How can I replace a list in Prolog? - prolog

I think it's very easy but I have no idea how to do that.
I tried by attribuition, doing a list receive another list but don't work.
% H is the head of a coordenate and T the tail
% E is the element that will be placed in the position T
findLine([L0,L1,L2,L3,L4,L5,L6,L7,L8,L9,L10],H,T,E,NewTray) :-
H is 1,replace(L1,T,E,N),L1 = N;
H is 2,replace(L2,T,E,N),L2 = N;
...
H is 10,replace(L10,T,E,N),L10 = N;
NewTray = [L0,L1,L2,L3,L4,L5,L6,L7,L8,L9,L10].
I need that L1 be the N in this clause, I don't know how I can create a clause to modify the L1 inside the clause findLine. I thought in create clause to remove all elements and add the new ones one by one and call this at the attribuition place:
%L is the list, C a counter and N the new list
rewrite(L,C,N) :-
Q is C,
removeByIndex(Q,L,R),
(Q \== 0 -> rewrite(R,Q-1,N), !.
removeByIndex(0,[_|T],T):- !.
removeByIndex(I,[H|T],R):- X is I - 1, removeByIndex(X, T, Y), insert(H, Y, R).
But I continous with the same problem: the L1 are not modified :(
The idea is modify a line and replace on the tray.
PS: I'm sorry for my english, but the prolog topics are almost inative in the portuguese forum

I'm really unsure what you're trying to accomplish here, but I can point to a few things that strike me as symptoms of a misunderstanding.
First of all, you bind all the variables at the top and then you have essentially a bottom-out else case that looks like this:
NewTray = [L0,L1,L2,L3,L4,L5,L6,L7,L8,L9,L10].
Well, you never assign to NewTray in any of your other cases, so NewTray is going to be uninstantiated most of the time. That does not seem likely to be what you intend to me.
Second, your cases have this structure:
H is 1,replace(L1,T,E,N),L1 = N;
First mistake here is that H is 1; is/2 is for evaluating arithmetic expressions; there's no difference between this and H = 1, and the equivalence of L1 and N means that this whole predicate could probably be written as:
findLine([L0,L1,L2,L3,L4,L5,L6,L7,L8,L9,L10],1,T,E,_) :-
replace(L1,T,E,L1).
findLine([L0,L1,L2,L3,L4,L5,L6,L7,L8,L9,L10],2,T,E,_) :-
replace(L2,T,E,L2).
findLine(Line, _, _, Line).
I'm still confused by what you're trying to do, looking at that.
I suspect that you think L1 will have some value on the way into the relation and suddenly have a new, different value after the relation is used. That is emphatically not the case: variables in Prolog are bound exactly once; your assignment L1 = N or whatever is not going to cause L1 to "receive a new value" (because such a thing cannot happen in Prolog); instead it informs Prolog that L1 and N should be bound to the same value. What this means depends on circumstances; if they are both ground and not equal it will cause your predicate to fail, for instance, but if either of them is non-ground they will accept the value of the other.
I'm looking at what you're doing here and I can't help but think that you're essentially trying to do this:
replace([], _, _, []).
replace([H|T], 1, X, [X|T]).
replace([H|T], N, X, [H|Replaced]) :-
N > 1, succ(N0, N), replace(T, N0, X, Replaced).
Use it like this:
?- replace([1,2,3,4,5], 3, foo, Result).
Result = [1, 2, foo, 4, 5]
I just can't for the life of me figure out what you're trying to do, and I don't know why you're bothering to bind all the variables in your list at once if you don't need them all at once.
Anyway, I hope this helps! Maybe if you show us more of what you're trying to do it will be more clear how we can help.
Edit: Elaboration on = and unification
Let's mess around with = and see what happens:
?- X = 3.
X = 3.
Probably nothing surprising about this.
?- 3 = X.
X = 3.
Unification is different from assignment. As you can see, it is not directional. This line would not have worked in any other language.
?- X = [1,Y,3].
X = [1, Y, 3].
Notice that Prolog has no issues with having variables remain free.
?- X = [1,Y,3], Y = 2.
X = [1, 2, 3],
Y = 2.
Now, because Y is the same in both positions, when you bound Y to 2, the middle value in X became 2 as well. There are data structures unique to Prolog that make use of this feature (difference lists).
?- X = [1,Y,3], Q = X, Q = [1,2,3].
X = Q, Q = [1, 2, 3],
Y = 2.
Now what makes this interesting is that we did not explicitly tell Prolog that Y is 2. Prolog inferred this by unification. You can see some more examples of that here:
?- X = [H|T], H = 3, T = [4,5].
X = [3, 4, 5],
H = 3,
T = [4, 5].
So here we said, X is composed of H and T and then told it what H and T are. But Prolog's unification doesn't care much about the order you do things:
?- X = [H|T], X = [1,2,3].
X = [1, 2, 3],
H = 1,
T = [2, 3].
Unification is transitive.
So what happens when Prolog cannot unify?
?- X = [1,Y,3], Q = X, Q = [1,2,3], Y = 4.
false.
Y has to be 2 for the first step, but it has to be 4 for the last step. Once a variable is bound, there's no changing it. This is just a more complex way of saying:
?- X = 2, X = 4.
false.
Prolog does not have "assignables", just variables.

