I am working with Map Reduce job and executing it using ToolRunner's run method.
Here is my code:
public class MaxTemperature extends Configured implements Tool {
public static void main(String[] args) throws Exception {
System.setProperty("hadoop.home.dir", "/");
int exitCode = ToolRunner.run(new MaxTemperature(), args);
System.exit(exitCode);
}
#Override
public int run(String[] args) throws Exception {
if (args.length != 2) {
System.err.println("Usage: MaxTemperature <input path> <output path>");
System.exit(-1);
}
System.out.println("Starting job");
Job job = new Job();
job.setJarByClass(MaxTemperature.class);
job.setJobName("Max temperature");
FileInputFormat.addInputPath(job, new Path(args[0]));
FileOutputFormat.setOutputPath(job, new Path(args[1]));
job.setMapperClass(MaxTemperatureMapper.class);
job.setReducerClass(MaxTemperatureReducer.class);
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(IntWritable.class);
int returnValue = job.waitForCompletion(true) ? 0:1;
if(job.isSuccessful()) {
System.out.println("Job was successful");
} else if(!job.isSuccessful()) {
System.out.println("Job was not successful");
}
return returnValue;
}
}
The job executed well as expected. But when i looked into the logs which displays the information abou the job tracking, I found that the Map reduce is pointing to localhost:8080 for the tracking of the job.
Here is the snapshot of logs:
20521 [main] INFO org.apache.hadoop.mapreduce.JobSubmitter - number of splits:1
20670 [main] INFO org.apache.hadoop.mapreduce.JobSubmitter - Submitting tokens for job: job_local1454583076_0001
20713 [main] WARN org.apache.hadoop.conf.Configuration - file:/tmp/hadoop-KV/mapred/staging/KV1454583076/.staging/job_local1454583076_0001/job.xml:an attempt to override final parameter: mapreduce.job.end-notification.max.retry.interval; Ignoring.
20716 [main] WARN org.apache.hadoop.conf.Configuration - file:/tmp/hadoop-KV/mapred/staging/KV1454583076/.staging/job_local1454583076_0001/job.xml:an attempt to override final parameter: mapreduce.job.end-notification.max.attempts; Ignoring.
20818 [main] WARN org.apache.hadoop.conf.Configuration - file:/tmp/hadoop-KV/mapred/local/localRunner/KV/job_local1454583076_0001/job_local1454583076_0001.xml:an attempt to override final parameter: mapreduce.job.end-notification.max.retry.interval; Ignoring.
20820 [main] WARN org.apache.hadoop.conf.Configuration - file:/tmp/hadoop-KV/mapred/local/localRunner/KV/job_local1454583076_0001/job_local1454583076_0001.xml:an attempt to override final parameter: mapreduce.job.end-notification.max.attempts; Ignoring.
**20826 [main] INFO org.apache.hadoop.mapreduce.Job - The url to track the job: http://localhost:8080/**
20827 [main] INFO org.apache.hadoop.mapreduce.Job - Running job: job_local1454583076_0001
20829 [Thread-10] INFO org.apache.hadoop.mapred.LocalJobRunner - OutputCommitter set in config null
So my question is why is map reduce pointing to localhost:8080
The url to track the job: http://localhost:8080/
There is no configuration file or properties file where i manually set this. Also, is it possible that i can change it to some other port? If yes, how can i achieve this?
So the ports are configured in yarn-site.xml : yarn-site.xml
Check : yarn.resourcemanager.webapp.address
We need to change the default configuration and create a Configuration object and set the properties to this configuration object and then create a Job object using this Configuration as follows:
Configuration configuration = getConf();
//configuration.set("fs.defaultFS", "hdfs://192.**.***.2**");
//configuration.set("mapred.job.tracker", "jobtracker:jtPort");
configuration.set("mapreduce.jobtracker.address", "localhost:54311");
configuration.set("mapreduce.framework.name", "yarn");
configuration.set("yarn.resourcemanager.address", "127.0.0.1:8032");
//configuration.set("yarn.resourcemanager.webapp.address", "127.0.0.1:8032");
//Initialize the Hadoop job and set the jar as well as the name of the Job
Job job = new Job(configuration);
Related
I am trying to do map-reduce with kite-dataset api.
