Prolog ERROR: is/2: Arguments are not sufficiently instantiated - prolog

I'm new to Prolog. I wrote a very short program as follows:
plus(X,Y,R):- R is X+Y.
When I run it, I get the following problem:
?- plus(1,1,2).
true
?- plus(1,1,X).
X=2
?- plus(1,X,2).
ERROR: is/2: Arguments are not sufficiently instantiated
Why does the error happens? How can I modify the code to achieve the same goal?
Thank you all for helping me!!!

The reason that this is not working is that is/2 is (like) a function. Given X,Y it calculates X+Y and stores it to R (it instantiates R with X+Y). If R is provided and X or Y is a var (it is not yet instantiated) then how could it calculate X+Y, that's why the instantiation error.
To solve this you should use something more relational like module :CLPFD
:- use_module(library(clpfd)).
plus(X,Y,R):- R #= X+Y.
Some examples:
**?- [ask].
true.
?- plus(1,1,2).
true.
?- plus(1,1,X).
X = 2.
?- plus(1,X,2).
X = 1.
?- plus(X,Y,2).
X+Y#=2.
?- plus(X,Y,R).
X+Y#=R.**
You can see in the last case that is gives as an answer how X,Y and R are related.

Related

SWI Prolog list subtract gives error: Out of local stack

I'm running some Prolog rule which uses the subtract function and in the stack trace, I found the source of error to be this:
lists:subtract([b, d | _], [b, d] , [r]) ? creep
ERROR: Out of local stack
The original call was:
member(b, X), member(d, X), subtract(X, [b, d], [r]).
and the expected output is [b, d, r].
I'm new to Prolog and unable to understand the source of error and how to fix it. Please help.
unable to understand the source of error and how to fix it.
Just take your query and look at the first two goals alone:
?- member(b, X), member(d, X).
X = [b,d|_A]
; X = [b,_A,d|_B]
; X = [b,_A,_B,d|_C]
; X = [b,_A,_B,_C,d|_D]
; X = [b,_A,_B,_C,_D,d|_E]
; ... .
Just these two goals produce already infinitely many answers. So no matter what follows, your query will never terminate. By chance, you may happen to get a solution, but more often than not you will end in some loop.
So first of all you need to fix this somehow.
Then consider the meaning of subtract/3 in SWI:
?- subtract([b,d,r], [b,d], [r]).
true.
?- subtract([b,d,X], [b,d], [r]).
false. % ?? why not X = r?
From this alone you can see that subtract/3 is not a relation. So you cannot use it as a relation like, say, append/3.
To fix this and keep as close to your original query, use library(reif) and library(lambda):
?- S1=[b,d,X], S2 = [b,d], tpartition(S2+\E^memberd_t(E,S2),S1,_,[r]).
S1 = [b,d,r], X = r, S2 = [b,d].
From SWI Prolog manual :
The library(lists) contains a number of old predicates for manipulating sets represented as unordered lists, notably intersection/3, union/3, subset/2 and subtract/3. These predicates all use memberchk/2 to find equivalent elements. As a result these are not logical while unification can easily lead to dubious results.
You are having this problem because subtract isn't pure and needs it's first two Arguments to be instantiated hence the + sign in it's documentation .
subtract(+Set, +Delete, -Result)
you can instead use union/3
union(+Set1, +Set2, -Set3)
you can know more about other mode indicators in here.

Prolog: Multiplication(X,Y)

double(X, Y) :-
X is Y/2, Y is X*2.
I'm trying to execute this but its given error always
Arguments are not sufficiently instantiated
In:
[2] 4 is _1604/2
[1] double(4,_1662) at line 2
how can I get double of two variables.
You are trying to make a bidirectional procedure, where at least one of the parameters is instantiated.
You may use CLP(fd) like this:
double(X, Y):- Y #= X*2.
Note this will only work with integer values, so for example
?- double(2, Y).
Y = 4.
?- double(X, 4).
X = 2.
but
?- double(2.5, Y).
ERROR: Domain error: `clpfd_expression' expected, found `2.5'
ERROR: In:
ERROR: [14] throw(error(domain_error(clpfd_expression,2.5),_2162))
ERROR: [11] clpfd:parse_clpfd(2.5*2,_2200) at c:/swi/swi8/library/clp/clpfd.pl:7359
ERROR: [9] clpfd:clpfd_equal(_2236,2.5*2) at c:/swi/swi8/library/clp/clpfd.pl:2795
ERROR: [7] <user>
ERROR:
ERROR: Note: some frames are missing due to last-call optimization.
ERROR: Re-run your program in debug mode (:- debug.) to get more detail.
?- double(X, 5).
false.
or if you want to use is/2 then you should make sure that the right hand side of is/2 is bound to an number, for example like this:
double(X, Y) :-
( number(X)
-> Y is X*2
; number(Y)
-> X is Y/2
).
The procedure using CLP(fd) is clearly more powerful as it does not require the right hand arithmetic expression to be instantiated prior to issue the constraint, and thus allows queries like double(X,Y) to succeed (giving the remaining constraints upon querying).
You may also try CLP(r) which works over reals:
:- use_module(library(clpr)).
double(X, Y):- { Y=X*2 }.
sample runs:
?- double(2, Y).
Y = 4.
?- double(X, 4).
X = 2.
?- double(2.5, Y).
Y = 5.0.
?- double(X, 5).
X = 2.5.

