Efficient method to check if point is within a diamond - algorithm

I have an array of diamonds as shown in the image and I know the position of every diamond and the distance from the origin of the diamond to any vertex (They are all the same distance from the center). I am also given a point. Given that information what is the most efficient method to find which diamond the point is in.
I know that I can just check the distance of the point from the position of every diamond but that seems way too cpu intensive as I have to do this multiple times.
Also, this shouldn't matter, but I am using C# and Unity 3D to do this.

If your diamonds form a regular pattern as in your picture, then just perform coordinate transformation to rotate the whole thing 45 degrees CW or CCW with (0, 0) as the origin. After that the problem becomes trivial: locating a point in a regular orthogonal grid.

Diamonds border line have equations
x + y = a0 + u * Size
y - x = b0 + v * Size
where a0, b0 are coordinates of the some vertex of base diamond (that has cell coordinates 0, 0), u and v are cell coordinates, Size is edge length. So to find what diamond point (px, py) belongs to, you can calculate
u = Floor((px + py - a0) / Size))
v = Floor((py - px - b0) / Size))

Related

Find coordinates inside a rectangular area constructed by lat/long GPS pairs

I've never deal much with location-based data, so very much new to the whole GPS coding related questions. I have a problem that I don't seem to find a very efficient way in solving it or maybe there's an algorithm that I'm not too sure.
Let said you have given 4 lat/long coordinates which construct some kind of a rectangular area: (X0, Y0), (X1, Y0), (X0, Y1), (X1, Y1)
-----------------------------------
| b |
| a |
| | d
| |
| c |
-----------------------------------
e
Is there a way to find all the point that are inside the given rectangular area : a, b, c
And all the points outside of the area? e, d
I can easily to construct a 2D matrix to do this, but that's only if the coordinates are in integer, but with lat/long pairs, the coordinates are usually in float numbers which we cannot use it to construct a 2D table.
Any cool ideas?
Edited 1:
What about this Ray-casting algorithm? Is this a good algorithm to be used for GPS coordinates which is a float number?
If your rectangle is axis-aligned, #Eyal's answer is the right one (and you actually don't need 8 values but 4 are enough).
If you deal with a rotated rectangle (will work for any quadrilateral), the ray-casting method is appropriate: consider the horizontal line Y=Yt through your test point and find the edges that cross it (one endpoint above, one endpoint below). There will be 0 or 2 such edges. In case 0, you are outside. Otherwise, compute the abscissas of the intersections of these edges with the line. If 0 or 2 intersection are on the left of the test point, you are outside.
Xi= Xt + (Yt - Y0) (X1 - X0) / (Y1 - Y0)
An alternative solution to #YvesDaoust's and #EyalSchneider's is to find the winding number or the crossing number of each point (http://geomalgorithms.com/a03-_inclusion.html). This solution scales to a polygon of any number of vertices (regardless of axis-alignment).
The Crossing Number (cn) method
- which counts the number of times a ray starting from the point P crosses the polygon boundary edges. The point is outside when this "crossing number" is even; otherwise, when it is odd, the point is inside. This method is sometimes referred to as the "even-odd" test.
The Winding Number (wn) method
- which counts the number of times the polygon winds around the point P. The point is outside only when this "winding number" wn = 0; otherwise, the point is inside.
Incidentally, #YvesDaoust's solution effectively calculates the crossing number of the point.
There is an unlimited number of points inside a rectangle, so you have to define a
step with (distane between two points).
You could just iterate with two nested loops,
lat, lon coordinates can be converted to integer using a multiplication factor of:
multiply with 1E7 (10000000) to get maximum acuracy of 1cm, or
10000000: 1cm
1000000: 10cm
100000: 1m
10000: 10m
1000: 100m
100: 1km
10: 11km
1: 111km
Now iterate
// convert to spherical integer rectangle
double toIntFact = 1E7;
int x = (int) (x0 * toIntFact);
int y = (int) (y0 * toIntFact);
int tx1 = x1 * toIntFact;
int ty1 = y1 * toIntFact;
int yStep = 100000; // about 1.11 m latitudinal span. choose desired step above in list
int xStep = (int) (yStep / cos(Math.toRadians(y0))); // longitude adaption factor depending of cos(latitude); more acurate (symetric) is to use cos of centerLatitude: (y0 + y1) / 2;
for (int px = x; px < tx1; px+= xStep) {
for (int py = y; py < ty1; py+= yStep) {
drawPoint(px, py); // or whatever
}
}
This should give an point set with same distances inbetween point for about some kilometer wide rectangles.
The code does not work when overlapping the Datum limit (-180 to 180 jump) or
when overlapping the poles. Delivers useable results up to latitude 80° N or S.
This code uses some kind of implicit equidistant (equirectangular) projection (see the division by cos(centerLat) to correct the fact that 1 degree of latitude is another distance measured in meters than one degree of longitude.
If the size of the rectangle exceeds some ten or hundred kilomters, then depending on your requirements have to use an advanced projection: e.g convert lat, lon with an WGS84 to UTM conversion. The result are coordinates in meters, which then you iterate analog.
But are you sure that this is what you want?
Nobody wants to find all atoms inside a rectangle.
May all screen pixels, or a method isInsideRectangle(lat,lon, Rectangle);
So think again for what you need that.