I have followed below urls to refer.
https://community.cloudera.com/t5/Kite-SDK-includes-Morphlines/Map-Reduce-with-Kite/td-p/22165
https://github.com/kite-sdk/kite/blob/master/kite-data/kite-data-mapreduce/src/test/java/org/kitesdk/data/mapreduce/TestMapReduce.java
My code snippet as below
public class MapReduce {
private static final String sourceDatasetURI = "dataset:hive:test_avro";
private static final String destinationDatasetURI = "dataset:hive:test_parquet";
private static class LineCountMapper
extends Mapper<GenericData.Record, Void, Text, IntWritable> {
#Override
protected void map(GenericData.Record record, Void value,
Context context)
throws IOException, InterruptedException {
System.out.println("Record is "+record);
context.write(new Text(record.get("index").toString()), new IntWritable(1));
}
}
private Job createJob() throws Exception {
System.out.println("Inside Create Job");
Job job = new Job();
job.setJarByClass(getClass());
Dataset<GenericData.Record> inputDataset = Datasets.load(sourceDatasetURI, GenericData.Record.class);
Dataset<GenericData.Record> outputDataset = Datasets.load(destinationDatasetURI, GenericData.Record.class);
DatasetKeyInputFormat.configure(job).readFrom(inputDataset).withType(GenericData.Record.class);
job.setMapperClass(LineCountMapper.class);
DatasetKeyOutputFormat.configure(job).writeTo(outputDataset).withType(GenericData.Record.class);
job.waitForCompletion(true);
return job;
}
public static void main(String[] args) throws Exception {
MapReduce httAvroToParquet = new MapReduce();
httAvroToParquet.createJob();
}
}
I am using HDP 2.3.2 box ,creating assembly jar and submitting my application through spark-submit.
I am getting below error when I submit my application.
2015-12-18 04:09:07,156 WARN [main] org.apache.hadoop.hdfs.shortcircuit.DomainSocketFactory: The short-circuit local reads feature cannot be used because libhadoop cannot be loaded.
2015-12-18 04:09:07,282 INFO [main] org.apache.hadoop.mapreduce.v2.app.MRAppMaster: OutputCommitter set in config null
2015-12-18 04:09:07,333 WARN [main] org.kitesdk.data.spi.Registration: Not loading URI patterns in org.kitesdk.data.spi.hive.Loader
2015-12-18 04:09:07,334 INFO [main] org.apache.hadoop.service.AbstractService: Service org.apache.hadoop.mapreduce.v2.app.MRAppMaster failed in state INITED; cause: org.apache.hadoop.yarn.exceptions.YarnRuntimeException: org.kitesdk.data.DatasetNotFoundException: Unknown dataset URI: hive://{}:9083/default/test_parquet. Check that JARs for hive datasets are on the classpath.
org.apache.hadoop.yarn.exceptions.YarnRuntimeException: org.kitesdk.data.DatasetNotFoundException: Unknown dataset URI: hive://{}:9083/default/test_parquet. Check that JARs for hive datasets are on the classpath.
at org.apache.hadoop.mapreduce.v2.app.MRAppMaster$1.call(MRAppMaster.java:478)
at org.apache.hadoop.mapreduce.v2.app.MRAppMaster$1.call(MRAppMaster.java:458)
at org.apache.hadoop.mapreduce.v2.app.MRAppMaster.callWithJobClassLoader(MRAppMaster.java:1560)
at org.apache.hadoop.mapreduce.v2.app.MRAppMaster.createOutputCommitter(MRAppMaster.java:458)
at org.apache.hadoop.mapreduce.v2.app.MRAppMaster.serviceInit(MRAppMaster.java:377)
at org.apache.hadoop.service.AbstractService.init(AbstractService.java:163)
at org.apache.hadoop.mapreduce.v2.app.MRAppMaster$4.run(MRAppMaster.java:1518)
at java.security.AccessController.doPrivileged(Native Method)
at javax.security.auth.Subject.doAs(Subject.java:422)
at org.apache.hadoop.security.UserGroupInformation.doAs(UserGroupInformation.java:1657)
at org.apache.hadoop.mapreduce.v2.app.MRAppMaster.initAndStartAppMaster(MRAppMaster.java:1515)
at org.apache.hadoop.mapreduce.v2.app.MRAppMaster.main(MRAppMaster.java:1448)
Caused by: org.kitesdk.data.DatasetNotFoundException: Unknown dataset URI: hive://{}:9083/default/test_parquet. Check that JARs for hive datasets are on the classpath.
at org.kitesdk.data.spi.Registration.lookupDatasetUri(Registration.java:109)
at org.kitesdk.data.Datasets.load(Datasets.java:103)
at org.kitesdk.data.Datasets.load(Datasets.java:165)
at org.kitesdk.data.mapreduce.DatasetKeyOutputFormat.load(DatasetKeyOutputFormat.java:510)
at org.kitesdk.data.mapreduce.DatasetKeyOutputFormat.getOutputCommitter(DatasetKeyOutputFormat.java:473)
at org.apache.hadoop.mapreduce.v2.app.MRAppMaster$1.call(MRAppMaster.java:476)
... 11 more
I am not getting what's wrong ? Is there any class-path problem ? If yes then where do I set it ?
