The question is what is the smallest possible value of N so R= 41441? I did the problem and the result is 1234 but I am curious if there is an easier and faster way to do such problems. What I did is simulate the algorithm running in my head from the end to beginning until I get the first number which is also the answer. TBD the last number that gets run in the flow is 1 because 1 div 5 is 0 and 1 mod 5 is 1 which is the final number of R, then the number before that that was ran was 9 because 9 mod 5 is 4 which is the second last number of R and 9 div 5 is 1 which is the next number that runs in the flow. I kept on doing that until I made it to the final number which is 1234 and gives me all the numbers I need for R: 41441.
Are there any clever methods for doing these problems in a more efficient way?
The problem of finding N is equivalent to the problem of finding the conversion to base 10 of the number in base 5 "14414" which is the string R reversed. This just follows from what a base b representation is, and what the fact that if you have a number N in base b, N mod b just gives you the last digit, and N div b gives you the number with the last digit chopped of.
I am searching for a method to create, in a fast way a random matrix A with the follwing properties:
A = transpose(A)
A(i,i) = 0 for all i
A(i,j) >= 0 for all i, j
sum(A) =~ degree; the sum of rows are randomly distributed by a distribution I want to specify (here =~ means approximate equality).
The distribution degree comes from a matrix orig, specifically degree=sum(orig), thus I know that matrices with this distribution exist.
For example: orig=[0 12 7 5; 12 0 1 9; 7 1 0 3; 5 9 3 0]
orig =
0 12 7 5
12 0 1 9
7 1 0 3
5 9 3 0
sum(orig)=[24 22 11 17];
Now one possible matrix A=[0 11 5 8, 11 0 4 7, 5 4 0 2, 8 7 2 0] is
A =
0 11 5 8
11 0 4 7
5 4 0 2
8 7 2 0
with sum(A)=[24 22 11 17].
I am trying this for quite some time, but unfortunatly my two ideas didn't work:
version 1:
I switch Nswitch times two random elements: A(k1,k3)--; A(k1,k4)++; A(k2,k3)++; A(k2,k4)--; (the transposed elements aswell).
Unfortunatly, Nswitch = log(E)*E (with E=sum(sum(nn))) in order that the Matrices are very uncorrelated. As my E > 5.000.000, this is not feasible (in particular, as I need at least 10 of such matrices).
version 2:
I create the matrix according to the distribution from scratch. The idea is, to fill every row i with degree(i) numbers, based on the distribution of degree:
nn=orig;
nnR=zeros(size(nn));
for i=1:length(nn)
degree=sum(nn);
howmany=degree(i);
degree(i)=0;
full=rld_cumsum(degree,1:length(degree));
rr=randi(length(full),[1,howmany]);
ff=full(rr);
xx=i*ones([1,length(ff)]);
nnR = nnR + accumarray([xx(:),ff(:)],1,size(nnR));
end
A=nnR;
However, while sum(A')=degree, sum(A) systematically deviates from degree, and I am not able to find the reason for that.
Small deviations from degree are fine of course, but there seem to be systmatical deviations in particulat of the matrices contain in some places large numbers.
I would be very happy if somebody could either show me a fast method for version1, or a reason for the systematic deviation of the distribution in version 2, or a method to create such matrices in a different way. Thank you!
Edit:
This is the problem in matsmath's proposed solution:
Imagine you have the matrix:
orig =
0 12 3 1
12 0 1 9
3 1 0 3
1 9 3 0
with r(i)=[16 22 7 13].
Step 1: r(1)=16, my random integer partition is p(i)=[0 7 3 6].
Step 2: Check that all p(i)<=r(i), which is the case.
Step 3:
My random matrix starts looks like
A =
0 7 3 6
7 0 . .
3 . 0 .
6 . . 0
with the new row sum vector rnew=[r(2)-p(2),...,r(n)-p(n)]=[15 4 7]
Second iteration (here the problem occures):
Step 1: rnew(1)=15, my random integer partition is p(i)=[0 A B]: rnew(1)=15=A+B.