How can I find the middle points of x, y of a line segment in a binary image?

I have some damaged line segments in a binary image and I need to fix them (make them straight and at their original thick). In order to do that I have to find the middle points of the segment, so when I check the neighborhood to find the thickness of the lines I'll be able to find where the pixel stops being 1 and becomes 0.
Assuming your damaged line segments are straight, you can use regionprops in MATLAB to find the center of each bounding box. Because if a segment is straight, its is always the diagonal line of the bounding box, thus the center of the box is also the center of the semgent.
Let's call the points A and B to reduce ambiguity, A(Xa, Ya) and B(Xb, Yb)
Let C be the middle point.
C(Xc, Yc)
Xc = (Xa + Xb) / 2
Yc = (Ya + Yb) / 2
We have four interesting numbers, two for the X coordinates and two for the Y coordinates.
Xmin = floor(Xc)
Xmax = ceil(Xc)
Ymin = floor(Yc)
Ymax = ceil(Yc)
The X coordinate of your middle point is either Xmin or Xmax, the Y coordinate of your middle point is either Ymin or Ymax.
So we have four potential points: (Xmin, Ymin), (Xmin, Ymax), (Xmax, Ymin), (Xmax, Ymax).
So, finally, we must decide which point is nearest to C.
Distance from P(Xp, Yp) to C(Xc, Yc) is:
sqrt(sqr(Xp - Xc) + sqr(Yp - Yc))
Calculate the four distance from the four points to C, choose the minimum and that will be the best possible middle point.
Suppose
A = [xa ya];
B = [xb yb];
then
C = round( mean([A;B]) );
Matlab's round rounds numbers towards their nearest integer, so this minimizes the (city-block) distance from the analytical center (mean([A;B])) to the nearest pixel.
If you want to keep sub-pixel precision (which is actually advisable for most calculations until an explicit map from a result to pixel indices is required), just drop the round and use only the mean part.

How many integer points within the three points forming a triangle?