You effectively have a classpath problem
Your project is missing org.kitesdk:kite-data-hive
You can
Add this jar to your fat jar before submitting it to Spark
Tells Spark to add it to your classpath when you submit
I m using Single Node Cluster - Hadoop-2.7.0 in my Linum Machine.
My code for WordCount Job is running fine with 1 reducer.
But Not working fine if i increase the reducers.
It is showing the following error:
15/05/25 21:15:10 INFO util.NativeCodeLoader: Loaded the native-hadoop library
15/05/25 21:15:10 WARN mapred.JobClient: Use GenericOptionsParser for parsing the arguments. Applications should implement Tool for the same.
15/05/25 21:15:10 WARN mapred.JobClient: No job jar file set. User classes may not be found. See JobConf(Class) or JobConf#setJar(String).
15/05/25 21:15:10 WARN snappy.LoadSnappy: Snappy native library is available
15/05/25 21:15:10 INFO snappy.LoadSnappy: Snappy native library loaded
15/05/25 21:15:10 INFO mapred.FileInputFormat: Total input paths to process : 1
15/05/25 21:15:10 INFO mapred.JobClient: Running job: job_local_0001
15/05/25 21:15:11 INFO util.ProcessTree: setsid exited with exit code 0
15/05/25 21:15:11 INFO mapred.Task: Using ResourceCalculatorPlugin : org.apache.hadoop.util.LinuxResourceCalculatorPlugin#5f1fd699
15/05/25 21:15:11 INFO mapred.MapTask: numReduceTasks: 1
15/05/25 21:15:11 INFO mapred.MapTask: io.sort.mb = 100
15/05/25 21:15:11 INFO mapred.MapTask: data buffer = 79691776/99614720
15/05/25 21:15:11 INFO mapred.MapTask: record buffer = 262144/327680
15/05/25 21:15:11 WARN mapred.LocalJobRunner: job_local_0001
java.io.IOException: Illegal partition for am (1)
at org.apache.hadoop.mapred.MapTask$MapOutputBuffer.collect(MapTask.java:1073)
at org.apache.hadoop.mapred.MapTask$OldOutputCollector.collect(MapTask.java:592)
at WordMapper.map(WordMapper.java:24)
at WordMapper.map(WordMapper.java:1)
at org.apache.hadoop.mapred.MapRunner.run(MapRunner.java:50)
at org.apache.hadoop.mapred.MapTask.runOldMapper(MapTask.java:436)
at org.apache.hadoop.mapred.MapTask.run(MapTask.java:372)
at org.apache.hadoop.mapred.LocalJobRunner$Job.run(LocalJobRunner.java:212)
My getPartition Method Looks like this:
public int getPartition(Text key, IntWritable value, int numRedTasks) {
String s = key.toString();
if(s.length() == 1)
{
return 0;
}
else if(s.length() == 2)
{
return 1;
}
else if(s.length() == 3)
{
return 2;
}
else
return 3;
}
Run Method in WordCount.class File:
if(input.length < 2)
{
System.out.println("Please provide valid input");
return -1;
}
else
{
JobConf config = new JobConf();
FileInputFormat.setInputPaths(config, new Path(input[0]));
FileOutputFormat.setOutputPath(config, new Path(input[1]));
config.setMapperClass(WordMapper.class);
config.setReducerClass(WordReducer.class);
config.setNumReduceTasks(4);
config.setPartitionerClass(MyPartitioner.class);
config.setMapOutputKeyClass(Text.class);
config.setMapOutputValueClass(IntWritable.class);
config.setOutputKeyClass(Text.class);
config.setOutputValueClass(IntWritable.class);
JobClient.runJob(config);
}
return 0;
}
My Mapper and Reducer Code is fine because Wordcount Job with 1 reducer is running fine.
Any One able to figure it out?
This may be due to pig fails in the operation due to high default_parallel could be set in it.
Thanks,
Shailesh.