Why does returning false? [duplicate]

I implemented the following power program in Prolog:
puissance(_,0,1).
puissance(X,N,P) :- N>0,A is N-1, puissance(X,A,Z), P is Z*X.
The code does what is supposed to do, but after the right answer it prints "false.". I don't understand why. I am using swi-prolog.
Can do like this instead:
puissance(X,N,P) :-
( N > 0 ->
A is N-1,
puissance(X,A,Z),
P is Z*X
; P = 1 ).
Then it will just print one answer.
(Your code leaves a `choice point' at every recursive call, because you have two disjuncts and no cut. Using if-then-else or a cut somewhere removes those. Then it depends on the interpreter what happens. Sicstus still asks if you want ((to try to find)) more answers.)
Semantic differences
Currently, there are 3 different versions of puissance/3, and I would like to show a significant semantic difference between some of them.
As a test case, I consider the query:
?- puissance(X, Y, Z), false.
What does this query mean? Declaratively, it is clearly equivalent to false. This query is very interesting nevertheless, because it terminates iff puissance/3 terminates universally.
Now, let us try the query on the different variants of the program:
Original definition (from the question):
?- puissance(X, Y, Z), false.
ERROR: puissance/3: Arguments are not sufficiently instantiated
Accepted answer:
?- puissance(X, Y, Z), false.
false.
Other answer:
?- puissance(X, Y, Z), false.
ERROR: puissance/3: Arguments are not sufficiently instantiated
Obviously, the solution shown in the accepted answer yields a different result, and is worth considering further.
Here is the program again:
puissance(_,0,1) :- !.
puissance(X,N,P) :- N>0,A is N-1, puissance(X,A,Z), P is Z*X.
Let us ask something simple first: Which solutions are there at all? This is called the most general query, because its arguments are all fresh variables:
?- puissance(X, Y, Z).
Y = 0,
Z = 1.
The program answers: There is only a single solution: Y=0, Z=1.
That's incorrect (to see this, try the query ?- puissance(0, 1, _) which succeeds, contrary to the same program claiming that Y can only be 0), and a significant difference from the program shown in the question. For comparison, the original program yields:
?- puissance(X, Y, Z).
Y = 0,
Z = 1 ;
ERROR: puissance/3: Arguments are not sufficiently instantiated
That's OK: On backtracking, the program throws an instantiation error to indicate that no further reasoning is possible at this point. Critically though, it does not simply fail!
Improving determinism
So, let us stick to the original program, and consider the query:
?- puissance(1, 1, Z).
Z = 1 ;
false.
We would like to get rid of false, which occurs because the program is not deterministic.
One way to solve this is to use zcompare/3 from library(clpfd). This lets you reify the comparison, and makes the result available for indexing while retaining the predicate's generality.
Here is one possible solution:
puissance(X, N, P) :-
zcompare(C, 0, N),
puissance_(C, X, N, P).
puissance_(=, _, 0, 1).
puissance_(<, X, N, P) :-
A #= N-1,
puissance(X, A, Z),
P #= Z*X.
With this version, we get:
?- puissance(1, 1, Z).
Z = 1.
This is now deterministic, as intended.
Now, let us consider the test case from above with this version:
?- puissance(X, Y, Z), false.
nontermination
Aha! So this query neither throws an instantiation error nor terminates, and is therefore different from all the versions that have hitherto been posted.
Let us consider the most general query with this program:
?- puissance(X, Y, Z).
Y = 0,
Z = 1 ;
X = Z,
Y = 1,
Z in inf..sup ;
Y = 2,
X^2#=Z,
Z in 0..sup ;
Y = 3,
_G3136*X#=Z,
X^2#=_G3136,
_G3136 in 0..sup ;
etc.
Aha! So we get a symbolic representation of all integers that satisfy this relation.
That's pretty cool, and I therefore recommend you use CLP(FD) constraints when reasoning over integers in Prolog. This will make your programs more general and also lets you improve their efficiency more easily.
You can add a cut operator (i.e. !) to your solution, meaning prolog should not attempt to backtrack and find any more solutions after the first successful unification that has reached that point. (i.e. you're pruning the solution tree).
puissance(_,0,1) :- !.
puissance(X,N,P) :- N>0,A is N-1, puissance(X,A,Z), P is Z*X.
Layman's Explanation:
The reason prolog attempts to see if there are any more solutions, is this:
At the last call to puissance in your recursion, the first puissance clause succeeds since P=1, and you travel all the way back to the top call to perform unification with P with the eventual value that results from that choice.
However, for that last call to puissance, Prolog didn't have a chance to check whether the second puissance clause would also be satisfiable and potentially lead to a different solution, therefore unless you tell it not to check for further solutions (by using a cut on the first clause after it has been successful), it is obligated to go back to that point, and check the second clause too.
Once it does, it sees that the second clause cannot be satisfied because N = 0, and therefore that particular attempt fails.
So the "false" effectively means that prolog checked for other choice points too and couldn't unify P in any other way that would satisfy them, i.e. there are no more valid unifications for P.
And the fact that you're given the choice to look for other solutions in the first place, exactly means that there are still other routes with potentially satisfiable clauses remaining that have not been explored yet.