Actually this is a classic problem as SO user Victor put it (in another SO question regarding which tasks to ask during an interview).
I couldn't do it in an hour (sigh) so what is the algorithm that calculates the number of integer points within a triangle?
EDIT: Assume that the vertices are at integer coordinates. (otherwise it becomes a problem of finding all points within the triangle and then subtracting all the floating points to be left with only the integer points; a less elegant problem).
Assuming the vertices are at integer coordinates, you can get the answer by constructing a rectangle around the triangle as explained in Kyle Schultz's An Investigation of Pick's Theorem.
For a j x k rectangle, the number of interior points is
I = (j – 1)(k – 1).
For the 5 x 3 rectangle below, there are 8 interior points.
(source: uga.edu)
For triangles with a vertical leg (j) and a horizontal leg (k) the number of interior points is given by
I = ((j – 1)(k – 1) - h) / 2
where h is the number of points interior to the rectangle that are coincident to the hypotenuse of the triangles (not the length).
(source: uga.edu)
For triangles with a vertical side or a horizontal side, the number of interior points (I) is given by
(source: uga.edu)
where j, k, h1, h2, and b are marked in the following diagram
(source: uga.edu)
Finally, the case of triangles with no vertical or horizontal sides can be split into two sub-cases, one where the area surrounding the triangle forms three triangles, and one where the surrounding area forms three triangles and a rectangle (see the diagrams below).
The number of interior points (I) in the first sub-case is given by
(source: uga.edu)
where all the variables are marked in the following diagram
(source: uga.edu)
The number of interior points (I) in the second sub-case is given by
(source: uga.edu)
where all the variables are marked in the following diagram
(source: uga.edu)
Pick's theorem (http://en.wikipedia.org/wiki/Pick%27s_theorem) states that the surface of a simple polygon placed on integer points is given by:
A = i + b/2 - 1
Here A is the surface of the triangle, i is the number of interior points and b is the number of boundary points. The number of boundary points b can be calculated easily by summing the greatest common divisor of the slopes of each line:
b = gcd(abs(p0x - p1x), abs(p0y - p1y))
+ gcd(abs(p1x - p2x), abs(p1y - p2y))
+ gcd(abs(p2x - p0x), abs(p2y - p0y))
The surface can also be calculated. For a formula which calculates the surface see https://stackoverflow.com/a/14382692/2491535 . Combining these known values i can be calculated by:
i = A + 1 - b/2
My knee-jerk reaction would be to brute-force it:
Find the maximum and minimum extent of the triangle in the x and y directions.
Loop over all combinations of integer points within those extents.
For each set of points, use one of the standard tests (Same side or Barycentric techniques, for example) to see if the point lies within the triangle. Since this sort of computation is a component of algorithms for detecting intersections between rays/line segments and triangles, you can also check this link for more info.
This is called the "Point in the Triangle" test.
Here is an article with several solutions to this problem: Point in the Triangle Test.
A common way to check if a point is in a triangle is to find the vectors connecting the point to each of the triangle's three vertices and sum the angles between those vectors. If the sum of the angles is 2*pi (360-degrees) then the point is inside the triangle, otherwise it is not.
Ok I will propose one algorithm, it won't be brilliant, but it will work.
First, we will need a point in triangle test. I propose to use the "Barycentric Technique" as explained in this excellent post:
http://www.blackpawn.com/texts/pointinpoly/default.html
Now to the algorithm:
let (x1,y1) (x2,y2) (x3,y3) be the triangle vertices
let ymin = floor(min(y1,y2,y3)) ymax = ceiling(max(y1,y2,y3)) xmin = floor(min(x1,x2,x3)) ymax = ceiling(max(x1,x2,3))
iterating from xmin to xmax and ymin to ymax you can enumerate all the integer points in the rectangular region that contains the triangle
using the point in triangle test you can test for each point in the enumeration to see if it's on the triangle.
It's simple, I think it can be programmed in less than half hour.
I only have half an answer for a non-brute-force method. If the vertices were integer, you could reduce it to figuring out how to find how many integer points the edges intersect. With that number and the area of the triangle (Heron's formula), you can use Pick's theorem to find the number of interior integer points.
Edit: for the other half, finding the integer points that intersect the edge, I suspect that it's the greatest common denominator between the x and y difference between the points minus one, or if the distance minus one if one of the x or y differences is zero.
Here's another method, not necessarily the best, but sure to impress any interviewer.
First, call the point with the lowest X co-ord 'L', the point with the highest X co-ord 'R', and the remaining point 'M' (Left, Right, and Middle).
Then, set up two instances of Bresenham's line algorithm. Parameterize one instance to draw from L to R, and the second to draw from L to M. Run the algorithms simultaneously for X = X[L] to X[M]. But instead of drawing any lines or turning on any pixels, count the pixels between the lines.
After stepping from X[L] to X[M], change the parameters of the second Bresenham to draw from M to R, then continue to run the algorithms simultaneously for X = X[M] to X[R].