You need to use tooRunner in your driver class and invoke the toolrunner in your main class. You can do this by using combiner as part of workflow. Below is the driver class code: As you can see from the code below, along with the mapper and reducer calls, there is a combiner call as well. And the exit code in the main runner is " int exitCode = ToolRunner.run(new Configuration(), new WordCountWithCombiner(), args);" which invokes tool runner at run time and you can specify the number of reducers or mappers you would like to use by using the "-D" option when running the wordcount program. A sample command line would look like "-D mapred.reduce.tasks =2 input output"
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import org.apache.hadoop.util.Tool;
import org.apache.hadoop.util.ToolRunner;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.conf.Configured;
public class WordCountWithCombiner extends Configured
implements Tool{
#Override
public int run(String[] args) throws Exception {
Configuration conf = getConf();
Job job = new Job(conf, "MyJob");
job.setJarByClass(WordCount.class);
job.setJobName("Word Count With Combiners");
FileInputFormat.addInputPath(job, new Path(args[0]));
FileOutputFormat.setOutputPath(job, new Path(args[1]));
job.setMapperClass(WordCountMapper.class);
job.setCombinerClass(WordCountReducer.class);
job.setReducerClass(WordCountReducer.class);
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(IntWritable.class);
return job.waitForCompletion(true) ? 0 : 1;
}
public static void main(String[] args) throws Exception {
int exitCode = ToolRunner.run(new Configuration(), new WordCountWithCombiner(), args);
System.exit(exitCode);
}
}
My code is
import java.io.IOException;
import java.util.*;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.conf.*;
import org.apache.hadoop.io.*;
import org.apache.hadoop.mapreduce.*;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.input.TextInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import org.apache.hadoop.mapreduce.lib.output.TextOutputFormat;
public class word_count_new {
public static class Map extends Mapper<LongWritable, Text, Text, IntWritable> {
private final static IntWritable one = new IntWritable(1);
private Text word = new Text();
public void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException {
String line = value.toString();
StringTokenizer tokenizer = new StringTokenizer(line);
while (tokenizer.hasMoreTokens()) {
word.set(tokenizer.nextToken());
context.write(word, one);
}
}
}
public static class Reduce extends Reducer<Text, IntWritable, Text, IntWritable> {
public void reduce(Text key, Iterable<IntWritable> values, Context context)
throws IOException, InterruptedException {
int sum = 0;
for (IntWritable val : values) {
sum += val.get();
}
context.write(key, new IntWritable(sum));
}
}
public static void main(String[] args) throws Exception {
Configuration conf = new Configuration();
Job job = new Job(conf, "wordcount");
// job.setJarByClass(word_count_new.class);
// conf.setJar(word_count_new.jar);
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(IntWritable.class);
job.setMapperClass(Map.class);
job.setReducerClass(Reduce.class);
job.setInputFormatClass(TextInputFormat.class);
job.setOutputFormatClass(TextOutputFormat.class);
FileInputFormat.addInputPath(job, new Path(args[0]));
FileOutputFormat.setOutputPath(job, new Path(args[1]));
job.setJarByClass(word_count_new.class);
job.waitForCompletion(true);
}
}
Below are class files and jars:
-rw-r----- 1 ps993w hyhdev 2236 Apr 3 13:56 word_count_new.java
-rw-r----- 1 ps993w hyhdev 1870 Apr 3 13:58 word_count_new$Map.class
-rw-r----- 1 ps993w hyhdev 1638 Apr 3 13:58 word_count_new$Reduce.class
-rw-r----- 1 ps993w hyhdev 1510 Apr 3 13:58 word_count_new.class
-rw-r----- 1 ps993w hyhdev 2990 Apr 3 13:58 word_count_new.jar
And the error is
[ps993w#hltd413 ~]$ hadoop jar word_count_new.jar word_count_new /user/ps993w/indata/input_line.dat /user/ps993w/wordcount/
14/04/03 15:53:13 WARN mapred.JobClient: Use GenericOptionsParser for parsing the arguments. Applications should implement Tool for the same.
14/04/03 15:53:13 WARN mapred.JobClient: No job jar file set. User classes may not be found. See JobConf(Class) or JobConf#setJar(String).