Related

What does X evaluate to in the second operand of a predicate such as "example([X|L1], [X,X|L2])"

I am trying to solve a problem where every element of a list is duplicated for which the solution is as follows:
duplicate([],[]).
duplicate([X|Xs],[X,X|Ys]) :-
duplicate(Xs,Ys).
I know that Prolog unifies X with the first element of the list of Xs, but what does it unify with/do at the second operand/list if it is already unified with the first list?
I'm going to try and explain how this predicate works, because I think there is something amiss in your expectation of what Prolog is going to do and I'm not altogether sure what it is. Often, new users of Prolog expect that the final argument of a predicate is special somehow, in emulation of a return value in a conventional language with expression evaluation semantics. Your wording makes me think that you might think there is something procedural about Prolog causing it to process arguments from left to right. Neither of these are true. What actually matters here is what is instantiated when Prolog goes to prove a goal.
The most obtuse, but probably the most concrete way to see how Prolog is reasoning about this goal would be to invoke it with two variables and look at what you get back:
?- duplicate(X,Y).
X = Y, Y = [] ;
X = [_8100],
Y = [_8100, _8100] ;
X = [_8100, _8118],
Y = [_8100, _8100, _8118, _8118] ;
X = [_8100, _8118, _8136],
Y = [_8100, _8100, _8118, _8118, _8136, _8136] .
You could keep asking for answers but probably you get the point by now. What's worth noting about this is that Prolog is generating both lists, one with a list of unique variables, and one with those same variables duplicated. It's managing to do this without knowing anything about what those variables actually are. More directly, these are all examples of unifications that Prolog can do:
?- X = [Y1,Y2|Ys].
X = [Y1, Y2|Ys].
?- [Y1,Y2|Ys] = X.
X = [Y1, Y2|Ys].
There is nothing directional here, and Prolog is having no problem peeling off bits of structure. You can bind these variables post-hoc as well:
?- [Y1,Y2|Ys] = X, Y2 = foo, Ys = [].
Y2 = foo,
Ys = [],
X = [Y1, foo].
So doing something involving the same variable multiple times is really not a problem at all:
?- L1 = [X|Xs], L2 = [X,X|Ys].
L1 = [X|Xs],
L2 = [X, X|Ys].
?- L1 = [X|Xs], L2 = [X,X|Ys], X = foo.
L1 = [foo|Xs],
X = foo,
L2 = [foo, foo|Ys].
?- L2 = [X,X|Ys], L1 = [X|Xs], L1 = [1,2,3,4].
L2 = [1, 1|Ys],
X = 1,
L1 = [1, 2, 3, 4],
Xs = [2, 3, 4].
I don't see anything surprising there, but I don't see anything surprising about duplicate/2 either. Did you find any of that surprising? If so, that might help me narrow in on the misundertanding.
Also, it should not, but may, surprise you to see this other instantiation pattern:
?- duplicate(A, [1,1,2,2,3,3]).
A = [1, 2, 3].
This follows from the others, but if it seems ludicrous then we still need to figure out where the misunderstanding is.