This is very similar to the solution proposed by Erwin Smout 7 hours ago, but using Bresenham instead of a line-slope formula.
I think that in order to count the columns of pixels, you will need to determine whether M lies above or below the line LR, and of course special cases will arise when two points have the same X or Y co-ordinate. But by the time this comes up, your interviewer will be suitably awed and you can move on to the next question.
Quick n'dirty pseudocode:
-- Declare triangle
p1 2DPoint = (x1, y1);
p2 2DPoint = (x2, y2);
p3 2DPoint = (x3, y3);
triangle [2DPoint] := [p1, p2, p3];
-- Bounding box
xmin float = min(triangle[][0]);
xmax float = max(triangle[][0]);
ymin float = min(triangle[][1]);
ymax float = max(triangle[][1]);
result [[float]];
-- Points in bounding box might be inside the triangle
for x in xmin .. xmax {
for y in ymin .. ymax {
if a line starting in (x, y) and going in any direction crosses one, and only one, of the lines between the points in the triangle, or hits exactly one of the corners of the triangle {
result[result.count] = (x, y);
}
}
}
I have this idea -
Let A(x1, y1), B(x2, y2) and C(x3, y3) be the vertices of the triangle. Let 'count' be the number of integer points forming the triangle.
If we need the points on the triangle edges then using Euclidean Distance formula http://en.wikipedia.org/wiki/Euclidean_distance, the length of all three sides can be ascertained.
The sum of length of all three sides - 3, would give that count.
To find the number of points inside the triangle we need to use a triangle fill algorithm and instead of doing the actual rendering i.e. executing drawpixel(x,y), just go through the loops and keep updating the count as we loop though.
A triangle fill algorithm from
Fundamentals of Computer Graphics by
Peter Shirley,Michael Ashikhmin
should help. Its referred here http://www.gidforums.com/t-20838.html
cheers
I'd go like this :
Take the uppermost point of the triangle (the one with the highest Y coordinate). There are two "slopes" starting at that point. It's not the general solution, but for easy visualisation, think of one of both "going to the left" (decreasing x coordinates) and the other one "going to the right".
From those two slopes and any given Y coordinate less than the highest point, you should be able to compute the number of integer points that appear within the bounds set by the slopes. Iterating over decreasing Y coordinates, add all those number of points together.
Stop when your decreasing Y coordinates reach the second-highest point of the triangle.
You have now counted all points "above the second-highest point", and you are now left with the problem of "counting all the points within some (much smaller !!!) triangle, of which you know that its upper side parallels the X-axis.
Repeat the same procedure, but now with taking the "leftmost point" instead of the "uppermost", and with proceedding "by increasing x", instead of by "decreasing y".
After that, you are left with the problem of counting all the integer points within a, once again much smaller, triangle, of which you know that its upper side parallels the X-axis, and its left side parallels the Y-axis.
Keep repeating (recurring), until you count no points in the triangle you're left with.
(Have I now made your homework for you ?)
(wierd) pseudo-code for a bit-better-than-brute-force (it should have O(n))
i hope you understand what i mean
n=0
p1,p2,p3 = order points by xcoordinate(p1,p2,p3)
for int i between p1.x and p2.x do
a = (intersection point of the line p1-p2 and the line with x==i).y
b = (intersection point of the line p1-p3 and the line with x==i).y
n += number of integers between floats (a, b)
end
for i between p2.x+1 and p3.x do
a = (intersection point of the line p2-p3 and the line with x==i).y
b = (intersection point of the line p1-p3 and the line with x==i).y
n += number of integers between floats (a, b)
end
this algorithm is rather easy to extend for vertices of type float (only needs some round at the "for i.." part, with a special case for p2.x being integer (there, rounded down=rounded up))
and there are some opportunities for optimization in a real implementation
Here is a Python implementation of #Prabhala's solution:
from collections import namedtuple
from fractions import gcd
def get_points(vertices):
Point = namedtuple('Point', 'x,y')
vertices = [Point(x, y) for x, y in vertices]
a, b, c = vertices
triangle_area = abs((a.x - b.x) * (a.y + b.y) + (b.x - c.x) * (b.y + c.y) + (c.x - a.x) * (c.y + a.y))
triangle_area /= 2
triangle_area += 1
interior = abs(gcd(a.x - b.x, a.y - b.y)) + abs(gcd(b.x - c.x, b.y - c.y)) + abs(gcd(c.x - a.x, c.y - a.y))
interior /= 2
return triangle_area - interior
Usage:
print(get_points([(-1, -1), (1, 0), (0, 1)])) # 1
print(get_points([[2, 3], [6, 9], [10, 160]])) # 289
I found a quite useful link which clearly explains the solution to this problem. I am weak in coordinate geometry so I used this solution and coded it in Java which works (at least for the test cases I tried..)
Link
public int points(int[][] vertices){
int interiorPoints = 0;
double triangleArea = 0;
int x1 = vertices[0][0], x2 = vertices[1][0], x3 = vertices[2][0];
int y1 = vertices[0][1], y2 = vertices[1][1], y3 = vertices[2][1];
triangleArea = Math.abs(((x1-x2)*(y1+y2))
+ ((x2-x3)*(y2+y3))
+ ((x3-x1)*(y3+y1)));
triangleArea /=2;
triangleArea++;
interiorPoints = Math.abs(gcd(x1-x2,y1-y2))
+ Math.abs(gcd(x2-x3, y2-y3))
+ Math.abs(gcd(x3-x1, y3-y1));
interiorPoints /=2;
return (int)(triangleArea - interiorPoints);
}