14/04/03 15:53:13 INFO hdfs.DFSClient: Created HDFS_DELEGATION_TOKEN token 105404 for ps993w on 130.4.240.48:8020
14/04/03 15:53:13 INFO security.TokenCache: Got dt for hdfs://hltd410.hydc.sbc.com:8020/user/ps993w/.staging/job_201402241341_9518;uri=130.4.240.48:8020;t.service=130.4.240.48:8020
14/04/03 15:53:13 INFO input.FileInputFormat: Total input paths to process : 1
14/04/03 15:53:13 INFO lzo.GPLNativeCodeLoader: Loaded native gpl library
14/04/03 15:53:13 INFO lzo.LzoCodec: Successfully loaded & initialized native-lzo library [hadoop-lzo rev cf4e7cbf8ed0f0622504d008101c2729dc0c9ff3]
14/04/03 15:53:13 WARN snappy.LoadSnappy: Snappy native library is available
14/04/03 15:53:13 INFO util.NativeCodeLoader: Loaded the native-hadoop library
14/04/03 15:53:13 INFO snappy.LoadSnappy: Snappy native library loaded
14/04/03 15:53:13 INFO mapred.JobClient: Running job: job_201402241341_9518
14/04/03 15:53:14 INFO mapred.JobClient: map 0% reduce 0%
14/04/03 15:53:24 INFO mapred.JobClient: Task Id : attempt_201402241341_9518_m_000000_0, Status : FAILED
java.lang.RuntimeException: java.lang.ClassNotFoundException: word_count_new$Map
Please suggest
I had the same problem. The issue was that hadoop didn't have access to read the jar file on the local system.
I found this solution from the following:
http://lucene.472066.n3.nabble.com/Trouble-with-Word-Count-example-td4023269.html
This is what i have understood so far reading from varied sources on the internet.
Avro mapred and Avro are not part of CDH4 (Cloudera Distribution) and i have to set it up manually using HADOOP_CLASSPATH=avro.jar:avro-mapred.jar
I have done that and when i run my job on my pseudo cluster it throws the following exception:
13/12/27 00:47:40 WARN mapred.JobClient: Use GenericOptionsParser for parsing the arguments. Applications should implement Tool for the same.
13/12/27 00:47:40 INFO mapred.FileInputFormat: Total input paths to process : 1
13/12/27 00:47:41 INFO mapred.JobClient: Running job: job_201312221245_0017
13/12/27 00:47:42 INFO mapred.JobClient: map 0% reduce 0%
13/12/27 00:47:57 INFO mapred.JobClient: Task Id : attempt_201312221245_0017_m_000000_0, Status : FAILED
java.lang.RuntimeException: java.lang.RuntimeException: java.lang.ClassNotFoundException: Class org.apache.avro.mapred.AvroInputFormat not found
I'm running the job as follows:
hadoop jar build/libs/hadoop-boilerplate-1.0.jar CustomerMapReduce transactions/input transactions/output1 -libjars /path/to/libs/avro-1.7.4.jar,/path/to/libs/avro-mapred-1.7.4.jar
You should implement Tool and use getConf() for job configuration.
public class SomeClass extends Configured implements Tool {
#Override
public int run(String[] args) throws Exception {
Configuration conf = getConf();
...
}
}
I have a jar file "Tsp.jar" that I made myself. This same jar files executes well in single node cluster setup of hadoop. However when I run it on a cluster comprising 2 machines, a laptop and desktop it gives me an exception when the map function reach 50%. Here is the output
`hadoop#psycho-O:/usr/local/hadoop$ bin/hadoop jar Tsp.jar clust-Tsp_ip1 clust_Tsp_op4
11/04/27 16:13:06 WARN mapred.JobClient: Use GenericOptionsParser for parsing the arguments. Applications should implement Tool for the same.
11/04/27 16:13:06 WARN mapred.JobClient: No job jar file set. User classes may not be found. See JobConf(Class) or JobConf#setJar(String).
