so I'm trying to get a simple bash script to continuously read a directory and update a list of files to play through a command. However, I'm having some trouble thinking out the logic in it. What I need to do is put the current items in the directory into the list, have each item in the directory run through a program, and when a new item comes in, just append it to the list. I'm attempting to use inotifywait but can't seem to think of the proper logic. I may need it to run in the background, as the process that is running on these files will run before inotifywait is read again, at which point it will not pick up any new files that have been added as it only checks when it runs. Here's the code so hopefully it makes more sense.
#!/bin/bash
#Initial check to see if files are converted.
if [ ! -d "/home/pi/rpitx/converted" ]; then
echo "Converted directory does not exist, cannot play!"
exit 1
fi
CYAN='\e[36m'
NC='\e[39m'
LGREEN='\e[92m'
#iterate through directory first and act upon each item
for f in $FILES
do
echo -e "${CYAN}Now playing ${f##*/}...${NC}"
#Figure out a way to always watch directory even when it is playing
inotifywait -m /home/pi/rpitx/converted -e create -e moved_to |
while read path action file; do
echo -e "${LGREEN}New file found: ${CYAN}${file}${NC}"
FILES+=($file)
done
# take action on each file. $f store current file name
sudo ./rpitx -m RF -i "${f}" -f 101100
done
exit 0
So for example. if rpitx is currently playing something, and a file is converted, it won't pick up the latest file and add it to the list, nor will it make it since it's always reading. Is there a way to get inotifywait to run in the background of this script somehow? Thanks.
This is actually quite a difficult problem to get 100% perfect, but it is possible to get pretty close.
It is easy to get all the files in a directory, and it is easy to use inotifywait to get iteratively informed of new files being placed into the directory. The issue is getting the two to be consistent. If inotifywait isn't started until all the files have been processed (or even just listed), then you might miss new files created between the listing and the invocation of inotifywait. If, on the other hand, you start inotifywait first, then a file created after the invocation of inotifywait and the extraction of the current file list will be listed twice.
Since it is easier to filter duplicates than notice orphans, the recommended approach is the second one.
As a first approximation, we could ignore the duplicate problem on the assumption that the window of vulnerability is pretty short and so it is probably unlikely to happen. This simplifies the code, but it's not that difficult to track and eliminate duplicates: we could, for example, store each filename as the key in an associative array, ignoring the file if the key already exists.
We need three processes: one to execute inotifywait; one to produce the list of initial files; and one to handle each file as it is identified. So the basic structure of the code will be:
list_new_files |
{ list_existing_files; pass_through; } |
while read action file; do
handle -r "$action" "$file"
done
Note that the second process first produces the existing files, and then calls pass_through, which reads from standard input and writes to standard output, thus passing through the files being discovered by list_new_files. Since pipes have a finite capacity, it is possible that the execution of list_existing_files will block a few times (if there are lots of existing files and handling them takes a long time), so when pass_through finally gets executed, it could have quite a bit of queued-up input to pass through. That doesn't matter, unless the first pipe also fills up, which will happen if a large number of new files are created. And that still won't matter as long as inotifywait doesn't lose notifications while it is blocked on a write. (This may actually be a problem, since the manpage for inotifywait on my system includes in the "BUGS" section the note, "It is assumed the inotify event queue will never overflow." We could fix the problem by inserting another process which carefully buffers inotifywait's output, but that shouldn't be necessary unless you intend to flood the directory with lots of files.)
Now, let's examine each of the functions in turn.
list_new_files could be just the call to inotifywait from your original script:
inotifywait -m /home/pi/rpitx/converted -e create -e moved_to
Listing existing files is also easy. Here's one simple solution:
printf "%s\n" /home/pi/rpitx/converted/*
However, that will print out the full file path, which is different from the output from inotifywait. To make them the same, we cd into the directory in order to do the listing. Since we might not actually want to change the working directory, we use a subshell by surrounding the commands inside parentheses:
( cd /home/pie/rpitx/converted; printf "%s\n" *; )
The printf just prints its arguments each on a separate line. Since glob-expansions are not word-split or recursively glob-expanded, this is safe against whitespace or metacharacters in filenames, except newline characters. Filenames with newline characters are pretty rare; for now, I'll ignore the issue but I'll indicate how to handle it at the end.