Calculating the Bounding Rectangle at an Angle of a Polygon

I have the need to determine the bounding rectangle for a polygon at an arbitrary angle. This picture illustrates what I need to do:
alt text http://kevlar.net/RotatedBoundingRectangle.png
The pink rectangle is what I need to determine at various angles for simple 2d polygons.
Any solutions are much appreciated!
Edit:
Thanks for the answers, I got it working once I got the center points correct. You guys are awesome!
To get a bounding box with a certain angle, rotate the polygon the other way round by that angle. Then you can use the min/max x/y coordinates to get a simple bounding box and rotate that by the angle to get your final result.
From your comment it seems you have problems with getting the center point of the polygon. The center of a polygon should be the average of the coordinate sums of each point. So for points P1,...,PN, calculate:
xsum = p1.x + ... + pn.x;
ysum = p1.y + ... + pn.y;
xcenter = xsum / n;
ycenter = ysum / n;
To make this complete, I also add some formulas for the rotation involved. To rotate a point (x,y) around a center point (cx, cy), do the following:
// Translate center to (0,0)
xt = x - cx;
yt = y - cy;
// Rotate by angle alpha (make sure to convert alpha to radians if needed)
xr = xt * cos(alpha) - yt * sin(alpha);
yr = xt * sin(alpha) + yt * cos(alpha);
// Translate back to (cx, cy)
result.x = xr + cx;
result.y = yr + cx;
To get the smallest rectangle you should get the right angle. This can acomplished by an algorithm used in collision detection: oriented bounding boxes.
The basic steps:
Get all vertices cordinates
Build a covariance matrix
Find the eigenvalues
Project all the vertices in the eigenvalue space
Find max and min in every eigenvalue space.
For more information just google OBB "colision detection"
Ps: If you just project all vertices and find maximum and minimum you're making AABB (axis aligned bounding box). Its easier and requires less computational effort, but doesn't guarantee the minimum box.
I'm interpreting your question to mean "For a given 2D polygon, how do you calculate the position of a bounding rectangle for which the angle of orientation is predetermined?"
And I would do it by rotating the polygon against the angle of orientation, then use a simple search for its maximum and minimum points in the two cardinal directions using whatever search algorithm is appropriate for the structure the points of the polygon are stored in. (Simply put, you need to find the highest and lowest X values, and highest and lowest Y values.)
Then the minima and maxima define your rectangle.
You can do the same thing without rotating the polygon first, but your search for minimum and maximum points has to be more sophisticated.
To get a rectangle with minimal area enclosing a polygon, you can use a rotating calipers algorithm.
The key insight is that (unlike in your sample image, so I assume you don't actually require minimal area?), any such minimal rectangle is collinear with at least one edge of (the convex hull of) the polygon.
Here is a python implementation for the answer by #schnaader.
Given a pointset with coordinates x and y and the degree of the rectangle to bound those points, the function returns a point set with the four corners (and a repetition of the first corner).
def BoundingRectangleAnglePoints(x,y, alphadeg):
#convert to radians and reverse direction
alpha = np.radians(alphadeg)
#calculate center
cx = np.mean(x)
cy = np.mean(y)
#Translate center to (0,0)
xt = x - cx
yt = y - cy
#Rotate by angle alpha (make sure to convert alpha to radians if needed)
xr = xt * np.cos(alpha) - yt * np.sin(alpha)
yr = xt * np.sin(alpha) + yt * np.cos(alpha)
#Find the min and max in rotated space
minx_r = np.min(xr)
miny_r = np.min(yr)
maxx_r = np.max(xr)
maxy_r = np.max(yr)
#Set up the minimum and maximum points of the bounding rectangle
xbound_r = np.asarray([minx_r, minx_r, maxx_r, maxx_r,minx_r])
ybound_r = np.asarray([miny_r, maxy_r, maxy_r, miny_r,miny_r])
#Rotate and Translate back to (cx, cy)
xbound = (xbound_r * np.cos(-alpha) - ybound_r * np.sin(-alpha))+cx
ybound = (xbound_r * np.sin(-alpha) + ybound_r * np.cos(-alpha))+cy
return xbound, ybound

