How palindrome check in prolog works? [duplicate] - prolog

Can I get a recursive Prolog predicate having two arguments, called reverse, which returns the inverse of a list:
Sample query and expected result:
?- reverse([a,b,c], L).
L = [c,b,a].
A recursive Prolog predicate of two arguments called palindrome which returns true if the given list is palindrome.
Sample query with expected result:
?- palindrome([a,b,c]).
false.
?- palindrome([b,a,c,a,b]).
true.

Ad 1: It is impossible to define reverse/2 as a (directly edit thx to #repeat: tail) recursive predicate - unless you permit an auxiliary predicate.
Ad 2:
palindrome(X) :- reverse(X,X).
But the easiest way is to define such predicates with DCGs:
iseq([]) --> [].
iseq([E|Es]) --> iseq(Es), [E].
reverse(Xs, Ys) :-
phrase(iseq(Xs), Ys).
palindrome(Xs) :-
phrase(palindrome, Xs).
palindrome --> [].
palindrome --> [E].
palindrome --> [E], palindrome, [E].

There isn't an efficient way to define reverse/2 with a single recursive definition without using some auxiliary predicate. However, if this is nevertheless permitted, a simple solution which doesn't rely on any built-ins like append/3 (and should be applicable for most Prolog implementations) would be to use an accumulator list, as follows:
rev([],[]).
rev([X|Xs], R) :-
rev_acc(Xs, [X], R).
rev_acc([], R, R).
rev_acc([X|Xs], Acc, R) :-
rev_acc(Xs, [X|Acc], R).
rev/2 is the reversal predicate which simply 'delegates' to (or, wraps) the accumulator-based version called rev-acc/2, which recursively adds elements of the input list into an accumulator in reverse order.
Running this:
?- rev([1,3,2,x,4],L).
L = [4, x, 2, 3, 1].
And indeed as #false has already pointed out (+1),
palindrome(X) :- rev(X,X).

Just for curiosity here goes a recursive implementation of reverse/2 that does not use auxiliary predicates and still reverses the list. You might consider it cheating as it uses reverse/2 using lists and the structure -/2 as arguments.
reverse([], []):-!.
reverse([], R-R).
reverse(R-[], R):-!.
reverse(R-NR, R-NR).
reverse([Head|Tail], Reversed):-
reverse(Tail, R-[Head|NR]),
reverse(R-NR, Reversed).

conca([],L,L).
conca([X|L1],L2,[X|L3]):- conca(L1,L2,L3).
rev([],[]).
rev([X|Y],N):- rev(Y,N1),conca(N1,[X],N).
palindrome([X|Y]):- rev([X|Y],N),equal([X|Y],N).
equal([X],[X]).
equal([X|Y],[X|Z]):- equal(Y,Z).

Related

What's the equivalent of a map function in Prolog? [duplicate]

How do you write a Prolog procedure map(List, PredName, Result) that applies the predicate PredName(Arg, Res) to the elements of List, and returns the result in the list Result?
For example:
test(N,R) :- R is N*N.
?- map([3,5,-2], test, L).
L = [9,25,4] ;
no
This is usually called maplist/3 and is part of the Prolog prologue. Note the different argument order!
:- meta_predicate(maplist(2, ?, ?)).
maplist(_C_2, [], []).
maplist( C_2, [X|Xs], [Y|Ys]) :-
call(C_2, X, Y),
maplist( C_2, Xs, Ys).
The different argument order permits you to easily nest several maplist-goals.
?- maplist(maplist(test),[[1,2],[3,4]],Rss).
Rss = [[1,4],[9,16]].
maplist comes in different arities and corresponds to the following constructs in functional languages, but requires that all lists are of same length. Note that Prolog does not have the asymmetry between zip/zipWith and unzip. A goal maplist(C_3, Xs, Ys, Zs) subsumes both and even offers more general uses.
maplist/2 corresponds to all
maplist/3 corresponds to map
maplist/4 corresponds to zipWith but also unzip
maplist/5 corresponds to zipWith3 and unzip3
...

