Intro rule for "∀r>0" in Isabelle - logic

When I have a goal such as "∀x. P x" in Isabelle, I know that I can write
show "∀x. P x"
proof (rule allI)
However, when the goal is "∀x>0. P x", I cannot do that. Is there a similar rule/method that I can use after proof in order to simplify my goal? I would also be interested in one for the situation where you have a goal of the form "∃x>0. P x".
I'm looking for an Isar proof that uses the proof (rule something) style.

Universal quantifier
To expand on Lars's answer: ∀x>0. P x is just syntactic sugar for ∀x. x > 0 ⟶ P x. As a consequence, if you want to prove a statement like this, you first have to strip away the universal quantifier with allI and then strip away the implication with impI. You can do something like this:
lemma "∀x>0. P x"
proof (rule allI, rule impI)
Or using intro, which is more or less the same as applying rule until it is not possible anymore:
lemma "∀x>0. P x"
proof (intro allI impI)
Or you can use safe, which eagerly applies all introduction rules that are declared as ‘safe’, such as allI and impI:
lemma "∀x>0. P x"
proof safe
In any case, your new proof state is then
proof (state)
goal (1 subgoal):
1. ⋀x. 0 < x ⟹ P x
And you can proceed like this:
lemma "∀x>0. P (x :: nat)"
proof safe
fix x :: nat assume "x > 0"
show "P x"
Note that I added an annotation; I didn't know what type your P has, so I just used nat. When you fix a variable in Isar and the type is not clear from the assumptions, you will get a warning that a new free type variable was introduced, which is not what you want. When you get that warning, you should add a type annotation to the fix like I did above.
Existential quantifier
For an existential quantifier, safe will not work because the intro rule exI is not always safe due to technical reasons. The typical proof pattern for an ∃x>0. P x would be something like:
lemma "∃x>0. P (x :: nat)"
proof -
have "42 > (0 :: nat)" by simp
moreover have "P 42" sorry
ultimately show ?thesis by blast
qed
Or a little more explicitly:
lemma "∃x>0. P (x :: nat)"
proof -
have "42 > 0 ∧ P 42" sorry
thus ?thesis by (rule exI)
qed
In cases when the existential witness (i.e. the 42 in this example) does not depend on any variables that you got out of an obtain command, you can also do it more directly:
lemma "∃x>0. P (x :: nat)"
proof (intro exI conjI)
This leaves you with the goals ?x > 0 and P ?x. Note that the ?x is a schematic variable for which you can put it anything. So you can complete the proof like this:
lemma "∃x>0. P (x :: nat)"
proof (intro exI conjI)
show "42 > (0::nat)" by simp
show "P 42" sorry
qed
As I said, this does not work if your existential witness depends on some variable that you got from obtain due to technical restrictions. In that case, you have to fall back to the other solution I mentioned.

The following works in Isabelle2016-1-RC2:
lemma "∀ x>0. P x"
apply (rule allI)
In general, you can also just use apply rule, which will select the default introduction rule. Same is true for the existential quantifier.