circle-circle collision

I am going to develop a 2-d ball game where two balls (circles) collide. Now I have the problem with determining the colliding point (in fact, determining whether they are colliding in x-axis/y-axis). I have an idea that when the difference between the y coordinate of 2 balls is greater than the x coordinate difference then they collide in their y axis, otherwise, they collide in their x axis. Is my idea correct? I implemented this thing in my games. Normally it works well, but sometimes, it fails. Can anyone tell me whether my idea is right? If not, then why, and is any better way?
By collision in the x axis, I mean the circle's 1st, 4th, 5th, or 8th octant, y axis means the circle's 2nd, 3rd, 6th, or 7th octant.
Thanks in advance!
Collision between circles is easy. Imagine there are two circles:
C1 with center (x1,y1) and radius r1;
C2 with center (x2,y2) and radius r2.
Imagine there is a line running between those two center points. The distance from the center points to the edge of either circle is, by definition, equal to their respective radii. So:
if the edges of the circles touch, the distance between the centers is r1+r2;
any greater distance and the circles don't touch or collide; and
any less and then do collide.
So you can detect collision if:
(x2-x1)^2 + (y2-y1)^2 <= (r1+r2)^2
meaning the distance between the center points is less than the sum of the radii.
The same principle can be applied to detecting collisions between spheres in three dimensions.
Edit: if you want to calculate the point of collision, some basic trigonometry can do that. You have a triangle:
(x1,y1)
|\
| \
| \ sqrt((x2-x1)^2 + (y2-y1)^2) = r1+r2
|y2-y1| | \
| \
| X \
(x1,y2) +------+ (x2,y2)
|x2-x1|
The expressions |x2-x1| and |y2-y1| are absolute values. So for the angle X:
|y2 - y1|
sin X = -------
r1 + r2
|x2 - x1|
cos X = -------
r1 + r2
|y2 - y1|
tan X = -------
|x2 - x1|
Once you have the angle you can calculate the point of intersection by applying them to a new triangle:
+
|\
| \
b | \ r2
| \
| X \
+-----+
a
where:
a
cos X = --
r2
so
a = r2 cos X
From the previous formulae:
|x2 - x1|
a = r2 -------
r1 + r2
Once you have a and b you can calculate the collision point in terms of (x2,y2) offset by (a,b) as appropriate. You don't even need to calculate any sines, cosines or inverse sines or cosines for this. Or any square roots for that matter. So it's fast.
But if you don't need an exact angle or point of collision and just want the octant you can optimize this further by understanding something about tangents, which is:
0 <= tan X <= 1 for 0 <= X <= 45 degrees;
tan X >= 1 for 45 <= X <= 90
0 >= tan X >= -1 for 0 >= X => -45;
tan X <= -1 for -45 >= X => -90; and
tan X = tan (X+180) = tan (X-180).
Those four degree ranges correspond to four octants of the cirlce. The other four are offset by 180 degrees. As demonstrated above, the tangent can be calculated simply as:
|y2 - y1|
tan X = -------
|x2 - x1|
Lose the absolute values and this ratio will tell you which of the four octants the collision is in (by the above tangent ranges). To work out the exact octant just compare x1 and x2 to determine which is leftmost.
The octant of the collision on the other single is offset (octant 1 on C1 means octant 5 on C2, 2 and 6, 3 and 7, 4 and 8, etc).
As cletus says, you want to use the sum of the radii of the two balls. You want to compute the total distance between the centers of the balls, as follows:
Ball 1: center: p1=(x1,y1) radius: r1
Ball 2: center: p2=(x2,y2) radius: r2
collision distance: R= r1 + r2
actual distance: r12= sqrt( (x2-x1)^2 + (y2-y1)^2 )
A collision will happen whenever (r12 < R). As Artelius says, they shouldn't actually collide on the x/y axes, they collide at a particular angle. Except, you don't actually want that angle; you want the collision vector. This is the difference between the centers of the two circles when they collide:
collision vector: d12= (x2-x1,y2-y1) = (dx,dy)
actual distance: r12= sqrt( dx*dx + dy*dy )
Note that you have already computed dx and dy above when figuring the actual distance, so you might as well keep track of them for purposes like this. You can use this collision vector for determining the new velocity of the balls -- you're going to end up scaling the collision vector by some factors, and adding that to the old velocities... but, to get back to the actual collision point:
