the objects keep moving around until a user driven event removes them from the program).
I'm not a game programmer but I think this looks like an AI problem and you guys probably solve it with your eyes closed. From what I've read A* seems to be the recommended 'basic idea' but I don't really want to invest a lot of time into it without some confirmation.
Can anyone shed some light on an approach? Anti-gravity movement maybe?
This is to be implemented on iOS, if that is important
New paths need to be generated at the end of each path
There is no visible 'grid'. Movement is completely free in 2D space
The objects are insects that walk around the screen until they are killed
A* is an algorithm to find the shortest path between a start and a goal configuration (in terms of whatever you define as short: common are e.g. euclidean distance, cost or time, angular distance...). Your insects seem not to have a specific goal, they don't even need a shortest path. I would certainly not go for A*. (By the way, since you are having a dynamic environment, D* would have been an idea - still it's meant to find a path from A to B).
I would tackle the problem as follows:
Random Paths and following them
For the random paths I see two methods. The first would be a simple random walk (click here to see a nice 2D animation with explanations), which can suffer from jittering and doesn't look too nice. The second one needs a little bit more detailed explanations.
For each insect generate four random points around them, maybe starting on a sinusoid. With a spline interpolation generate a smooth curve between those points. Take care of having C1 (in 2D) or C2 (in 3D) continuity. (Suggestion: Hermite splines)
With Catmull-Rom splines you can find your configurations while moving along the curve.
An application of a similar approach can be found in this blog post about procedural racetracks, also a more technical (but still not too technical) explanation can be found in these old slides (pdf) from a computer animations course.
When an insect starts moving, it can constantly move between the second and third point, when you always remove the first and append a new point when the insect reaches the third, thus making that the second point.
If third point is reached
Remove first
Append new point
Recalculate spline
End if
For a smoother curve add more points in total and move somewhere in the middle, the principle stays the same. (Personally I only used this in fixed environments, it should work in dynamic ones as well though.)
This can, if your random point generation is good (maybe you can use an approach similar to the one provided in the above linked blog post, or have a look at algorithms on the PCG Wiki), lead to smooth paths all over the screen.
Avoid other insects
To avoid other insects, three different methods come to my mind.
Bug algorithms
Braitenberg vehicles
An application of potential fields
For the potential fields I recommend reading this paper about dynamic motion planning (pdf). It's from robotics, but fairly easy to apply to your problem as well. You can just use the robots next spline point as the goal and set its velocity to 0 to apply this approach. However, it might be a bit too much for your simple game.
A discussion of Braitenberg vehicles can be found here (pdf). The original idea was more of a technical method (drive towards or away from a light source depending on how your motor is coupled with the photo receptor) and is often used to show how we apply emotional concepts like fear and attraction to other objects. The "fear" behaviour is an approach used for obstacle avoidance in robotics as well.
The third and probably simplest method are bug algorithms (pdf). I always have problems with the boundary following, which is a bit tricky. But to avoid another insect, these algorithms - no matter which one you use (I suggest Bug 1 or Tangent Bug) - should do the trick. They are very simple: Move towards your goal (in this application with the catmull-rom splines) until you have an obstacle in front. If the obstacle is close, change the insect's state to "obstacle avoidance" and run your bug algorithm. If you give both "colliding" insects the same turn direction, they will automatically go around each other and follow their original path.
As a variation you could just let them turn and recalculate a new spline from that point on.
Conclusion
Path finding and random path generation are different things. You have to experiment around what looks best for your insects. A* is definitely meant for finding shortest paths, not for creating random paths and following them.
You cannot plan the trajectories ahead of time for an indefinite duration !
I suggest a simpler approach where you just predict the next collision (knowing the positions and speeds of the objects allows you to tell if they will collide and when), and resolve it by changing the speed or direction of either objects (bounce before objects touch).
Make sure to redo a check for collisions in case you created an even earlier collision !
The real challenge in your case is to efficiently predict collisions among numerous objects, a priori an O(N²) task. You will accelerate that by superimposing a coarse grid on the play field and look at objects in neighboring cells only.
It may also be possible to maintain a list of object pairs that "might interfere in some future" (i.e. considering their distance and relative speed) and keep it updated. Checking that a pair may leave the list is relatively easy; efficiently checking for new pairs needing to enter the list is not.
Look at this and this Which described an AI program to auto - play Mario game.
So in this link, what the author did was using a A* star algorithm to guide Mario Get to the right border of the screen as fast as possible. Avoid being hurt.
So the idea is for each time frame, he will have an Environment which described the current position of other objects in the scene and for each action (up, down left, right and do nothing) , he calculate its cost function and made a decision of the next movement based on this.
Source: http://www.quora.com/What-are-the-coolest-algorithms
For A* you would need a 2D-Grid even if it is not visible. If I get your idea right you could do the following.
Implement a pathfinding (e.g. A*) then just generate random destination points on the screen and calculate the path. Once your insect reaches the destination, generate another destination point/grid-cell and proceed until the insect dies.
As I see it A* would only make sence if you have obstacles on the screen the insect should navigate around, otherwise it would be enough to just calculate a straight vector path and maybe handle collision with other insects/objects.
Note: I implemented A* once, later I found out that Lee's Algorithm
pretty much does the same but was easier to implement.
Consider a Hamiltonian cycle - the idea is a route that visits all the positions on a grid once (and only once). If you construct the cycle in advance (i.e. precalculate it), and set your insects off with some offset between them, they will never collide, simply because the path never intersects itself.
Also, for bonus points, Hamiltonian paths tend to 'wiggle about', and because it's a loop you can predict (and precalculate) the path into the indefinite future.
You can always use the nodes of the grid as knot points for a spline to smooth the movement, or even randomly shift all the points away from their strict 2d grid positions, until you have the desired motion.
Example Hamiltonian cycle from Wikimedia:
On a side note, if you want to generate such a path, consider constructing a loop through many points and just moving the points around in such a manner that they never intersect an existing edge. With some encouragement to move into gaps and away from each other, they should settle into some long, never-intersecting path. Store the result and use for your loop.