Deep Reverse in PROLOG - Lists

Hey I'm trying to create a predicate for the generating of a deep reverse on nested Lists in PROLOG.
Currently I got this predicate
reverse(L,A) :- rev(L,[], A).
rev([],A,A).
rev([H|L],R,A) :- rev(L,[H|R],A).
The result looks like this:
reverse([1,2,3],A).
A = [3, 2, 1].
reverse([[0,1],2,3],A).
A = [3, 2, [0, 1]].
The problem is, that the inner List is not reversed. It should look like this:
reverse([[0,1],2,3],A).
A = [3, 2, [1, 0]].
reverse([1,2,[3,4,5,[6,7],8],[9,10],11,12],A).
A = [12,11,[10,9],[8,[7,6],5,4,3],2,1].
Thanks for any help.
The way you represent your data is called defaulty, because you need a default case when reasoning over it:
is it a list? → something holds
otherwise → something else holds.
Such a representation is a rich source of troubles. Consider for example my_reverse/2 from the other answer. The main problem with it is that it prematurely and incorrectly commits to one of the cases, although both cases are still possible:
?- my_reverse([X], Ls).
Ls = [X].
But this answer only holds for the case where X is not a list! This problem leads to the following strange behaviour of the predicate:
?- my_reverse([X], Ls), X = [1,2,3].
Ls = [[1, 2, 3]],
X = [1, 2, 3].
This mean that even though X is a list, its elements are not reversed!
You should always aim for cleaner representations to distinguish the cases that can arise.
For example, what would you say about the following way to represent your data:
list(Ls) represents the list Ls
n(N) represents the number N.
With such a representations, we can distinguish the cases symbolically. I leave this as the starting point for a more declarative solution.
To keep things as simple as possible, we could add a test if the current element being checked is a list or not. If it is indeed a list, then its elements should be reversed as well. So in code:
my_reverse(L,R) :- rev(L,[],R).
rev([],A,A).
rev([H|T],A,R) :-
( is_list(H) -> % If H is a list
rev(H,[],X), % then reverse H as well
rev(T,[X|A],R)
;
rev(T,[H|A],R)
).
Also, not that it really matters, just to try and avoid confusion, note how I used A and R for respectively Accumulator and Result. In your code they are currently swapped, which -for me personally- can be a bit confusing, especially when predicates become longer and more complex.
Anyway, let's look at the queries you provided:
?- my_reverse([[0,1],2,3],R).
R = [3, 2, [1, 0]].
?- my_reverse([1,2,[3,4,5,[6,7],8],[9,10],11,12],R).
R = [12, 11, [10, 9], [8, [7, 6], 5, 4, 3], 2, 1].
And some general queries:
?- my_reverse(L,R).
L = R, R = [] ;
L = R, R = [_G2437] ;
L = [_G2437, _G2443],
R = [_G2443, _G2437] ;
L = [_G2437, _G2443, _G2449],
R = [_G2449, _G2443, _G2437] ;
L = [_G2437, _G2443, _G2449, _G2455],
R = [_G2455, _G2449, _G2443, _G2437]
...
?- my_reverse([[X,Y]|T],R), member(a,T), length(X,2).
X = [_G2588, _G2591],
T = [a],
R = [a, [Y, [_G2588, _G2591]]]
;
X = [_G2594, _G2597],
T = [a, _G2588],
R = [_G2588, a, [Y, [_G2594, _G2597]]]
;
X = [_G2594, _G2597],
T = [_G2582, a],
R = [a, _G2582, [Y, [_G2594, _G2597]]]
...
Note however that using this predicate, no termination occurs after finding the first answer to the query:
?- my_reverse(X,[X]).
X = [X] ;
...
But since this wasn't a requirement/demand in OP's question, I assumed it to be okay.
EDIT:
Please read #mat's answer as a follow-up to this problem.
an additional solution for your problem is to use cut and the built-in predicate "is_list/1" to check if you treat a simple term or a list in the current call.
here is the code:
deepReverse(List,R):-deepReverseTail(List,[],R).
deepReverseTail([],Acc,Acc).
deepReverseTail([H|T],Acc,R):- % when H is a list
is_list(H), % check if it's a list.
!, % cut the process if not.
deepReverseTail(H,[],Hrev), % reverse this current list
deepReverseTail(T,[Hrev|Acc],R). % continue the general recursion
deepReverseTail([H|T],Acc,R):- deepReverseTail(T,[H|Acc],R). % when H is a simple term
the "cut" in the third line make sure you treat only list in this definition, while treating simple terms will be in the next definitions.
an output example:
7 ?- deepReverse([a,[d,f],[],[[k],g]],R)
R = [[g, [k]], [], [f, d], a].