collision point: pcollision= ( (x1*r2+x2*r1)/(r1+r2), (y1*r2+y2*r1)/(r1+r2) )
To figure out how to find the new velocity of the balls (and in general to make more sense out of the whole situation), you should probably find a high school physics book, or the equivalent. Unfortunately, I don't know of a good web tutorial -- suggestions, anyone?
Oh, and if still want to stick with the x/y axis thing, I think you've got it right with:
if( abs(dx) > abs(dy) ) then { x-axis } else { y-axis }
As for why it might fail, it's hard to tell without more information, but you might have a problem with your balls moving too fast, and passing right by each other in a single timestep. There are ways to fix this problem, but the simplest way is to make sure they don't move too fast...
This site explains the physics, derives the algorithm, and provides code for collisions of 2D balls.
Calculate the octant after this function calculates the following: position of collision point relative to centre of mass of body a; position of collision point relative to centre of mass of body a
/**
This function calulates the velocities after a 2D collision vaf, vbf, waf and wbf from information about the colliding bodies
#param double e coefficient of restitution which depends on the nature of the two colliding materials
#param double ma total mass of body a
#param double mb total mass of body b
#param double Ia inertia for body a.
#param double Ib inertia for body b.
#param vector ra position of collision point relative to centre of mass of body a in absolute coordinates (if this is
known in local body coordinates it must be converted before this is called).
#param vector rb position of collision point relative to centre of mass of body b in absolute coordinates (if this is
known in local body coordinates it must be converted before this is called).
#param vector n normal to collision point, the line along which the impulse acts.
#param vector vai initial velocity of centre of mass on object a
#param vector vbi initial velocity of centre of mass on object b
#param vector wai initial angular velocity of object a
#param vector wbi initial angular velocity of object b
#param vector vaf final velocity of centre of mass on object a
#param vector vbf final velocity of centre of mass on object a
#param vector waf final angular velocity of object a
#param vector wbf final angular velocity of object b
*/
CollisionResponce(double e,double ma,double mb,matrix Ia,matrix Ib,vector ra,vector rb,vector n,
vector vai, vector vbi, vector wai, vector wbi, vector vaf, vector vbf, vector waf, vector wbf) {
double k=1/(ma*ma)+ 2/(ma*mb) +1/(mb*mb) - ra.x*ra.x/(ma*Ia) - rb.x*rb.x/(ma*Ib) - ra.y*ra.y/(ma*Ia)
- ra.y*ra.y/(mb*Ia) - ra.x*ra.x/(mb*Ia) - rb.x*rb.x/(mb*Ib) - rb.y*rb.y/(ma*Ib)
- rb.y*rb.y/(mb*Ib) + ra.y*ra.y*rb.x*rb.x/(Ia*Ib) + ra.x*ra.x*rb.y*rb.y/(Ia*Ib) - 2*ra.x*ra.y*rb.x*rb.y/(Ia*Ib);
double Jx = (e+1)/k * (Vai.x - Vbi.x)( 1/ma - ra.x*ra.x/Ia + 1/mb - rb.x*rb.x/Ib)
- (e+1)/k * (Vai.y - Vbi.y) (ra.x*ra.y / Ia + rb.x*rb.y / Ib);
double Jy = - (e+1)/k * (Vai.x - Vbi.x) (ra.x*ra.y / Ia + rb.x*rb.y / Ib)
+ (e+1)/k * (Vai.y - Vbi.y) ( 1/ma - ra.y*ra.y/Ia + 1/mb - rb.y*rb.y/Ib);
Vaf.x = Vai.x - Jx/Ma;
Vaf.y = Vai.y - Jy/Ma;
Vbf.x = Vbi.x - Jx/Mb;
Vbf.y = Vbi.y - Jy/Mb;
waf.x = wai.x - (Jx*ra.y - Jy*ra.x) /Ia;
waf.y = wai.y - (Jx*ra.y - Jy*ra.x) /Ia;
wbf.x = wbi.x - (Jx*rb.y - Jy*rb.x) /Ib;
wbf.y = wbi.y - (Jx*rb.y - Jy*rb.x) /Ib;
}
I agree with provided answers, they are very good.
I just want to point you a small pitfall: if the speed of balls is high, you can just miss the collision, because circles never intersect for given steps.
The solution is to solve the equation on the movement and to find the correct moment of the collision.
Anyway, if you would implement your solution (comparisons on X and Y axes) you'd get the good old ping pong! http://en.wikipedia.org/wiki/Pong
:)
The point at which they collide is on the line between the midpoints of the two circles, and its distance from either midpoint is the radius of that respective circle.

Resources