Predicates with =.. operator in Prolog

Last time I learnt about =.. that can translate a list to term and opposite.
I have 3 predicates to do, first one is the one that translates a list to a term. I came up with sth like this:
list_to_term(List, Functor, Term) :-
Term =.. [Functor | List].
Is it okey? Enough? Or I miss something?
The other predicate is count(A,T,N) for element A, in term T with number N that is true if N is a count of elements A in term T... Can anyone help me with this one or how to start?
?- count(a,f(a),N).
N = 1
?- count(a,f(a,g(b,a),N).
N = 2.
?- count(a,f(a,g(X,a),N).
N = 2.
Looking at the answer of this post you can reuse the predicate flatten_term/2, a little bit modified to handle free variables, to sove your problem. Here is the code for a basic solution:
flatten_term(Term,[Term]):-
(atomic(Term);var(Term)),!.
flatten_term(Term,Flat):-
Term =.. TermList,
flatten_term_list(TermList,Flat),!.
flatten_term_list([],[]):-!.
flatten_term_list([H|T],List):-
flatten_term(H,HList),
flatten_term_list(T,TList),
append(HList,TList,List),!.
occurrences(_,[],N,N):-!.
occurrences(A,[H|T],N,Tot):-
A \== H,!,
occurrences(A,T,N,Tot).
occurrences(A,[H|T],N,Tot):-
A == H,!,
N1 is N+1,
occurrences(A,T,N1,Tot).
count(A,Term,N):-
flatten_term(Term,Flatten),
occurrences(A,Flatten,0,N).
?- count(a,f(a,g(X,a),d),T).
T = 2.
?- count(X,f(a,g(X,a),d),T).
T = 1
First of all you flatten the term using flatten_term/2. Then simply count the occurrences of the element you want to find using occurrences/4. You can, if you want, modify flatten_term/2 to avoid the usage of occurrences/4 and so scan the term (list) only one time... Something like: flatten_term(Term,Flatten,ElementToFind,Counter,Total).
Start by solving a more general problem of counting the terms in a list. Processing a term is processing a singleton list containing that term, after all:
count(A,T,N):- count(A, [T|Z],Z, 0,N).
count(_, [], [], C,N):- N is C, !.
count(A, [T|B],Z, C,N):- ?=(A,T), A=T, !, count(A, B,Z, C+1,N).
count(A, [T|B],Z, C,N):- ?=(A,T), T=..[_|S], !, append(S,Y,Z), count(A, B,Y, C,N).
count(A, [_|B],Z, C,N):- count(A, B,Z, C,N).
This opens up each head term in a list in succession and appends its argument terms to that list thus using it as a queue... thus processing the predicate's second argument T in a breadth-first manner.
This assumes A argument is an atom, and ?= is used to avoid instantiating the free variables we might encounter, and instead to skip over them, as your examples seem to indicate.
Is it okey? Enough? Or I miss something?
Prolog's =../2 predicate [swi-doc] can "pack" and "unpack" a list that contains the functor name and its arguments in a term and vice versa. So one can use this to construct a term, or to analyze a term. For example:
?- f(a,g(b,a)) =.. L.
L = [f, a, g(b, a)].
Here f is the functor name, and a and g(b, a) are the arguments. These arguments can be terms as well, and then we thus need to unpack these arguments further.
We can for example obtain all the subterms of a term with:
subterms(T, T) :-
\+ var(T).
subterms(T, ST) :-
\+ var(T),
T =.. [_|As],
member(A, As),
subterms(A, ST).
For example:
?- subterms(f(a,g(X,a)),N).
N = f(a, g(X, a)) ;
N = a ;
N = g(X, a) ;
N = a ;
false.
Now that we obtained all (sub)terms, we can slightly rewrite the predicate to count the number of elements that match:
subterm_query(Q, T) :-
Q == T.
subterm_query(Q, T) :-
\+ var(T),
T =.. [_|As],
member(A, As),
subterm_query(Q, A).
so we obtain if we query for a:
?- subterm_query(a, f(a,g(X,a))).
true ;
true ;
false.
If we can use the aggregate library, we can make use of the aggregate_all/3 predicate to count the number of times, the predicate was succesful:
?- aggregate_all(count, subterm_query(a, f(a,g(X,a))), Count).
Count = 2.
If not, you need to implement a mechanism that returns 1 for a match, and sums up recursively the matches of the child terms. I leave this as an exercise.

How to improve this code that looks for a specific number in a list?