Prolog - descending order list

I am trying to write a function - decListRange(X,List) which give a list in range [X-1:1] by descending order. For example -
decListRange(9,List).
Will give -
List = [8,7,6,5,4,3,2,1].
I tried the following but it goes into infinite loop -
decListRange(1,[]) :- !.
decListRange(X,[H|Rest]) :-
H = X-1, NextX = X - 1 ,decListRange(NextX,Rest).
You have two problems. The first real one is that you need to use is instead of =:
H is X-1
This is needed to trigger arithmetic evaluation. Your second problem isn't a real problem but speaks to a bigger misunderstanding, which is that H and NextX are equivalent. Because Prolog only has bindings and not "assignables" as it were, you should never really need to create two "variables" with the same binding. There's no state being kept around for you to modify later.
Cleaning up both you get this:
decListRange(1, []) :- !.
decListRange(X, [H|Rest]) :-
X > 1,
H is X-1,
decListRange(H, Rest).
Edit 2: a clpfd implementation
:- use_module(library(clpfd)).
declist(N, L) :- N == 1, !, L = []. % green cut
declist(1, []).
declist(N, [N1|Ns]) :-
N #> 1,
N1 #= N - 1,
declist(N1, Ns).
This one has the properties #false mentions below in the comments:
?- declist(3, L).
L = [2, 1] ;
false.
?- declist(3, [2,1]).
true ;
false.
?- declist(N, [3,2,1]).
N = 4.
?- declist(N, X).
N = 1,
X = [] ;
N = 2,
X = [1] ;
N = 3,
X = [2, 1] ;
N = 4,
X = [3, 2, 1] ;
N = 5,
X = [4, 3, 2, 1] .
Edit: a short interlude on the difference between = and is.
In procedural languages = is almost always syntax for assigning a particular value to a variable. In Prolog, variables are bindings, and once established they cannot be directly modified by reassigning the variable a different value. Instead they work more like variables in math and logic, where the variable "stands in" for interesting values, but those values are themselves basically immutable. In Prolog, = essentially asks the unification engine to establish bindings. So if you were to do something like this:
?- name(X, Y) = name(bob, tony).
Prolog responds with variable bindings:
X = bob,
Y = tony.
Once those bindings exist, contradictory bindings will fail and affirmative bindings will succeed:
?- name(X, Y) = name(bob, tony), X = bob.
X = bob,
Y = tony.
?- name(X, Y) = name(bob, tony), X = william.
false.
The unification algorithm itself doesn't know anything about arithmetic. This has the pleasant side-effect that you can use any expression raw. For instance:
?- Expr = X + 3, Z + Q = Expr.
Expr = Z+3,
X = Z,
Q = 3.
This is probably really surprising looking. You may expect that somehow Prolog was smart enough to keep the expression around because it noticed X was a variable or something, but that isn't true either:
?- X = 4, Expr = X + 3, Z + Q = Expr.
X = 4,
Expr = 4+3,
Z = 4,
Q = 3.
Another way of looking at this is that Prolog is considering + to be just another operator, so X+3 is a fact just like add(X, 3) that doesn't necessarily have any special meaning. Whichever way you look at it, the is/2 operator exists to apply arithmetic reasoning and produce a value:
?- X = 4, Expr is X + 3.
X = 4,
Expr = 7.
Notice that Expr has the computed value but none of the original structure:
?- X = 4, Expr is X + 3, Z + Q = Expr.
false.
In practice, if you need to do a lot of reasoning with arithmetic, you will want to use a library like clpfd or clpqr depending on whether you're interested in integers or reals. This library enables you to do more interesting things more easily, like specify that an equation holds for values in a certain range and get those values out.