Step 2: Check that all p(i)<=rnew(i), which gives A<=4, B<=7. So A+B<=11, but A+B has to be 15. contradiction :-/
Edit2:
This is the code representing (to the best of my knowledge) the solution posted by David Eisenstat:
orig=[0 12 3 1; 12 0 1 9; 3 1 0 3; 1 9 3 0];
w=[2.2406 4.6334 0.8174 1.6902];
xfull=zeros(4);
for ii=1:1000
rndmat=[poissrnd(w(1),1,4); poissrnd(w(2),1,4); poissrnd(w(3),1,4); poissrnd(w(4),1,4)];
kkk=rndmat.*(ones(4)-eye(4)); % remove diagonal
hhh=sum(sum(orig))/sum(sum(kkk))*kkk; % normalisation
xfull=xfull+hhh;
end
xf=xfull/ii;
disp(sum(orig)); % gives [16 22 7 13]
disp(sum(xf)); % gives [14.8337 9.6171 18.0627 15.4865] (obvious systematic problem)
disp(sum(xf')) % gives [13.5230 28.8452 4.9635 10.6683] (which is also systematically different from [16, 22, 7, 13]
Since it's enough to approximately preserve the degree sequence, let me propose a random distribution where each entry above the diagonal is chosen according to a Poisson distribution. My intuition is that we want to find weights w_i such that the i,j entry for i != j has mean w_i*w_j (all of the diagonal entries are zero). This gives us a nonlinear system of equations:
for all i, (sum_{j != i} w_i*w_j) = d_i,
where d_i is the degree of i. Equivalently,
for all i, w_i * (sum_j w_j) - w_i^2 = d_i.
The latter can be solved by applying Newton's method as described below from a starting solution of w_i = d_i / sqrt(sum_j d_j).
Once we have the w_is, we can sample repeatedly using poissrnd to generate samples of multiple Poisson distributions at once.
(If I have time, I'll try implementing this in numpy.)
The Jacobian matrix of the equation system for a 4 by 4 problem is
(w_2 + w_3 + w_4) w_1 w_1 w_1
w_2 (w_1 + w_3 + w_4) w_2 w_2
w_3 w_3 (w_1 + w_2 + w_4) w_3
w_4 w_4 w_4 (w_1 + w_2 + w_3).
In general, let A be a diagonal matrix where A_{i,i} = sum_j w_j - 2*w_i. Let u = [w_1, ..., w_n]' and v = [1, ..., 1]'. The Jacobian can be written J = A + u*v'. The inverse is given by the Sherman--Morrison formula
A^-1*u*v'*A^-1
J^-1 = (A + u*v')^-1 = A^-1 - -------------- .
1 + v'*A^-1*u
For the Newton step, we need to compute J^-1*y for some given y. This can be done straightforwardly in time O(n) using the above equation. I'll add more detail when I get the chance.
First approach (based on version2)
Let your row sum vector given by the matrix orig [r(1),r(2),...,r(n)].
Step 1. Take a random integer partition of the integer r(1) into exactly n-1 parts, say p(2), p(3), ..., p(n)
Step 2. Check if p(i)<=r(i) for all i=2...n. If not, go to Step 1.
Step 3. Fill out your random matrix first row and colum by the entries 0, p(2), ... , p(n), and consider the new row sum vector [r(2)-p(2),...,r(n)-p(n)].
Repeat these steps with a matrix of order n-1.
The point is, that you randomize one row at a time, and reduce the problem to searching for a matrix of size one less.
As pointed out by OP in the comment, this naive algorithm fails. The reason is that the matrices in question have a further necessary condition on their entries as follows:
FACT:
If A is an orig matrix with row sums [r(1), r(2), ..., r(n)] then necessarily for every i=1..n it holds that r(i)<=-r(i)+sum(r(j),j=1..n).
That is, any row sum, say the ith, r(i), is necessarily at most as big as the sum of the other row sums (not including r(i)).
In light of this, a revised algorithm is possible. Note that in Step 2b. we check if the new row sum vector has the property discussed above.
Step 1. Take a random integer partition of the integer r(1) into exactly n-1 parts, say p(2), p(3), ..., p(n)
Step 2a. Check if p(i)<=r(i) for all i=2...n. If not, go to Step 1.
Step 2b. Check if r(i)-p(i)<=-r(i)+p(i)+sum(r(j)-p(j),j=2..n) for all i=2..n. If not, go to Step 1.