Prolog program returns false

I implemented the following power program in Prolog:
puissance(_,0,1).
puissance(X,N,P) :- N>0,A is N-1, puissance(X,A,Z), P is Z*X.
The code does what is supposed to do, but after the right answer it prints "false.". I don't understand why. I am using swi-prolog.
Can do like this instead:
puissance(X,N,P) :-
( N > 0 ->
A is N-1,
puissance(X,A,Z),
P is Z*X
; P = 1 ).
Then it will just print one answer.
(Your code leaves a `choice point' at every recursive call, because you have two disjuncts and no cut. Using if-then-else or a cut somewhere removes those. Then it depends on the interpreter what happens. Sicstus still asks if you want ((to try to find)) more answers.)
Semantic differences
Currently, there are 3 different versions of puissance/3, and I would like to show a significant semantic difference between some of them.
As a test case, I consider the query:
?- puissance(X, Y, Z), false.
What does this query mean? Declaratively, it is clearly equivalent to false. This query is very interesting nevertheless, because it terminates iff puissance/3 terminates universally.
Now, let us try the query on the different variants of the program:
Original definition (from the question):
?- puissance(X, Y, Z), false.
ERROR: puissance/3: Arguments are not sufficiently instantiated
Accepted answer:
?- puissance(X, Y, Z), false.
false.
Other answer:
?- puissance(X, Y, Z), false.
ERROR: puissance/3: Arguments are not sufficiently instantiated
Obviously, the solution shown in the accepted answer yields a different result, and is worth considering further.
Here is the program again:
puissance(_,0,1) :- !.
puissance(X,N,P) :- N>0,A is N-1, puissance(X,A,Z), P is Z*X.
Let us ask something simple first: Which solutions are there at all? This is called the most general query, because its arguments are all fresh variables:
?- puissance(X, Y, Z).
Y = 0,
Z = 1.
The program answers: There is only a single solution: Y=0, Z=1.
That's incorrect (to see this, try the query ?- puissance(0, 1, _) which succeeds, contrary to the same program claiming that Y can only be 0), and a significant difference from the program shown in the question. For comparison, the original program yields:
?- puissance(X, Y, Z).
Y = 0,
Z = 1 ;
ERROR: puissance/3: Arguments are not sufficiently instantiated
That's OK: On backtracking, the program throws an instantiation error to indicate that no further reasoning is possible at this point. Critically though, it does not simply fail!
Improving determinism
So, let us stick to the original program, and consider the query:
?- puissance(1, 1, Z).
Z = 1 ;
false.
We would like to get rid of false, which occurs because the program is not deterministic.
One way to solve this is to use zcompare/3 from library(clpfd). This lets you reify the comparison, and makes the result available for indexing while retaining the predicate's generality.
Here is one possible solution:
puissance(X, N, P) :-
zcompare(C, 0, N),
puissance_(C, X, N, P).
puissance_(=, _, 0, 1).
puissance_(<, X, N, P) :-
A #= N-1,
puissance(X, A, Z),
P #= Z*X.
With this version, we get:
?- puissance(1, 1, Z).
Z = 1.
This is now deterministic, as intended.
Now, let us consider the test case from above with this version:
?- puissance(X, Y, Z), false.
nontermination
Aha! So this query neither throws an instantiation error nor terminates, and is therefore different from all the versions that have hitherto been posted.
Let us consider the most general query with this program:
?- puissance(X, Y, Z).
Y = 0,
Z = 1 ;
X = Z,
Y = 1,
Z in inf..sup ;
Y = 2,
X^2#=Z,
Z in 0..sup ;
Y = 3,
_G3136*X#=Z,
X^2#=_G3136,
_G3136 in 0..sup ;
etc.
Aha! So we get a symbolic representation of all integers that satisfy this relation.
That's pretty cool, and I therefore recommend you use CLP(FD) constraints when reasoning over integers in Prolog. This will make your programs more general and also lets you improve their efficiency more easily.
You can add a cut operator (i.e. !) to your solution, meaning prolog should not attempt to backtrack and find any more solutions after the first successful unification that has reached that point. (i.e. you're pruning the solution tree).
puissance(_,0,1) :- !.
puissance(X,N,P) :- N>0,A is N-1, puissance(X,A,Z), P is Z*X.
Layman's Explanation:
The reason prolog attempts to see if there are any more solutions, is this:
At the last call to puissance in your recursion, the first puissance clause succeeds since P=1, and you travel all the way back to the top call to perform unification with P with the eventual value that results from that choice.
However, for that last call to puissance, Prolog didn't have a chance to check whether the second puissance clause would also be satisfiable and potentially lead to a different solution, therefore unless you tell it not to check for further solutions (by using a cut on the first clause after it has been successful), it is obligated to go back to that point, and check the second clause too.
Once it does, it sees that the second clause cannot be satisfied because N = 0, and therefore that particular attempt fails.
So the "false" effectively means that prolog checked for other choice points too and couldn't unify P in any other way that would satisfy them, i.e. there are no more valid unifications for P.
And the fact that you're given the choice to look for other solutions in the first place, exactly means that there are still other routes with potentially satisfiable clauses remaining that have not been explored yet.