Related

Expanding all definitions in Isabelle lemma

How can I tell Isabelle to expand all my definitions, please, because that way the proof is trivial? Unfortunately there is no default expansion or simplification happens, and basically I get back the original expression as the subgoal.
Example:
theory Test
imports Main
begin
definition b0 :: "nat⇒nat"
where "b0 n ≡ (n mod 2)"
definition b1 :: "nat⇒nat"
where "b1 n ≡ (n div 2)"
lemma "(a::nat)≤3 ∧ (b::nat)≤3 ⟶
2*(b1 a)+(b0 a)+2*(b1 b)+(b0 b) = a+b"
apply auto
oops
end
Respose before oops:
proof (prove)
goal (1 subgoal):
1. a ≤ 3 ⟹
b ≤ 3 ⟹ 2 * b1 a + b0 a + 2 * b1 b + b0 b = a + b
My recommendation: unfolding
There is a special keyword unfolding for unpacking definitions at the start of proofs. For your example this would read:
unfolding b0_def b1_def by simp
I consider unfolding the most elegant way. It also helps while writing the proofs. Internally, this is (mostly?) equivalent to using the unfold-method:
apply (unfold b0_def b1_def) by simp
This will recursively (!) use the set of equalities you supply to rewrite the proof goal. (Due to the recursion, you should rather not supply a set of equalities that could generate cycles...)
Alternative: Using the simplifier
In cases with possible loops, the simplifier might be able to reach a nice unfolding without running into these cycles, maybe by interleaving with other simplifications. In such cases, by (simp add: b0_def b1_def), as you've suggested, is great!
Alternative definition: Maybe it's just an abbreviation (and no definition)?
If you find yourself unfolding a definition in every single instance, you could consider, using abbreviation instead of definition. Then, some Isabelle magic will do the packing/unpacking for you without further hints. abbeviation does only affect how the user communicates with Isabelle. It does not introduce new symbols at the object level, and consequently, there would be no b1_def facts and the like.
abbreviation b0 :: "nat⇒nat"
where "b0 n ≡ (n mod 2)"
Usually not recommended: Building something like an abbreviation using the simplifier
If you (for whatever reason) want to have a defined name at the object level, but unfold it in almost every instance, you can also feed the defining equality directly into the simplifier.
definition b0 :: "nat⇒nat"
where [simp]: "b0 n ≡ (n mod 2)"
(Usually there should be little reason for the last option.)
Yes, I keep forgetting that definitions are not used in simplifications by default.
Adding the definitions explicitly to the simplification rules solves this problem:
lemma "(a::nat)≤3 ∧ (b::nat)≤3 ⟶
2*(b1 a)+(b0 a)+2*(b1 b)+(b0 b) = a+b"
by (simp add: b0_def b1_def)
This way the definitions (b0, b1) are correctly used.

Can you prove Excluded Middle is wrong in Coq if I do not import classical logic

I know excluded middle is impossible in the logic of construction. However, I am stuck when I try to show it in Coq.
Theorem em: forall P : Prop, ~P \/ P -> False.
My approach is:
intros P H.
unfold not in H.
intuition.
The system says following:
2 subgoals
P : Prop
H0 : P -> False
______________________________________(1/2)
False
______________________________________(2/2)
False
How should I proceed?
Thanks
What you are trying to construct is not the negation of LEM, which would say "there exists some P such that EM doesn't hold", but the claim that says that no proposition is decidable, which of course leads to a trivial inconsistency:
Axiom not_lem : forall (P : Prop), ~ (P \/ ~ P).
Goal False.
now apply (not_lem True); left.
No need to use the fancy double-negation lemma; as this is obviously inconsistent [imagine it would hold!]
The "classical" negation of LEM is indeed:
Axiom not_lem : exists (P : Prop), ~ (P \/ ~ P).
and it is not provable [otherwise EM wouldn't be admissible], but you can assume it safely; however it won't be of much utility for you.
One cannot refute the law of excluded middle (LEM) in Coq.
Let's suppose you proved your refutation of LEM. We model this kind of situation by postulating it as an axiom:
Axiom not_lem : forall (P : Prop), ~ (P \/ ~ P).
But then we also have a weaker version (double-negated) of LEM:
Lemma not_not_lem (P : Prop) :
~ ~ (P \/ ~ P).
Proof.
intros nlem. apply nlem.
right. intros p. apply nlem.
left. exact p.
Qed.
These two facts together would make Coq's logic inconsistent:
Lemma Coq_would_be_inconsistent :
False.
Proof.
apply (not_not_lem True).
apply not_lem.
Qed.
I'm coming from mathoverflow, but I don't have permission to comment on #Anton Trunov's answer. I think his answer is unjust, or at least incomplete: he hides the following "folklore":
Coq + Impredicative Set + Weak Excluded-middle -> False
This folklore is a variation of the following facts:
proof irrelevance + large elimination -> false
And Coq + Impredicative Set is canonical, soundness, strong normalization, So it is consistent.
Coq + Impredicative Set is the old version of Coq. I think this at least shows that the defense of the LEM based on double negative translation is not that convincing.
If you want to get information about the solutions, you can get it from here https://github.com/FStarLang/FStar/issues/360
On the other hand, you may be interested in the story of how Coq-HoTT+UA went against LEM∞...
=====================================================
Ok, let's have some solutions.
use command-line flag -impredicative-set, or the install old version(<8.0) of coq.
excluded-middle -> proof-irrelevance
proof-irrelevance -> False
Or you can work with standard coq + coq-hott.
install coq-hott
Univalence + Global Excluded-middle (LEM∞) -> False
It is not recommended that you directly click on the code in question without grasping the specific concept.
I skipped a lot about meta-theoretic implementations, such as Univalence not being computable in Coq-HoTT but only in Agda-CuTT, such as the consistency proof for Coq+Impredicative Set/Coq-HoTT.
However, metatheoretical considerations are important. If we just want to get an Anti-LEM model and don't care about metatheory, then we can use "Boolean-valued forcing" in coq to wreak havoc on things that only LEM can introduce, such as "every function about real set is continuous", Dedekind infinite...
But this answer ends there.