11/04/27 16:13:06 INFO mapred.FileInputFormat: Total input paths to process : 1
11/04/27 16:13:06 INFO mapred.JobClient: Running job: job_201104271608_0001
11/04/27 16:13:07 INFO mapred.JobClient: map 0% reduce 0%
11/04/27 16:13:17 INFO mapred.JobClient: map 50% reduce 0%
11/04/27 16:13:20 INFO mapred.JobClient: Task Id : attempt_201104271608_0001_m_000001_0, Status : FAILED
java.lang.RuntimeException: java.lang.RuntimeException: java.lang.ClassNotFoundException: Tsp$TspReducer
at org.apache.hadoop.conf.Configuration.getClass(Configuration.java:841)
at org.apache.hadoop.mapred.JobConf.getCombinerClass(JobConf.java:853)
at org.apache.hadoop.mapred.Task$CombinerRunner.create(Task.java:1100)
at org.apache.hadoop.mapred.MapTask$MapOutputBuffer.<init>(MapTask.java:812)
at org.apache.hadoop.mapred.MapTask.runOldMapper(MapTask.java:350)
at org.apache.hadoop.mapred.MapTask.run(MapTask.java:307)
at org.apache.hadoop.mapred.Child.main(Child.java:170)
Caused by: java.lang.RuntimeException: java.lang.ClassNotFoundException: Tsp$TspReducer
at org.apache.hadoop.conf.Configuration.getClass(Configuration.java:809)
at org.apache.hadoop.conf.Configuration.getClass(Configuration.java:833)
... 6 more
Caused by: java.lang.ClassNotFoundException: Tsp$TspReducer
at java.net.URLClassLoader$1.run(URLClassLoader.java:202)
at java.security.AccessController.doPrivileged(Native Method)
at java.net.URLClassLoader.findClass(URLClassLoader.java:190)
at java.lang.ClassLoader.loadClass(ClassLoader.java:307)
at sun.misc.Launcher$AppClassLoader.loadClass(Launcher.java:301)
at java.lang.ClassLoader.loadClass(ClassLoader.java:248)
at java.lang.Class.forName0(Native Method)
at java.lang.Class.forName(Class.java:247)
at org.apache.hadoop.conf.Configuration.getClassByName(Configuration.java:762)
at org.apache.hadoop.conf.Configuration.getClass(Configuration.java:807)
... 7 more
11/04/27 16:13:20 WARN mapred.JobClient: Error reading task outputemil-desktop
11/04/27 16:13:20 WARN mapred.JobClient: Error reading task outputemil-desktop
^Z
[1]+ Stopped bin/hadoop jar Tsp.jar clust-Tsp_ip1 clust_Tsp_op4
hadoop#psycho-O:~$ jps
4937 Jps
3976 RunJar
`
Alse the cluster worked fine executing the wordcount example. So I guess its the problem with the Tsp.jar file.
1) Is it necessary to have a jar file to run on a cluster?
2) Here I tried to run a jar file in the cluster which I made. But is still gives a warning that jar file is not found. Why is that?
3) What all should be taken care of when running a jar file? Like what all it must contain other than the program which I wrote? My jar file contains a a Tsp.class, Tsp$TspReducer.class and a Tsp$TspMapper.class. The terminal says it cant find Tsp$TspReducer when it is already there in the jar file.
Thankyou
EDIT
public class Tsp {
public static void main(String[] args) throws IOException {
JobConf conf = new JobConf(Tsp.class);
conf.setJobName("Tsp");
conf.setOutputKeyClass(Text.class);
conf.setOutputValueClass(Text.class);
conf.setMapperClass(TspMapper.class);
conf.setCombinerClass(TspReducer.class);
conf.setReducerClass(TspReducer.class);
FileInputFormat.addInputPath(conf,new Path(args[0]));
FileOutputFormat.setOutputPath(conf,new Path(args[1]));
JobClient.runJob(conf);
}
public static class TspMapper extends MapReduceBase
implements Mapper<LongWritable, Text, Text, Text> {
function findCost() {
}
public void map(LongWritable key,Text value, OutputCollector<Text, Text> output, Reporter reporter) throws IOException {
find adjacency matrix from the input;
for(int i = 0; ...) {
.....
output.collect(new Text(string1), new Text(string2));
}
}
}
public static class TspReducer extends MapReduceBase implements Reducer<Text, Text, Text, Text> {
Text t1 = new Text();
public void reduce(Text key, Iterator<Text> values, OutputCollector<Text, Text> output, Reporter reporter) throws IOException {
String a;
a = values.next().toString();
output.collect(key,new Text(a));
}
}
}
You currently have
conf.setJobName("Tsp");
conf.setOutputKeyClass(Text.class);
conf.setOutputValueClass(Text.class);
conf.setMapperClass(TspMapper.class);
conf.setCombinerClass(TspReducer.class);
conf.setReducerClass(TspReducer.class);
and as the error is stating No job jar file set you are not setting a jar.
You will need to something similar to
conf.setJarByClass(Tsp.class);
From what I'm seeing, that should resolve the error seen here.
11/04/27 16:13:06 WARN mapred.JobClient: No job jar file set. User classes may not be found. See JobConf(Class) or JobConf#setJar(String).
Do what they say, when setting up your job, set the jar where the class is contained. Hadoop copies the jar into the DistributedCache (a filesystem on every node) and uses the classes out of it.
I had the exact same issue. Here is how I solved the problem(imagine your map reduce class is called A). After creating the job call:
job.setJarByClass(A.class);