Step 3. Fill out your random matrix first row and colum by the entries 0, p(2), ... , p(n), and consider the new row sum vector [r(2)-p(2),...,r(n)-p(n)].
Second approach (based on version1)
I am not sure if this approach gives you random matrices, but it certainly gives you different matrices.
The idea here is to change some parts of your orig matrix locally, in a way which maintains all of its properties.
You should look for a random 2x2 submatrix below the main diagonal which contains strictly positive entries, like [[a,b],[c,d]] and perturbe its contents by a random value r to [[a+r,b-r],[c-r,d+r]]. You make the same change above the main diagonal too, to keep your new matrix symmetric. Here the point is that the changes within the entries "cancel" each other out.
Of course, r should be chosen in a way such that b-r>=0 and c-r>=0.
You can pursue this idea to modify larger submatrices too. For example, you might choose 3 random row coordinates r1, r2, r2 and 3 random column coordinates c1, c2, and c3 and then make changes in your orig matrix at the 9 positions (ri,cj) as follows: you change your 3x3 submatrix [[a b c],[d e f], [g h i]] to [[a-r b+r c] [d+r e f-r], [g h-r i+r]]. You do the same at the transposed places. Again, the random value r must be chosen in a way so that a-r>=0 and f-r>=0 and h-r>=0. Moreover, c1 and r1, and c3 and r3 must be distinct as you can't change the 0 entries in the main diagonal of the matrix orig.
You can repeat such things over and over again, say 100 times, until you find something which looks random. Note that this idea uses the fact that you have existing knowledge of a solution, this is the matrix orig, while the first approach does not use such knowledge at all.
I want to convert a number in base 10 into a special base form like this:
A*2^2 + B*3^1 + C*2^0
A can take on values of [0,1]
B can take on values of [0,1,2]
C can take on values of [0,1]
For example, the number 8 would be
1*2^2 + 1*3 + 1.
It is guaranteed that the given number can be converted to this specialized base system.
I know how to convert from this base system back to base-10, but I do not know how to convert from base-10 to this specialized base system.
In short words, treat every base number (2^2, 3^1, 2^0 in your example) as weight of an item, and the whole number as the capacity of a bag. This problem wants us to find a combination of these items which they fill the bag exactly.
In the first place this problem is NP-complete. It is identical to the subset sum problem, which can also be seen as a derivative problem of the knapsack problem.
Despite this fact, this problem can however be solved by a pseudo-polynomial time algorithm using dynamic programming in O(nW) time, which n is the number of bases, and W is the number to decompose. The details can be find in this wikipedia page: http://en.wikipedia.org/wiki/Knapsack_problem#Dynamic_programming and this SO page: What's it called when I want to choose items to fill container as full as possible - and what algorithm should I use?.
Simplifying your "special base":
X = A * 4 + B * 3 + C
A E {0,1}
B E {0,1,2}
C E {0,1}
Obviously the largest number that can be represented is 4 + 2 * 3 + 1 = 11
To figure out how to get the values of A, B, C you can do one of two things:
There are only 12 possible inputs: create a lookup table. Ugly, but quick.
Use some algorithm. A bit trickier.
Let's look at (1) first:
A B C X
0 0 0 0
0 0 1 1
0 1 0 3
0 1 1 4
0 2 0 6
0 2 1 7
1 0 0 4
1 0 1 5
1 1 0 7
1 1 1 8
1 2 0 10
1 2 1 11
Notice that 2 and 9 cannot be expressed in this system, while 4 and 7 occur twice. The fact that you have multiple possible solutions for a given input is a hint that there isn't a really robust algorithm (other than a look up table) to achieve what you want. So your table might look like this:
int A[] = {0,0,-1,0,0,1,0,1,1,-1,1,1};
int B[] = {0,0,-1,1,1,0,2,1,1,-1,2,2};
int C[] = {0,1,-1,0,2,1,0,1,1,-1,0,1};
Then look up A, B, C. If A < 0, there is no solution.
As part of an algorithm I'm writing, I need to find a way to convert a 10-bit word into a unique 8-bit word. The 10-bit word is made up of 5 pairs, where each pair can only ever equal 0, 1 or 2 (never 3). For example:
|00|10|00|01|10|
This value needs to somehow be consolidated into a single, unique byte.