working on logic - fitch system

Struggling with logic and fitch system,
I am trying, given (p ⇒ ¬q) and (¬q ∧ p ⇒ r) and p, to use the Fitch System in order to prove r.
Any ideas on how I should proceed?
(p ⇒ ¬q)
(¬q ∧ p ⇒ r)
p
¬q (1 3 Implication Elimination)
¬q ^ p (2 4 And Introduction)
r (2 5 Implication Elimination)
---> END
You may also try other formal proof systems that are available as computer-implemented proof checkers. Using the structured proof language of Isabelle you can write your proof like this:
theory Scratch
imports Main
begin
notepad
begin
assume 1: "p ⟶ ¬ q"
and 2: "¬ q ∧ p ⟶ r"
and 3: p
have "¬ q" using 1 and 3 ..
then have "¬ q ∧ p" using 3 ..
with 2 have r ..
end
end
The following proof uses Klement's Fitch-style natural deduction proof checker. Explanation of the rules are available in forallx.
The first three lines are the premises. Line 4 results from conditional elimination (→E), line 5 from conjunction introduction (∧I) and the final line from conditional elimination again.
References
Kevin Klement's JavaScript/PHP Fitch-style natural deduction proof editor and checker http://proofs.openlogicproject.org/
P. D. Magnus, Tim Button with additions by J. Robert Loftis remixed and revised by Aaron Thomas-Bolduc, Richard Zach, forallx Calgary Remix: An Introduction to Formal Logic, Winter 2018. http://forallx.openlogicproject.org/

Can the negation introduction rule of inference "a, b=>¬a / ¬b" be used instead of the usual "b=>a, b=>¬a / ¬b"?

I find the negation introduction rule which I learned at university a bit confusing to reason out and think that "a, b=>¬a / ¬b" makes more sense as it means that if b implies something which is not true, then b is itself not true. I can't seem to find an example of where the usual rule is more useful than the one I would like to use. Is there a reason why "b=>a, b=>¬a / ¬b" is used as a rule?
OK, I think I have a pretty rigorous argument which validates said replacement.
Let's say that we need to introduce a negation on P. So using the usual inference rule, we prove
P => Q
P => ¬Q
and thereby prove ¬P.
Let's say that there is no way to derive both Q and ¬Q if P is not assumed. But then from P we can derive Q /\ ¬Q which will allow us to derive anything, including the negation of a tautology.
So we can prove ¬P using the proposed rule by doing something like this:
1. |P Assumed
... |...
10. |Q
... |...
20. |¬Q
21. |Q /\ ¬Q /\ introduction on line 10 and 20
22. |¬(A => A) Derived from line 21 using contradiction lemma
23. P => ¬(A => A) => introduction on lines 1-22
24. A => A Anything implies itself (a tautology)
25. ¬P ¬ introduction on line 23 and 24
So using tautologies we can always use the proposed rule of inference.
In other words, if you can use the usual rule of inference to introduce a negation, you can use the proposed rule of inference too.