Even with the change indicated above, the output from these two commands is not compatible: the first one outputs three things on each line (directory, action, filename), and the second one just one thing (the filename). In the listing below, you'll see how we modify the format to printf and introduce a format for inotifywait in order to make the outputs fully compatible, with the "action" for existing files set to EXISTING.
pass_through could, in theory, just be cat, and that's how I've coded it below. However, it is important that it operate in line-buffered mode; otherwise, nothing will happen until "enough" files have been written by list_existing_files. On my system, cat in this configuration works perfectly; if that doesn't work for you or you don't want to count on it, you could write it explicitly as a while read loop:
pass_through() {
while read -r line; do echo "$line"; done
}
Finally, handle is essentially the code from the original post, but modified a bit to take the new format into account, and to do the right thing with action EXISTING.
# Colours. Note the use of `$'...'` to actually store the code,
# thereby avoiding the need to later reinterpret backslash sequences
CYAN=$'\e[36m'
NC=$'\e[39m'
LGREEN=$'\e[92m'
converted=/home/pi/rpitx/converted
list_new_files() {
inotifywait -m "$converted" -e create -e moved_to --format "%e %f"
}
# Note the use of ( ) around the body instead of { }
# This is the same as `{( ... )}'; it makes the `cd` local to the function.
list_existing_files() (
cd "$converted"
printf "EXISTING %s\n" *
)
# Invoked as `handle action filename`
handle() {
case "$1" in
EXISTING)
echo "${CYAN}Now playing ${2}...${NC}"
;;
*)
echo "${LGREEN}New file found: ${CYAN}${file}${NC}"
;;
esac
sudo ./rpitx -m RF -i "${f}" -f 101100
}
# Put everything together
list_new_files |
{ list_existing_files; cat; } |
while read -r action file; do handle "$action" "$file"; done
What if we thought a filename might have a newline character in it? There are two "safe" characters which could be used to delimit the filenames, in the sense that they cannot appear inside a filename. One is /, which can obviously appear in a path, but cannot appear in a simple filename, which is what we're working with here. The other one is the NUL character, which cannot appear inside a filename at all, but can sometimes be a bit annoying to deal with.
Normally, faced with this problem, we would use a NUL, but that depends on the various utilities we're using allowing the separation of data with NUL instead of newline. That's not the case for inotifywait, which always outputs a newline after a notification line. So in this case it seems simpler to use a /. First we modify the formats:
inotifywait -m "$converted" -e create -e moved_to --format "%e %f/"
printf "%s/\n" *
Now, when we're reading the lines, we need to read until we find a line ending with / (and remember to remove it). read doesn't allow two-character line terminators, so we need to accumulate the lines ourselves:
while read -r action file; do
# If file doesn't end with a slash, we need to read another line
while [[ file != */ ]] && read -r line; do
file+=$'\n'"$line"
done
# Remember to remove the trailing slash
handle "$action" "${file%/}"
done
Related
Objective: The moment multiple.csv files are uploaded to the folder, code should check each filename, if appropriate filename, file should be further used by sqlloader to get data uploaded in the database. Once file is uploaded, code should delete the file processed. Next time, same process repeats.
I have some parts of the code working but some are creating problem, especially related to inotifywait. Please help.
In first loop, I am trying to monitor the /uploads folder, the moment it finds the .csv file, it checks if the filename has space. If yes, it wants to change the space to underscore in the filename. I have been trying to find a way to find "space, () or ," in the filename but only could do the 'space' part change. This is giving me an error that file cannot be moved, no such file or directory.
Second loop works separately but not when incorporated with first loop as there are errors which I have not been able to debug. If I run second loop separately, it is working correctly. But if there is a way to optimize the code better in one loop, I would be happy to know. Thanks!
Example: folder name: /../../upload
filenames: abc_123.csv (code should not make any change) , pqr(12 Apr).csv (code should change it to pqr_12_Apr.csv), May 12.csv (code should change it to May_12.csv) etc.
Once these 3 files have proper naming, it should be ready to be uploaded through sql loader and once files are processed, they get deleted.