I'm writing prolog code that finds a certain number; a number is the right number if it's between 0 and 9 and not present in a given list. To do this I wrote a predicate number/3 that has the possible numbers as the first argument, the list in which the Rightnumber cannot be present and the mystery RightNumber as third argument:
number([XH|XT], [H|T], RightNumber):-
member(XH, [H|T]), !,
number(XT, [H|T], RightNumber).
number([XH|_], [H|T], XH):-
\+ member(XH, [H|T]).
so this code basically says that if the Head of the possible numbers list is already a member of the second list, to cut of the head and continue in recursion with the tail.
If the element is not present in the second list, the second clause triggers and tells prolog that that number is the RightNumber. It's okay that it only gives the first number that is possible, that's how I want to use it.
This code works in theory, but I was wondering if there's a better way to write it down? I'm using this predicate in another predicate later on in my code and it doesn't work as part of that. I think it's only reading the first clause, not the second and fails as a result.
Does anybody have an idea that might improve my code?
sample queries:
?- number([0,1,2,3,4,5,6,7,8,9], [1,2], X).
X = 3
?- number([0,1,2,3,4,5,6,7,8,9], [1,2,3,4,5,6,7,8,0], X).
X = 9
First, the code does not work. Consider:
?- number(Xs, Ys, N).
nontermination
This is obviously bad: For this so-called most general query, we expect to obtain answers, but Prolog does not give us any answer with this program!
So, I first suggest you eliminate all impurities from your program, and focus on a clean declarative description of what you want.
I give you a start:
good_number(N, Ls) :-
N in 0..9,
maplist(#\=(N), Ls).
This states that the relation is true if N is between 0 and 9, and N is different from any integer in Ls. See clpfd for more information about CLP(FD) constraints.
Importantly, this works in all directions. For example:
?- good_number(4, [1,2,3]).
true.
?- good_number(11, [1,2,3]).
false.
?- good_number(N, [1,2,3]).
N in 0\/4..9.
And also in the most general case:
?- good_number(N, Ls).
Ls = [],
N in 0..9 ;
Ls = [_2540],
N in 0..9,
N#\=_2540 ;
Ls = [_2750, _2756],
N in 0..9,
N#\=_2756,
N#\=_2750 .
This, with only two lines of code, we have implemented a very general relation.
Also see logical-purity for more information.
First of all, your predicate does not work, nor does it check all the required constraints (between 0 and 9 for instance).
Several things:
you unpack the second list [H|T], but you re-pack it when you call member(XH, [H|T]); instead you can use a list L (this however slightly alters the semantics of the predicate, but is more accurate towards the description);
you check twice member/2ship;
you do not check whether the value is a number between 0 and 9 (and an integer anyway).
A better approach is to construct a simple clause:
number(Ns, L, Number) :-
member(Number, Ns),
integer(Number),
0 =< Number,
Number =< 9,
\+ member(Number, L).
A problem that remains is that Number can be a variable. In that case integer(Number) will fail. In logic we would however expect that Prolog unifies it with a number. We can achieve this by using the between/3 predicate:
number(Ns, L, Number) :-
member(Number, Ns),
between(0, 9, Number),
\+ member(Number, L).
We can also use the Constraint Logic Programming over Finite Domains library and use the in/2 predicate:
:- use_module(library(clpfd)).
number(Ns, L, Number) :-
member(Number, Ns),
Number in 0..9,
\+ member(Number, L).
There are still other things that can go wrong. For instance we check non-membership with \+ member(Number, L). but in case L is not grounded, this will fail, instead of suggesting lists where none of the elements is equal to Number, we can use the meta-predicate maplist to construct lists and then call a predicate over every element. The predicate we want to call over every element is that that element is not equal to Number, so we can use:
:- use_module(library(clpfd)).
number(Ns, L, Number) :-
member(Number, Ns),
Number in 0..9,
maplist(#\=(Number), L).