Combinator logic axioms

I'm carrying out some experiments in theorem proving with combinator logic, which is looking promising, but there's one stumbling block: it has been pointed out that in combinator logic it is true that e.g. I = SKK but this is not a theorem, it has to be added as an axiom. Does anyone know of a complete list of the axioms that need to be added?
Edit: You can of course prove by hand that I = SKK, but unless I'm missing something, it's not a theorem within the system of combinator logic with equality. That having been said, you can just macro expand I to SKK... but I'm still missing something important. Taking the set of clauses p(X) and ~p(X), which easily resolve to a contradiction in ordinary first-order logic, and converting them to SK, performing substitution and evaluating all calls of S and K, my program generates the following (where I am using ' for Unlambda's backtick):
''eq ''s ''s ''s 'k s ''s ''s 'k s ''s 'k k 'k eq ''s ''s 'k s 'k k 'k k ''s 'k k 'k false 'k true 'k true
It looks like maybe what I need is an appropriate set of rules for handling the partial calls 'k and ''s, I'm just not seeing what those rules should be, and all the literature I can find in this area was written for a target audience of mathematicians not programmers. I suspect the answer is probably quite simple once you understand it.
Some textbooks define I as mere alias for ((S K) K). In this case they are identical (as terms) per definitionem. To prove their equality (as functions), we need only to prove that equality is reflexive, which can be achieved by a reflexivity axiom scheme:
Proposition ``E = E'' is deducible (Reflexivity axiom scheme, instantiated for each possible terms denoted here by metavariable E)
Thus, I suppose in the followings, that Your questions investigates another approach: when combinator I is not defined as a mere alias for compound term ((S K) K), but introduced as a standalone basic combinator constant on its own, whose operational semantics is declared explicitly by axiom scheme
``(I E) = E'' is deducible (I-axiom scheme)
I suppose Your question asks
whether we can deduce formally (remaining inside the system), that such a standalone-defined I behaves exactly as ((S K) K), when used as functions in reductions?
I think we can, but we must resort to stronger tools. I conjecture that the usual axiom schemes are not enough, we have to declare also the extensionality property (equality of functions), that's the main point. If we want to formalize extensionality as an axiom, we have to augment our object language with free variables.
I think, we have to adopt such an approach for building combinatory logic, that we have to allow also the use of variables in the object langauge. Oof course, I mean "just" free valuables. Using bound variables would be cheating, we have to remain inside the realm of combinatory logic. Using free varaibles is not cheating, it's a honest tool. Thus, we can do the formal proof You required.
Besides the straightforward equality axioms and rules of inference (transitivity, reflexivity, symmetry, Leibniz rules), we must add an extensionality rule of inference for equality. Here is the point where free variables matter.
In Csörnyei 2007: 157-158, I have found the following approach. I think this way the proof can be done.
Some remarks:
Most of the axioms are in fact axiom schemes, consisting of infinitely many axiom instances. The instances must be instantiated for for every possible E, F, G terms. Here, I use italics for metavariables.
The superficial infinite nature of axiom schemes won't raise computability problems, because they can be tackled in a finite time: our axiom system is recursive. It means that a clever parser can decide in a finite time (moreover, very effectively), whether a given proposition is an instance of an axiom scheme, or not. Thus, the usage of axiom schemes does not raise neither theoretical nor practical problems.
Now let us seem our framework:
Language
ALPHABET
Constants: The following three are called constants: K, S, I.
I added the constant I only because Your question presupposes that we have not defined the combinator I as an mere alias/macro for compound term S K K, but it is a standalone constant on its own.
I shall denote constants by boldface roman capitals.
Sign of application: A sign # of ``application'' is enough (prefix notation with arity 2). As syntactic sugar, I use here parantheses instead of the explicit application sign: I shall use the explicit both opening ( and closing ) signs.
Variables: Although combinator logic does not make use of bound variables, scope etc, but we can introduce free variables. I suspect, they are not only syntactic sugar, they can strengthen the deduction system, too. I conjecture, that Your question will require their usage. Any enumerable infinite set (disjoint of the constants and parenthesis signs) will serve as the alphabet of variables, I will denote them here with unformatted roman lowercase letters x, y, z...
TERMS
Terms are defined inductively:
Any constant is a term
Any variable is a term
If E is a term, and F is a term too, then also (E F) is a term
I sometimes use practical conventions as syntactic sugar, e.g. write
E F G H
instead of
(((E F) G) H).
Deduction
Conversion axiom schemes:
``K E F = E'' is deducible (K-axiom scheme)
``S F G H = F H (G H)'' is deducible (S-axiom scheme)
``I E = E'' is deducible (I-axiom scheme)