My code is:
#!bin/bash
inotifywait -mqe create /../../upload | while read file; do
if [[ $file = '* *'.csv]]; then
mv "$file" ${file// /_}
fi
done
for file in /../..upload/*.csv
do
sqlcommand="sqlldr user/pwd control="/../xxx.ctl" data=$file silent=feedback, header"
$sqlcommand
rm $file
done
Thank you!
I have modified your script to this,
#!/usr/bin/env bash
while IFS= read -r file; do
filename=${file#* CREATE }
pathname=${file%/*}
if [[ $pathname/$filename = *\ *.csv ]]; then
echo mv -v "$pathname/$filename" "$pathname/${filename// /_}"
fi
done < <(inotifywait -mqe create /../../upload)
Remove the echo if you think the output is correct.
I just don't know how you can integrate the other parts of your script with that, probably create a separate script or remove the -m (which you don't want to do most probably). Well you could use a named pipe if mkfifo is available.
EDIT: as per OP's message add another parameter expansion for another string removal.
Add the code below the if [[ ... ]]; then
newfilename=${filename//\(\)}
Then change "${filename// /_}" to "${newfilename// /_}"
EDIT: In the course of working on and reediting this question, I was able to get this to work. However, I'm sure there's a better way to do it, so I'm leaving it up to hear from those more experienced.
Periodically I need to reproduce several dozen copies of a few files. For example, given:
company_a_results_30d.py
company_a_results_90d.py
company_a_results_120d.py
company_a_results_all_time.py
I need to make copies where company_a is replaced with company_b, company_c....etc. (The next step is to find and replace a number of terms within the files, but this I have managed to do with a perl script.)
I'm sure this should be possible with a bash script and mv, but I haven't quite got the hang of it. Something like:
#!/usr/bin/env bash
my_array=(company_b company_c company_d)
for i in "${my_array[#]}"
do
for file in *.py
do
cp "$file" "${file/company_a/$i}"
done
done
I'd prefer a solution compatible with zsh, which is what I use.
bash
Slightly modified from the OP's answer:
#!/usr/bin/env bash
set -x # So you can see what's happening - feel free to omit
company_a_files=(company_a*.py) # <== Save the list of files first
my_array=(company_b company_c company_d)
for i in "${my_array[#]}"
do
for file in "${company_a_files[#]}" # <== Use the saved list
do
cp "$file" "${file/company_a/$i}"
done
done
When the inner loop in the OP's answer runs for file in *.py, the glob will pick up whatever company_b &c. files have already been created. So you wind up with a lot of set -x output like:
+ cp company_b_1.py company_b_1.py
cp: 'company_b_1.py' and 'company_b_1.py' are the same file
Instead, save the glob of company_a files into a shell array first, and then
loop over that array.
perl
As a one-liner for Perl 5.14+:
perl -MFile::Copy=copy -E 'for my $file (#ARGV) { copy $file, $file =~ s/company_a/$_/r foreach qw(company_b company_c company_d) }' company_a*.py
The Perl version switches the loop order compared to the bash version. For each file given on the command line (the for ... #ARGV), it copies from that file to each name-modified file in turn (the foreach).
$file =~ s/company_a/$_/r is a non-destructive (/r) replace in $file (the filename) that changes company_a to $_ (the current value from foreach).
This was the solution I came up with:
#!/usr/bin/env bash
my_array=(company_b company_c company_d)
for i in "${my_array[#]}"
do
for file in *.py
do
cp "$file" "${file/company_a/$i}"
done
done
I'm writing a small piece of code that checks for .mov files in a specific folder over 4gb and writes it to a log.txt file by name (without an extension). I'm then reading the names into a while loop line by line which signals some archiving and copying commands.
Consider a file named abcdefg.mov (new) and a corresponding folder somewhere else named abcdefg_20180525 (<-*underscore timestamp) that also contains a file named abcedfg.mov (old).
When reading in the filename from the log.txt, I strip the extension to store the variable "abcdefg" ($in1) and i'm using that variable to locate a folder elsewhere that contains that matching string at the beginning.
My problem is with how the mv command seems to support a wild card in the "source" string, but not in the "destination" string.
For example i can write;
mv -f /Volumes/Myshare/SourceVideo/$in1*/$in1.mov /Volumes/Myshare/Archive
However a wildcard on the destination doesn't work in the same way. For example;
mv -f /Volumes/Myshare/Processed/$in1.mov Volumes/Myshare/SourceVideo/$in1*/$in1.mov
Is there an easy fix here that doesn't involve using another method?