What does this wildcard do in this prolog scenario?

I've come across this code:
connectRow(_,_,0).
connectRow([spot(_,R,_,_)|Spots],R,K) :- K1 is K-1, connectRow(Spots,R,K1).
/*c*/
connectRows([]).
connectRows(Spots) :-
connectRow(Spots,_,9),
skip(Spots,9,Spots1),
connectRows(Spots1).
How does the wildcard in the connectRow(Spots,_,9) work? How does it know which values to check and how does it know that it checked all the possible values?
Edit: I think I understand why this works but I'd like it if someone could verify this for me:
When I "call" the connectRow with the wildcard it matches the wildcard with the "R" in the connectRow predicate. Could this be it?
The _ is just like any other variable, except that each one you see is treated as a different variable and Prolog won't show you what it unifies with. There's no special behavior there; if it confuses you about the behavior, just invent a completely new variable and put it in there to see what it does.
Let's talk about how Prolog deals with variables. Here's an experiment you can follow along with that should undermine unhelpful preconceived notions if you happen to have them.
?- length([2,17,4], X)
X = 3.
A lot of Prolog looks like this and it's easy to fall into the trap of thinking that there are designated "out" variables that work like return values and designated "in" variables that work like parameters. After all:
?- length([2,17,4], 3).
true.
?- length([2,17,4], 5).
false.
Here we begin to see that something interesting is happening. A faulty intuition would be that Prolog is somehow keeping track of the input and output variables and "checking" in this case. That's not what's happening though, because unification is more general than that. Observe:
?- length(X, 3).
X = [_G2184, _G2187, _G2190].
We've now turned the traditional parameter/return value on its head: Prolog knows that X is a list three items long, but doesn't know what the items actually are. Believe it or not, this technique is frequently used to generate variables when you know how many you need but you don't need to have them individually named.
?- length(X, Y).
X = [],
Y = 0 ;
X = [_G2196],
Y = 1 ;
X = [_G2196, _G2199],
Y = 2 ;
X = [_G2196, _G2199, _G2202],
Y = 3
It happens that the definition of length is very general and Prolog can use it to generate lists along with their lengths. This kind of behavior is part of what makes Prolog so good at "generate and test" solutions. You define your problem logically and Prolog should be able to generate logically sound values to test.
All of this variation springs from a pretty simple definition of length:
length([], 0).
length([_|Rest], N1) :-
length(Rest, N0),
succ(N0, N1).
The key is to not read this like a procedure for calculating length but instead to see it as a logical relation between lists and numbers. The definition is inductive, relating the empty list to 0 and a list with some items to 1 + the length of the remainder of the list. The engine that makes this work is called unification.
In the first case, length([2,17,4], X), the value [17,4] is unified with Rest, N0 with 2 and N1 with 3. The process is recursive. In the final case, X is unified with [] and Y with 0, which leads naturally to the next case where we have some item and Y is 1, and the fact that the variable representing the item in the list doesn't have anything in particular to unify with doesn't matter because the value of that variable is never used.
Looking at your problem we see the same sort of recursive structure. The predicates are quite complex, so let's take them in pieces.
connectRow(_, _, 0).
This says connectRow(X, Y, 0) is true, regardless of X and Y. This is the base case.
connectRow([spot(_, R, _, _)|Spots], R, K) :-