What does RiBasis which is described in RenderMan mean?

I'm working on a plugin of 3ds Max. In this plugin, I export the geometry information into a .rib file which can be rendered by a RenderMan renderer. When I export a nubrs curve's data into .rib file described by RiBasis and RiCurve. I use the RtBsplineBasis in RiBasis, but I get the wrong result that the rendered curve is short than the result of 3ds Max's renderer. Then I reprint the first and the last control vertex, the curve is long enough, but its shape is a little different.Who can tell me how I get wrong result or what does RiBasis mean? How can get correct RiBasis? Thank u very much!
RiCurve draws a cubic spline. The control points do not uniquely determine the curve; you also need the basis, which is expressed as a 4x4 matrix -- one matrix give the coefficients you need for a B-spline, Bezier, Catmull-Rom, and so on, and of course you can also supply the matrix yourself for some kind of hybrid interpolant that isn't quite one of the standard 3 or 4. The basis determines the character of the spline -- whether the curve is guaranteed to go through the control points or is merely approximating, the degree of continuity, the "tension", and so on.
There is a great discussion in one of the appendices of "The RenderMan Companion," including numeric examples of how different basis matrices affect the interpolation.
It sounds like you requested a B-spline basis, which is approximating (not interpolating) and continuous in both 1st and 2nd derivatives. Maybe that's not what you had in mind. It's hard to tell, since you didn't describe the properties of the spline that you were hoping for.
As an aside, approximating an arbitrary NURBS curve with a nonrational cubic is not always going to give you an exact match. Something else to keep in mind.

Finding cross on the image

I have set of binary images, on which i need to find the cross (examples attached). I use findcontours to extract borders from the binary image. But i can't understand how can i determine is this shape (border) cross or not? Maybe opencv has some built-in methods, which could help to solve this problem. I thought to solve this problem using Machine learning, but i think there is a simpler way to do this. Thanks!
Viola-Jones object detection could be a good start. Though the main usage of the algorithm (AFAIK) is face detection, it was actually designed for any object detection, such as your cross.
The algorithm is Machine-Learning based algorithm (so, you will need a set of classified "crosses" and a set of classified "not crosses"), and you will need to identify the significant "features" (patterns) that will help the algorithm recognize crosses.
The algorithm is implemented in OpenCV as cvHaarDetectObjects()
From the original image, lets say you've extracted sets of polygons that could potentially be your cross. Assuming that all of the cross is visible, to the extent that all edges can be distinguished as having a length, you could try the following.
Reject all polygons that did not have exactly 12 vertices required to
form your polygon.
Re-order the vertices such that the shortest edge length is first.
Create a best fit perspective transformation that maps your vertices onto a cross of uniform size
Examine the residuals generated by using this transformation to project your cross back onto the uniform cross, where the residual for any given point is the distance between the projected point and the corresponding uniform point.
If all the residuals are within your defined tolerance, you've found a cross.
Note that this works primarily due to the simplicity of the geometric shape you're searching for. Your contours will also need to have noise removed for this to work, e.g. each line within the cross needs to be converted to a single simple line.
Depending on your requirements, you could try some local feature detector like SIFT or SURF. Check OpenSURF which is an interesting implementation of the latter.
after some days of struggle, i came to a conclusion that the only robust way here is to use SVM + HOG. That's all.
You could erode each blob and analyze their number of pixels is going down. No mater the rotation scaling of the crosses they should always go down with the same ratio, excepted when you're closing down on the remaining center. Again, when the blob is small enough you should expect it to be in the center of the original blob. You won't need any machine learning algorithm or training data to resolve this.