Cheers for any help.
mv accepts a single destination path. Suppose that $in1 is abcdfg, and that $in1* expands to abcdefg_20180525 and abcdefg_20180526. Then the command
mv -f /dir1/$in1 /dir2/$in1*/$in1.mov
will be equivalent to:
mv -f /dir1/abcdefg.mov /dir2/abcdefg_20180526/abcdefg.mov
mv -f /dir1/abcdefg.mov /dir2/abcdefg_20180526/abcdefg.mov
mv -f /dir2/abcdefg_20180525/abcdefg.mov /dir2/abcdefg_20180526/abcdefg.mov
Moreover, because the destination file is the same in all three cases, the first two files will be overwritten by the third.
You should create a precise list and do a precise copy instead of using wild cards.
This is what I would probably do, generate a list of results in a file with FULL path information, then read those results in another function. I could have used arrays but I wanted to keep it simple. At the bottom of this script is a function call to scan for files of EXT mp4 (case insensitive) then writes the results to a file in tmp. then the script reads the results from that file in another function and performs some operation (mv etc.). Note, if functions are confusing , you can just remove the function name { } and name calls and it becomes a normal script again. functions are really handy, learn to love them!
#!/usr/bin/env bash
readonly SIZE_CHECK_LIMIT_MB="10M"
readonly FOLDER="/tmp"
readonly DESTINATION_FOLDER="/tmp/archive"
readonly SAVE_LIST_FILE="/tmp/$(basename $0)-save-list.txt"
readonly EXT="mp4"
readonly CASE="-iname" #change to -name for exact ext type upper/lower
function find_files_too_large() {
> ${SAVE_LIST_FILE}
find "${FOLDER}" -maxdepth 1 -type f "${CASE}" "*.${EXT}" -size +${SIZE_CHECK_LIMIT_MB} -print0 | while IFS= read -r -d $'\0' line ; do
echo "FOUND => $line"
echo "$line" >> ${SAVE_LIST_FILE}
done
}
function archive_large_files() {
local read_file="${SAVE_LIST_FILE}"
local write_folder="$DESTINATION_FOLDER"
if [ ! -s "${read_file}" ] || [ ! -f "${read_file}" ] ;then
echo "No work to be done ... "
return
fi
while IFS= read -r line ;do
echo "mv $line $write_folder" ;sleep 1
done < "${read_file}"
}
# MAIN (this is where the script starts) We just call two functions.
find_files_too_large
archive_large_files
it might be easier, i think, to change the filenames to the folder name initially. So abcdefg.mov would be abcdefg_timestamp.mov. I can always strip the timestamp from the filename easy enough after its copied to the right location. I was hoping i had a small syntax issue but i think there is no easy way of doing what i thought i could...
I think you have a basic misunderstanding of how wildcards work here. The mv command doesn't support wildcards at all; the shell expands all wildcards into lists of matching files before they get passed to the mv command as wildcards. Furthermore, the mv command doesn't know if the list of arguments it got came from wildcards or not, and the shell doesn't know anything about what the command is going to do with them. For instance, if you run the command grep *, the grep command just gets a list of names of files in the current directory as arguments, and will treat the first of them as a regex pattern ('cause that's what the first argument to grep is) to search the rest of the files for. If you ran mv * (note: don't do this!), it will interpret all but the last filename as sources, and the last one as a destination.
I think there's another source of confusion as well: when the shell expands a string containing a wildcard, it tries to match the entire thing to existing files and/or directories. So when you use Volumes/Myshare/SourceVideo/$in1*/$in1.mov, it looks for an already-existing file in a matching directory; AIUI the file isn't there yet, there's no match. What it does in that case is pass the raw (unexpanded) wildcard-containing string to mv as an argument, which looks for that exact name, doesn't find it, and gives you an error.
(BTW, should there be a "/" at the front of that pattern? I assume so below.)
If I understand the situation correctly, you might be able to use this:
mv -f /Volumes/Myshare/Processed/$in1.mov /Volumes/Myshare/SourceVideo/$in1*/
Since the filename isn't supplied in the second string, it doesn't look for existing files by that name, just directories with the right prefix; mv will automatically retain the filename from the source.