This rule is matching a list of spots of a particular structure, presuming the first spot's second value (R) matches the second parameter.
K1 is K-1, connectRow(Spots, R, K1).
The body of this clause is essentially recurring on decrementing K, the third parameter.
It's clear now that this is basically going to generate a list that looks like [spot(_, R, _, _), spot(_, R, _, _), ... spot(_, R, _, _)] with length = K and no particular values in the other three positions for spot. And indeed that's what we see when we test it:
?- connectRow(X, Y, 0).
true ;
(infinite loop)^CAction (h for help) ? abort
% Execution Aborted
?- connectRow(X, Y, 2).
X = [spot(_G906, Y, _G908, _G909), spot(_G914, Y, _G916, _G917)|_G912] ;
(infinite loop)^CAction (h for help) ? abort
So there seem to be a few bugs here; if I were sure these were the whole story I would say:
The base case should use the empty list rather than matching anything
We should stipulate in the inductive case that K > 0
We should use clpfd if we want to be able to generate all possibilities
Making the changes we get slightly different behavior:
:- use_module(library(clpfd)).
connectRow([], _, 0).
connectRow([spot(_, R, _, _)|Spots], R, K) :-
K #> 0, K1 #= K-1, connectRow(Spots, R, K1).
?- connectRow(X, Y, 0).
X = [] ;
false.
?- connectRow(X, Y, 1).
X = [spot(_G906, Y, _G908, _G909)] ;
false.
?- connectRow(X, Y, Z).
X = [],
Z = 0 ;
X = [spot(_G918, Y, _G920, _G921)],
Z = 1 ;
X = [spot(_G918, Y, _G920, _G921), spot(_G1218, Y, _G1220, _G1221)],
Z = 2
You'll note that in the result we have Y standing in our spot structures, but we have weird looking automatically generated variables in the other positions, such as _G918. As it happens, we could use _ instead of Y and see a similar effect:
?- connectRow(X, _, Z).
X = [],
Z = 0 ;
X = [spot(_G1269, _G1184, _G1271, _G1272)],
Z = 1 ;
X = [spot(_G1269, _G1184, _G1271, _G1272), spot(_G1561, _G1184, _G1563, _G1564)],
Z = 2
All of these strange looking variables are there because we used _. Note that all of the spot structures have the exact same generated variable in the second position, because Prolog was told it had to unify the second parameter of connectRow with the second position of spot. It's true everywhere because R is "passed along" to the next call to connectRow, recursively.
Hopefully this helps explain what's going on with the _ in your example, and also Prolog unification in general.
Edit: Unifying something with R
To answer your question below, you can unify R with a value directly, or by binding it to a variable and using the variable. For instance, we can bind it directly:
?- connectRow(X, 'Hello, world!', 2).
X = [spot(_G275, 'Hello, world!', _G277, _G278), spot(_G289, 'Hello, world!', _G291, _G292)]
We can also bind it and then assign it later:
?- connectRow(X, R, 2), R='Neato'.
X = [spot(_G21, 'Neato', _G23, _G24), spot(_G29, 'Neato', _G31, _G32)],
R = 'Neato'
There's nothing special about saying R=<foo>; it unifies both sides of the expression, but both sides can be expressions rather than variables:
?- V = [2,3], [X,Y,Z] = [1|V].
V = [2, 3],
X = 1,
Y = 2,
Z = 3.
So you can use R in another predicate just as well:
?- connectRow(X, R, 2), append([1,2], [3,4], R).
X = [spot(_G33, [1, 2, 3, 4], _G35, _G36), spot(_G41, [1, 2, 3, 4], _G43, _G44)],
R = [1, 2, 3, 4] ;
Note that this creates opportunities for backtracking and generating other solutions. For instance:
?- connectRow(X, R, 2), length(R, _).
X = [spot(_G22, [], _G24, _G25), spot(_G30, [], _G32, _G33)],
R = [] ;
X = [spot(_G22, [_G35], _G24, _G25), spot(_G30, [_G35], _G32, _G33)],
R = [_G35] ;
X = [spot(_G22, [_G35, _G38], _G24, _G25), spot(_G30, [_G35, _G38], _G32, _G33)],
R = [_G35, _G38] ;
Hope this helps!