As each pair can never equal 3, there are a wide range of values that this 10-bit word will never represent, which makes me think that it is possible to create an algorithm to perform this conversion. The simplest way to do this would be to use a lookup table, but it seems like a waste of resources to store ~680 values which will only be used once in my program. I've already tried to incorporate one of the pairs into the others somehow, but every attempt I've made has resulted in a non-unique value, and I'm now very quickly running out of ideas!
Any help?
The number you have is essentially base 3. You just need to convert this to base 2.
There are 5 pairs, so 3^5 = 243 numbers. And 8 bits is 2^8 = 256 numbers, so it's possible.
The simplest way to convert between bases is to go to base 10 first.
So, for your example:
00|10|00|01|10
Base 3: 02012
Base 10: 2*3^3 + 1*3^1 + 2*3^0
= 54 + 3 + 2
= 59
Base 2:
59 % 2 = 1
/2 29 % 2 = 1
/2 14 % 2 = 0
/2 7 % 2 = 1
/2 3 % 2 = 1
/2 1 % 2 = 1
So 111011 is your number in binary
This explains the above process in a bit more detail.
Note that once you have 59 above stored in a 1-byte integer, you'll probably already have what you want, thus explicitly converting to base 2 might not be necessary.
What you basically have is a base 3 number and you want to convert this to a single number 0 - 255, luckily 5 digits in ternary (base 3) gives 243 combinations.
What you'll need to do is:
Digit Action
( 1st x 3^4)
+ (2nd x 3^3)
+ (3rd x 3^2)
+ (4th x 3)
+ (5th)
This will give you a number 0 to 242.
You are considering to store some information in a byte. A byte can contain at most 2 ^ 8 = 256 status.
Your status is totally 3 ^ 5 = 243 < 256. That make the transfer possible.
Consider your pairs are ABCDE (each character can be 0, 1 or 2)
You can just calculate A*3^4 + B*3^3 + C*3^2 + D*3 + E as your result. I guarantee the result will be in range 0 -- 255.
Can we use a factor-oracle with suffix link (paper here) to compute the longest common substring of multiple strings? Here, substring means any part of the original string. For example "abc" is the substring of "ffabcgg", while "abg" is not.
I've found a way to compute the maximum length common substring of two strings s1 and s2. It works by concatenating the two strings using a character not in them, '$' for example. Then for each prefix of the concatenated string s with length i >= |s1| + 2, we calculate its LRS (longest repeated suffix) length lrs[i] and sp[i] (the end position of the first occurence of its LRS). Finally, the answer is
max{lrs[i]| i >= |s1| + 2 and sp[i] <= |s1|}
I've written a C++ program that uses this method, which can solve the problem within 200ms on my laptop when |s1|+|s2| <= 200000, using the factor oracle.
s1 = 'ffabcgg'
s2 = 'gfbcge'
s = s1+'$'+s2
= 'ffabcgg$gfbcge'
p: 0 1 2 3 4 5 6 7 8 9 10 11 12 13
s: f f a b c g g $ g f b c g e
sp: 0 1 0 0 0 0 6 0 6 1 4 5 6 0
lrs:0 1 0 0 0 0 1 0 1 1 1 2 3 0
ans = lrs[13] = 3
I know the both problems can be solved using suffix-array and suffix-tree with high efficiency, but I wonder if there is a method using factor oracle to solve it. I am interested in this because the factor oracle is easy to construct (with 30 lines of C++, suffix-array needs about 60, and suffix-tree needs 150), and it runs faster than suffix-array and suffix-tree.
You can test your method of the first problem in this OnlineJudge, and the second problem in here.
Can we use a factor-oracle with suffix link (paper here) to compute
the longest common substring of multiple strings?
I don't think the algorithm is a very good fit (it is designed to factor a single string) but you can use it by concatenating the original strings with a unique separator.
Given abcdefg and hijcdekl and mncdop, find the longest common substring cd:
# combine with unique joiners
>>> s = "abcdefg" + "1" + "hijcdekl" + "2" + "mncdop"
>>> factor_oracle(s)
"cd"
As part of its linear-time and space algorithm, the factor-oracle quickly rediscover the break points between the input strings as part of its search for common factors (the unique joiners provide and immediate cue to stop extending the best factor found so far).