However, I'll echo #Sergio's warning about chaos from multiple matches. In this case, it won't overwrite files (well, it might, but for other reasons), but if it gets multiple matching target directories it'll move all but the last one into the last one (along with the file you meant to move). You say you're 100% certain this won't be a problem, but in my experience that means that there's at least a 50% chance that something you'd never have thought of will go ahead and make it happen anyway. For instance, is it possible that $in1 could wind up empty, or contain a space, or...?
Speaking of spaces, I'd also recommend double-quoting all variable references. You want the variables inside double-quotes, but the wildcards outside them (or they won't be expanded), like this:
mv -f "/Volumes/Myshare/Processed/$in1.mov" "/Volumes/Myshare/SourceVideo/$in1"*/
I have some pseduocode below and would like to know if it would work/ is the best method to tackle the problem before I begin developing the code.
I need to dynamically search through a directory on one server and find out if it exists on another server or not. The path will be different so I use basename and save it as a temporary variable.
for $FILE in $CURRENT_DIRECTORY
$TEMP=$(basename "$FILE" )
if [ssh user#other_serverip find . -name '$TEMP']; then
//write code here
fi
Would this if statement return true if the file existed on the other server?
Here is a functioning, cleaner implementation of your logic:
for FILE in *; do
if ssh user#other_serverip test -e "$FILE"; then
# write code here
fi
done
(There won't be a path on files when the code is composed this way, so you don't need basename.) test -e "$FILE" will silently exit 0 (true) if the file exists and 1 (false) if the file does not, though ssh will also exit with a false code if the connection fails.
However, that is a very expensive way to solve your issue. It will fail if your current directory has too many files in it and it runs ssh once per file.
You're better off getting a list of the remote files first and then checking against it:
#!/bin/sh
if [ "$1" != "--xargs" ]; then # this is an internal flag
(
ssh user#other_serverip find . -maxdepth 1 # remote file list
find . -maxdepth 1 # local file list
) |awk '++seen[$0]==2' |xargs -d "\n" sh "$0" --xargs # keep duplicates
else
shift # remove the --xargs marker
for FILE in "$#"; do
# write code here using "$FILE" (with quotes)
done
fi
This does two things. First, since the internal --xargs is not given when you run the script, it connects to the remote server and gets a list of all files in the home directory there. These will be listed as ./.bashrc for example. Then the same list is generated locally, and the results are passed to awk.
The awk command builds an associative array (a hash) from each item it sees, incrementing it and then checking the total against the number two. It prints the second instance of any line it sees. Those are then passed on to xargs, which is instructed to use \n (a line break) as its delimiter rather than any space character.
Note: this code will break if you have any files that have a line break in their name. Don't do that.
xargs then recursively calls this script, resulting in the else clause and we loop through each file. If you have too many files, be aware that there may be more than one instance of this script (see man xargs).
This code requires GNU xargs. If you're on BSD or some other system that doesn't support xargs -d "\n", you can use perl -pe 's/\n/\0/' |xargs -0 instead.
It would return true if ssh exits successfully.
Have you tried command substitution and parsing find's output instead?
I have a perl script (or any executable) E which will take a file foo.xml and write a file foo.txt. I use a Beowulf cluster to run E for a large number of XML files, but I'd like to write a simple job server script in shell (bash) which doesn't overwrite existing txt files.
I'm currently doing something like
#!/bin/sh
PATTERN="[A-Z]*0[1-2][a-j]"; # this matches foo in all cases
todo=`ls *.xml | grep $PATTERN -o`;
isdone=`ls *.txt | grep $PATTERN -o`;
whatsleft=todo - isdone; # what's the unix magic?
#tack on the .xml prefix with sed or something
#and then call the job server;
jobserve E "$whatsleft";
and then I don't know how to get the difference between $todo and $isdone. I'd prefer using sort/uniq to something like a for loop with grep inside, but I'm not sure how to do it (pipes? temporary files?)
As a bonus question, is there a way to do lookahead search in bash grep?