Prolog - recursive list building

for a program I'm writing I need to make a list of lists, with pairs of numbers representing a product and sum of 2 given numbers.
For now I have a function which I can specify how many times I want to add a list to the list, which will be expanded with the full functionality later.
Here's what I have:
s1(0, X).
s1(Q, X) :-
N is Q - 1,
multiply(2, 3, Y),
A = Y ,
add(2, 3, Z),
B = Z,
addToEnd([A], [B], X),
s1(N,X).
multiply(A, B, C):-
C is A * B.
add(A, B, C) :-
C is A + B.
addToEnd([], L, L).
addToEnd([H|T], L2, [H|L3]) :-
addToEnd(T, L2, L3).
However, when I run s1(2,X) for example, I get [6,5] returned, then nothing else, it just hangs. When I run s1(0,X), i get true, then false when I hit ;
Can anyone help me with this? I can't see what I'm doing wrong, I feel like it should work!
To clarify how I feel this should work:
I call s1(2,X).
N = 1, [6,5] added to list in X([[6,5]])
s1(1,X).
N=0, [6,5] added to the list in X ([[6,5],[6,5]])
s1(0,X).
X = [[6,5],[6,5]]
So, there are many things to say here. First and foremost, as in most declarative languages, a variable cannot really change value.
What that means is that X = 1. will unify 1 to X as you'd expect, but if you add X = 2. after that in your query (X = 1, X = 2.), Prolog will say false. The reason behind that is that you cannot unify 1 with 2 and that X has truly become 1, therefore X cannot be unified to 2.
Though, and that differs from Haskell, Ocaml and the like, you can bind partially a variable, as in X = h(Y).. You'll then be able to further unify it X = h(a(Z))., while you couldn't in the languages mentionned earlier (where a variable is really just an alias for a value).
Why does he tell me all that you wonder? Well, that's your main problem here. You first bind X to [6, 5], and then expect to further bind it to some other things. Once a variable is ground (ie does not contain any free variable inside itself), you cannot ever change its value again.
So here your recursion won't do anything but eventually prove X false. Here it doesn't however since you end up calling addToEnd/3 with the same arguments each time ([6], [5] and [6, 5]).
That being said, let's look at how we could improve your code.
First, a remark:
multiply(2, 3, Y),
A = Y ,
add(2, 3, Z),
B = Z,
addToEnd([A], [B], X),
can be written
multiply(2, 3, Y),
add(2, 3, Z),
addToEnd([Y], [Z], X),
without any loss of information since you do not use A and B again.
Now, let's forget about addToEnd/3 for a moment and think about what you want.
If you enter s1(0, Q), do you really want Q to stay free? Because that's what you state at the moment. It'd make more sense to bind Q to [] in that case. Plus, that'll make a good recursive base case as you'll soon see.
s1(0, []).
is a shortcut to say
s1(0, Q) :- Q = [].
since Prolog does unification in clause heads (the part before :-).
Then, I'll cheat a little but it'll just be to stay clear. You could state that when going from s1(4, Q) to s1(5, Q) you expect Q to hold one more value of some calculus.
Here, we could state that as follows:
s1(N, [SomeCalculus|Q]) :-
PreviousN is N - 1,
s1(PreviousN, Q).
Now, we just have to give a value to SomeCalculus:
s1(N, [SomeCalculus|Q]) :-
PreviousN is N - 1,
X is 2 * 3,
Y is 2 + 3,
SomeCalculus = [X, Y],
s1(PreviousN, Q).
or, if you followed correctly, we could directly write:
s1(N, [[X, Y]|Q]) :-
PreviousN is N - 1,
X is 2 * 3,
Y is 2 + 3,
s1(PreviousN, Q).
So the complete program would be:
s1(0, []).
s1(N, [[X, Y]|Q]) :-
PreviousN is N - 1,
X is 2 * 3,
Y is 2 + 3,
s1(PreviousN, Q).
Now, if you test that, you might remark that the program loops just as yours when you hit the ; key. That's because Prolog thinks the second clause can apply to 0
too.
So let's edit the program once more:
s1(0, []).
s1(N, [[X, Y]|Q]) :-
N > 0,
PreviousN is N - 1,
X is 2 * 3,
Y is 2 + 3,
s1(PreviousN, Q).
Now everything is fine.
I hope this'll help you to get a better understanding of how to build a proper predicate through recursion. I didn't spend much time correcting your addToEnd/3 predicate because my rambling about variables should already have told you a lot about what's wrong about it.

Resources