PROLOG: Determining if elements in list are equal if order does not matter

I'm trying to figure out a way to check if two lists are equal regardless of their order of elements.
My first attempt was:
areq([],[]).
areq([],[_|_]).
areq([H1|T1], L):- member(H1, L), areq(T1, L).
However, this only checks if all elements of the list on the left exist in the list on the right; meaning areq([1,2,3],[1,2,3,4]) => true. At this point, I need to find a way to be able to test thing in a bi-directional sense. My second attempt was the following:
areq([],[]).
areq([],[_|_]).
areq([H1|T1], L):- member(H1, L), areq(T1, L), append([H1], T1, U), areq(U, L).
Where I would try to rebuild the lest on the left and swap lists in the end; but this failed miserably.
My sense of recursion is extremely poor and simply don't know how to improve it, especially with Prolog. Any hints or suggestions would be appreciated at this point.
As a starting point, let's take the second implementation of equal_elements/2 by #CapelliC:
equal_elements([], []).
equal_elements([X|Xs], Ys) :-
select(X, Ys, Zs),
equal_elements(Xs, Zs).
Above implementation leaves useless choicepoints for queries like this one:
?- equal_elements([1,2,3],[3,2,1]).
true ; % succeeds, but leaves choicepoint
false.
What could we do? We could fix the efficiency issue by using
selectchk/3 instead of
select/3, but by doing so we would lose logical-purity! Can we do better?
We can!
Introducing selectd/3, a logically pure predicate that combines the determinism of selectchk/3 and the purity of select/3. selectd/3 is based on
if_/3 and (=)/3:
selectd(E,[A|As],Bs1) :-
if_(A = E, As = Bs1,
(Bs1 = [A|Bs], selectd(E,As,Bs))).
selectd/3 can be used a drop-in replacement for select/3, so putting it to use is easy!
equal_elementsB([], []).
equal_elementsB([X|Xs], Ys) :-
selectd(X, Ys, Zs),
equal_elementsB(Xs, Zs).
Let's see it in action!
?- equal_elementsB([1,2,3],[3,2,1]).
true. % succeeds deterministically
?- equal_elementsB([1,2,3],[A,B,C]), C=3,B=2,A=1.
A = 1, B = 2, C = 3 ; % still logically pure
false.
Edit 2015-05-14
The OP wasn't specific if the predicate
should enforce that items occur on both sides with
the same multiplicities.
equal_elementsB/2 does it like that, as shown by these two queries:
?- equal_elementsB([1,2,3,2,3],[3,3,2,1,2]).
true.
?- equal_elementsB([1,2,3,2,3],[3,3,2,1,2,3]).
false.
If we wanted the second query to succeed, we could relax the definition in a logically pure way by using meta-predicate
tfilter/3 and
reified inequality dif/3:
equal_elementsC([],[]).
equal_elementsC([X|Xs],Ys2) :-
selectd(X,Ys2,Ys1),
tfilter(dif(X),Ys1,Ys0),
tfilter(dif(X),Xs ,Xs0),
equal_elementsC(Xs0,Ys0).
Let's run two queries like the ones above, this time using equal_elementsC/2:
?- equal_elementsC([1,2,3,2,3],[3,3,2,1,2]).
true.
?- equal_elementsC([1,2,3,2,3],[3,3,2,1,2,3]).
true.
Edit 2015-05-17
As it is, equal_elementsB/2 does not universally terminate in cases like the following:
?- equal_elementsB([],Xs), false. % terminates universally
false.
?- equal_elementsB([_],Xs), false. % gives a single answer, but ...
%%% wait forever % ... does not terminate universally
If we flip the first and second argument, however, we get termination!
?- equal_elementsB(Xs,[]), false. % terminates universally
false.
?- equal_elementsB(Xs,[_]), false. % terminates universally
false.
Inspired by an answer given by #AmiTavory, we can improve the implementation of equal_elementsB/2 by "sharpening" the solution set like so:
equal_elementsBB(Xs,Ys) :-
same_length(Xs,Ys),
equal_elementsB(Xs,Ys).
To check if non-termination is gone, we put queries using both predicates head to head:
?- equal_elementsB([_],Xs), false.
%%% wait forever % does not terminate universally
?- equal_elementsBB([_],Xs), false.
false. % terminates universally
Note that the same "trick" does not work with equal_elementsC/2,
because of the size of solution set is infinite (for all but the most trivial instances of interest).
A simple solution using the sort/2 ISO standard built-in predicate, assuming that neither list contains duplicated elements:
equal_elements(List1, List2) :-
sort(List1, Sorted1),
sort(List2, Sorted2),
Sorted1 == Sorted2.
Some sample queries:
| ?- equal_elements([1,2,3],[1,2,3,4]).
no
| ?- equal_elements([1,2,3],[3,1,2]).
yes
| ?- equal_elements([a(X),a(Y),a(Z)],[a(1),a(2),a(3)]).
no
| ?- equal_elements([a(X),a(Y),a(Z)],[a(Z),a(X),a(Y)]).
yes