To clarify/extend the problem:
I have a bunch of programs that take input from sources like (but not necessarily) data/{branch}/special/{pattern}.xml and write output to another directory results/special/{branch}-{pattern}.txt (or data/{branch}/intermediate/{pattern}.dat, e.g.). I want to check in my jobfarming shell script if that file already exists.
So E transforms data/{branch}/special/{pattern}.xml->results/special/{branch}-{pattern}.dat, for instance. I want to look at each instance of the input and check if the output exists. One (admittedly simpler) way to do this is just to touch *.done files next to each input file and check for those results, but I'd rather not manage those, and sometimes the jobs terminate improperly so I wouldn't want them marked done.
N.B. I don't need to check concurrency yet or lock any files.
So a simple, clear way to solve the above problem (in pseudocode) might be
for i in `/bin/ls *.xml`
do
replace xml suffix with txt
if [that file exists]
add to whatsleft list
end
done
but I'm looking for something more general.
#!/bin/sh
shopt -s extglob # allow extended glob syntax, for matching the filenames
LC_COLLATE=C # use a sort order comm is happy with
IFS=$'\n' # so filenames can have spaces but not newlines
# (newlines don't work so well with comm anyhow;
# shame it doesn't have an option for null-separated
# input lines).
files_todo=( **([A-Z])0[1-2][a-j]*.xml )
files_done=( **([A-Z])0[1-2][a-j]*.txt )
files_remaining=( \
$(comm -23 --nocheck-order \
<(printf "%s\n" "${files_todo[#]%.xml}") \
<(printf "%s\n" "${files_done[#]%.txt}") ))
echo jobserve E $(for f in "${files_remaining[#]%.xml}"; do printf "%s\n" "${f}.txt"; done)
This assumes that you want a single jobserve E call with all the remaining files as arguments; it's rather unclear from the specification if such is the case.
Note the use of extended globs rather than parsing ls, which is considered very poor practice.
To transform input to output names without using anything other than shell builtins, consider the following:
if [[ $in_name =~ data/([^/]+)/special/([^/]+).xml ]] ; then
out_name=results/special/${BASH_REMATCH[1]}-${BASH_REMATCH[2]}.dat
else
: # ...handle here the fact that you have a noncompliant name...
fi
The question title suggests that you might be looking for:
set -o noclobber
The question content indicates a wholly different problem!
It seems you want to run 'jobserve E' on each '.xml' file without a matching '.txt' file. You'll need to assess the TOCTOU (Time of Check, Time of Use) problems here because you're in a cluster environment. But the basic idea could be:
todo=""
for file in *.xml
do [ -f ${file%.xml}.txt ] || todo="$todo $file"
done
jobserve E $todo
This will work with Korn shell as well as Bash. In Bash you could explore making 'todo' into an array; that will deal with spaces in file names better than this will.
If you have processes still generating '.txt' files for '.xml' files while you run this check, you will get some duplicated effort (because this script cannot tell that the processing is happening). If the 'E' process creates the corresponding '.txt' file as it starts processing it, that minimizes the chance or duplicated effort. Or, maybe consider separating the processed files from the unprocessed files, so the 'E' process moves the '.xml' file from the 'to-be-done' directory to the 'done' directory (and writes the '.txt' file to the 'done' directory too). If done carefully, this can avoid most of the multi-processing problems. For example, you could link the '.xml' to the 'done' directory when processing starts, and ensure appropriate cleanup with an 'atexit()' handler (if you are moderately confident your processing program does not crash). Or other trickery of your own devising.
whatsleft=$( ls *.xml *.txt | grep $PATTERN -o | sort | uniq -u )
Note this actually gets a symmetric difference.
i am not exactly sure what you want, but you can check for existence of the file first, if it exists, create a new name? ( Or in your E (perl script) you do this check. )
if [ -f "$file" ];then
newname="...."
fi
...
jobserve E .... > $newname
if its not what you want, describe more clearly in your question what you mean by "don't overwrite files"..
for posterity's sake, this is what i found to work:
TMPA='neverwritethis.tmp'
TMPB='neverwritethat.tmp'
ls *.xml | grep $PATTERN -o > $TMPA;
ls *.txt | grep $PATTERN -o > $TMPB;
whatsleft = `sort $TMPA $TMPB | uniq -u | sed "s/%/.xml" > xargs`;
rm $TMPA $TMPB;