I added the third conversion axiom (I rule) only because Your question presupposes that we have not defined the combinator I as an alias/macro for S K K.
Equality axiom schemes and rules of inference
``E = E'' is deducible (Reflexivity axiom)
If "E = F" is deducible, then "F = E" is also deducible (Symmetry rule of inference)
If "E = F" is deducible, and "F = G" is deducible too, then also "E = G" is reducible (Transitivity rule)
If "E = F" is deducible, then "E G = F G" is also deducible (Leibniz rule I)
If "E = F" is deducible, then "G E = G F" is also deducible (Leibniz rule II)
Question
Now let us investigate Your question. I conjecture that the deduction system defined so far is not strong enough to prove Your question.
Is proposition "I = S K K" deducible?
The problem is, that we have to prove the equivalence of functions. We regard two functions equivalent if they behave the same way. Functions act so that they are applied to arguments. We should prove that both functions act the same way if applied to each possible arguments. Again, the problem with infinity! I suspect, axioms schemes can't help us here. Something like
If E F = G F is deducible, then also E = G is deducible
would fail to do the job: we can see that this does not yield what we want. Using it, we can prove that
``I E = S K K E'' is deducible
for each E term instance, but these results are only separated instances of, and cannot be used as a whole for further deductions. We have only concrete results (infinitely many), not being able to summarize them:
it holds for E := K
holds for E := S
it holds for E := K K
.
.
.
...
we cannot summarize these fragmented result instances into a single great result, stating extensionality! We cannot pour these low-value fragment into the funnel a rule of inference that would melt them together into a single more valuable result.
We have to augment the power of our deduction system. We have to find a formal tool that can grasps the problem. Your questions leads to extensionality, and I think, declaring extensionality needs that we can pose propositions that hold for *****arbitrary***** instances. That's why I think we must allow free variables inside our object language. I conjecture that the following additional rule of inference will do the work:
If variable x is not part of terms neither E nor F, and statement (E x) = (F x) is deducible, then E = F is also deducible (Extensionality rule of inference)
The hard thing in this axiom, easily leading to confusion: x is an object variables, fully emancipated and respected parts of our object language, while E and G are metavariables, not parts of the object language, but used only for a concise notation of axiom schemes.
(Remark: More precisely, the extensionality rule of inference should be formalized in a more careful way, introducing a metavariable x over all possible object variables x, y, z..., and also another kind of metavariable E over all possible term instances. But this distinction among the two kinds of metavariables plus the object variables is not so didactic here, it does not affect Your question too much.)
Proof
Let us prove now the proposition that ``I = S K K''.
Steps for left-hand side:
proposition ``I x = x'' is an instance of I-axiom scheme with instatiation [E := x]
Steps for right-hand side:
Proposition "S K K x = K x (K x)" is an instance of S-axiom scheme with instantiations [E := K, F := K, G := x], thus it is deducible
Proposition "K x (K x) = x" is an instance of K-axiom scheme with instantiations [E := x, F := K x], thus it is deducible
Transitivity of equality:
Statement "S K K x = K x (K x)" matches the first premise of transitivity rule of inference, and statement "K x (K x) = x" matches the second premise of this rule of inference. The instantiations are [E := S K K x, F := K x (K x), G = x]. Thus the conclusion holds too: E = G. Rewriting the conclusion with the same instantiations, we get statement "S K K x = x", thus, this is deducible.
Symmetry of equality:
Using "S K K x = x", we can infer "x = S K K x"
Transitivity of equality:
Using "I x = x" and "x = S K K x", we can infer "I x = S K K x"
Now we have paved the way for the crucial point:
Proposition "I x = S K K x" matches with the first premise of Extension rule of inference: (E x) = (F x), with instantiations [E := I, F := S K K]. Thus the conclusion must also hold, that is, "E = F" with the same instantiations ([E := I, F := S K K]), yielding proposition "I = S K K", quod erat demonstrandum.
Csörnyei, Zoltán (2007): Lambda-kalkulus. A funkcionális programozás alapjai. Budapest: Typotex. ISBN-978-963-9664-46-3.
You don't need to define I as an axiom. Start with the following:
I.x = x
K.x y = x
S.x y z = x z (y z)
Since SKanything = anything, then SKanything is an identity function, just like I.
So, I = SKK and I = SKS. No need to define I as an axiom, you can define it as syntax sugar which aliases SKK.
The definitions of S and K are you only axioms.
The usual axioms are complete for beta equality, but do not give eta equality. Curry found a set of about thirty axioms to the usual ones to get completeness for beta-eta equality. They're listed in Hindley & Seldin's Introduction to combinators and lambda-calculus.
Roger Hindley, Curry's Last Problem, lists some additional desiderata we might want from mappings between the lambda calculus and notes that we don't have mappings that satisfy all of them. You likely won't care much about all of the criteria.

Resources