A Prolog programme getting ERROR: >/2: Arguments are not sufficiently instantiated

I have created a program, list(X,Y) to check whether all the elements in list Y are smaller than X.
The codes are as follows.
list(X,[]).
list(X,[Y|Z]):-X>Y,list(X,Z).
It works fine when I type list(3,[1,2]). However, if I type list(3,Y) in order to find lists which only contain elements smaller than 3, there is an error.
?- list(3,[1,2]).
true .
?- list(3,Y).
Y = [] ;
ERROR: >/2: Arguments are not sufficiently instantiated
I have read some posts which got the same error, but I still don't understand which part of my codes goes wrong.
Here comes a similar example found from internet.
greater(X,Y,Z) returns the part Z of Y that is greater than X.
greater(X,[],[]).
greater(X,[H|Y],[H|Z]) :- H>X, greater(X,Y,Z).
greater(X,[H|Y],Z) :- H=<X, greater(X,Y,Z).
?- greater(2,[1,2,3], Y).
Y = [3].
The question is, what is the difference between the codes of greater(X,Y,Z) and list(X,Y) so that there is no error when calling greater(2,[1,2,3], Y)..
Thanks for any help provided.
Since - judging from your comment - you seem to be reasoning over integers: That's a textbook example for using finite domain constraints, which are available in almost all modern Prolog implementations and generalize integer arithmetic so that you can use it in all directions.
Your code works exactly as expected with, among others, B-Prolog, GNU Prolog, SICStus, SWI and YAP if you just use the finite domain constraint (#>)/2 instead of the lower-level arithmetic primitive (>)/2:
:- use_module(library(clpfd)).
list(X, []).
list(X, [Y|Z]):- X#>Y, list(X,Z).
Constraints allow you to use this predicate, which you can also express with maplist/2 as in the queries below, in all directions:
?- maplist(#>(3), [1,2]).
true.
?- maplist(#>(X), [1,2]).
X in 3..sup.
?- maplist(#>(3), [A,B]).
A in inf..2,
B in inf..2.
?- maplist(#>(X), [Y,Z]).
Z#=<X+ -1,
Y#=<X+ -1.
Even the most general query, where none of the arguments is instantiated, gives useful answers:
?- maplist(#>(X), Ls).
Ls = [] ;
Ls = [_G1022],
_G1022#=<X+ -1 ;
Ls = [_G1187, _G1190],
_G1190#=<X+ -1,
_G1187#=<X+ -1 ;
etc.
EDIT: Also the example you now added can be made much more general with finite domain constraints:
:- use_module(library(clpfd)).
greater(_, [], []).
greater(X, [H|Y], [H|Z]) :- H #> X, greater(X, Y, Z).
greater(X, [H|Y], Z) :- H #=< X, greater(X, Y, Z).
You can now use it in all directions, for example:
?- greater(X, [E], Ls).
Ls = [E],
X#=<E+ -1 ;
Ls = [],
X#>=E.
This is not possible with the original version, whose author may not have been aware of constraints.

Resources