Convert polygons into mesh

I have a lot of polygons. Ideally, all the polygons must not overlap one other, but they can be located adjacent to one another.
But practically, I would have to allow for slight polygon overlap ( defined by a certain tolerance) because all these polygons are obtained from user hand drawing input, which is not as machine-precised as I want them to be.
My question is, is there any software library components that:
Allows one to input a range of polygons
Check if the polygons are overlapped more than a prespecified tolerance
If yes, then stop, or else, continue
Create mesh in terms of coordinates and elements for the polygons by grouping common vertex and edges together?
More importantly, link back the mesh edges to the original polygon(s)'s edge?
Or is there anyone tackle this issue before?
This issue is a daily "bread" of GIS applications - this is what is exactly done there. We also learned that at a GIS course. Look into GIS systems how they address this issue. E.g. ArcGIS define so called topology rules and has some functions to check if the edited features are topologically correct. See http://webhelp.esri.com/arcgisdesktop/9.2/index.cfm?TopicName=Topology_rules
This is pretty long, only because the question is so big. I've tried to group my comments based on your bullet points.
Components to draw polygons
My guess is that you'll have limited success without providing more information - a component to draw polygons will be very much coupled to the language and UI paradigm you are using for the rest of your project, ie. code for a web component will look very different to a native component.
Perhaps an alternative is to separate this element of the process out from the rest of what you're trying to do. There are some absolutely fantastic pre-existing editors that you can use to create 2d and 3d polygons.
Inkscape is an example of a vector graphics editor that makes it easy to enter 2d polygons, and has the advantage of producing output SVG, which is reasonably easy to parse.
In three dimensions Blender is an open source editor that can be used to produce arbitrary geometries that can be exported to a number of formats.
If you can use a google-maps API (possibly in an native HTML rendering control), and you are interested in adding spatial points on a map overlay, you may be interested in related click-to-draw polygon question on stackoverflow. From past experience, other map APIs like OpenLayers support similar approaches.
Check whether polygons are overlapped
Thomas T made the point in his answer, that there are families of related predicates that can be used to address this and related queries. If you are literally just looking for overlaps and other set theoretic operations (union, intersection, set difference) in two dimensions you can use the General Polygon Clipper
You may also need to consider the slightly more generic problem when two polygons that don't overlap or share a vertex when they should. You can use a Minkowski sum to dilate (enlarge) two and three dimensional polygons to avoid such problems. The Computational Geometry Algorithms Library has robust implementations of these algorithms.
I think that it's more likely that you are really looking for a piece of software that can perform vertex welding, Christer Ericson's book Real-time Collision Detection includes extensive and very readable description of the basics in this field, and also on related issues of edge snapping, crack detection, T-junctions and more. However, even though code snippets are included for that book, I know of no ready made library that addresses these problems, in particular, no complete implementation is given for anything beyond basic vertex welding.
Obviously all 3D packages (blender, maya, max, rhino) all include built in software and tools to solve this problem.
Group polygons based on vertices
From past experience, this turned out to be one of the most time consuming parts of developing software to solve problems in this area. It requires reasonable understanding of graph theory and algorithms to traverse boundaries. It is worth relying upon a solid geometry or graph library to do the heavy lifting for you. In the past I've had success with igraph.
Link the updated polygons back to the originals.
Again, from past experience, this is just a case of careful bookkeeping, and some very careful design of your mesh classes up-front. I'd like to give more advice, but even after spending a big chunk of the last six months on this, I'm still struggling to find a "nice" way to do this.
Other Comments
If you're interacting with users, I would strongly recommend avoiding this issue where possible by using an editor that "snaps", rounding all user entered points onto a grid. This will hopefully significantly reduce the amount of work that you have to do.
Yes, you can use OGR. It has python bindings. Specifically, the Geometry class has an Intersects method. I don't fully understand what you want in points 4 and 5.

Resources