In Prolog you often can do exactly what you say
areq([],_).
areq([H1|T1], L):- member(H1, L), areq(T1, L).
bi_areq(L1, L2) :- areq(L1, L2), areq(L2, L1).
Rename if necessary.
a compact form:
member_(Ys, X) :- member(X, Ys).
equal_elements(Xs, Xs) :- maplist(member_(Ys), Xs).
but, using member/2 seems inefficient, and leave space to ambiguity about duplicates (on both sides). Instead, I would use select/3
?- [user].
equal_elements([], []).
equal_elements([X|Xs], Ys) :-
select(X, Ys, Zs),
equal_elements(Xs, Zs).
^D here
1 ?- equal_elements(X, [1,2,3]).
X = [1, 2, 3] ;
X = [1, 3, 2] ;
X = [2, 1, 3] ;
X = [2, 3, 1] ;
X = [3, 1, 2] ;
X = [3, 2, 1] ;
false.
2 ?- equal_elements([1,2,3,3], [1,2,3]).
false.
or, better,
equal_elements(Xs, Ys) :- permutation(Xs, Ys).
The other answers are all elegant (way above my own Prolog level), but it struck me that the question stated
efficient for the regular uses.
The accepted answer is O(max(|A| log(|A|), |B|log(|B|)), irrespective of whether the lists are equal (up to permutation) or not.
At the very least, it would pay to check the lengths before bothering to sort, which would decrease the runtime to something linear in the lengths of the lists in the case where they are not of equal length.
Expanding this, it is not difficult to modify the solution so that its runtime is effectively linear in the general case where the lists are not equal (up to permutation), using random digests.
Suppose we define
digest(L, D) :- digest(L, 1, D).
digest([], D, D) :- !.
digest([H|T], Acc, D) :-
term_hash(H, TH),
NewAcc is mod(Acc * TH, 1610612741),
digest(T, NewAcc, D).
This is the Prolog version of the mathematical function Prod_i h(a_i) | p, where h is the hash, and p is a prime. It effectively maps each list to a random (in the hashing sense) value in the range 0, ...., p - 1 (in the above, p is the large prime 1610612741).
We can now check if two lists have the same digest:
same_digests(A, B) :-
digest(A, DA),
digest(B, DB),
DA =:= DB.
If two lists have different digests, they cannot be equal. If two lists have the same digest, then there is a tiny chance that they are unequal, but this still needs to be checked. For this case I shamelessly stole Paulo Moura's excellent answer.
The final code is this:
equal_elements(A, B) :-
same_digests(A, B),
sort(A, SortedA),
sort(B, SortedB),
SortedA == SortedB.
same_digests(A, B) :-
digest(A, DA),
digest(B, DB),
DA =:= DB.
digest(L, D) :- digest(L, 1, D).
digest([], D, D) :- !.
digest([H|T], Acc, D) :-
term_hash(H, TH),
NewAcc is mod(Acc * TH, 1610612741),
digest(T, NewAcc, D).
One possibility, inspired on qsort:
split(_,[],[],[],[]) :- !.
split(X,[H|Q],S,E,G) :-
compare(R,X,H),
split(R,X,[H|Q],S,E,G).
split(<,X,[H|Q],[H|S],E,G) :-
split(X,Q,S,E,G).
split(=,X,[X|Q],S,[X|E],G) :-
split(X,Q,S,E,G).
split(>,X,[H|Q],S,E,[H|G]) :-
split(X,Q,S,E,G).
cmp([],[]).
cmp([H|Q],L2) :-
split(H,Q,S1,E1,G1),
split(H,L2,S2,[H|E1],G2),
cmp(S1,S2),
cmp(G1,G2).
A simple solution using cut.
areq(A,A):-!.
areq([A|B],[C|D]):-areq(A,C,D,E),areq(B,E).
areq(A,A,B,B):-!.
areq(A,B,[C|D],[B|E]):-areq(A,C,D,E).
Some sample queries:
?- areq([],[]).
true.
?- areq([1],[]).
false.
?- areq([],[1]).
false.
?- areq([1,2,3],[3,2,1]).
true.
?- areq([1,1,2,2],[2,1,2,1]).
true.

Prolog map procedure that applies predicate to list elements

How do you write a Prolog procedure map(List, PredName, Result) that applies the predicate PredName(Arg, Res) to the elements of List, and returns the result in the list Result?
For example:
test(N,R) :- R is N*N.
?- map([3,5,-2], test, L).
L = [9,25,4] ;
no
This is usually called maplist/3 and is part of the Prolog prologue. Note the different argument order!
:- meta_predicate(maplist(2, ?, ?)).
maplist(_C_2, [], []).
maplist( C_2, [X|Xs], [Y|Ys]) :-
call(C_2, X, Y),
maplist( C_2, Xs, Ys).
The different argument order permits you to easily nest several maplist-goals.
?- maplist(maplist(test),[[1,2],[3,4]],Rss).
Rss = [[1,4],[9,16]].
maplist comes in different arities and corresponds to the following constructs in functional languages, but requires that all lists are of same length. Note that Prolog does not have the asymmetry between zip/zipWith and unzip. A goal maplist(C_3, Xs, Ys, Zs) subsumes both and even offers more general uses.
maplist/2 corresponds to all
maplist/3 corresponds to map
maplist/4 corresponds to zipWith but also unzip
maplist/5 corresponds to zipWith3 and unzip3
...

Resources