Are there ways to get table counts without updated stats in Oracle? - oracle

I'm trying to get all the counts of tables within a specific schema (or owner). I currently am using the code at the bottom, which works, but is really slow. I know of the systems tables dba_tables and all_tables but we don't have refreshed stats within the past 1.5 years.
Are there other alternatives to this? I've tried looking at all the system tables, but none seem to have updated stats.
select
table_name,
owner as schemaname,
to_number(extractvalue(xmltype(dbms_xmlgen.getxml('select count(*) c from '||owner||'.'||table_name)),'/ROWSET/ROW/C')) as cnt
from all_tables
where lower(owner) = 'ownername'

You will have to count the rows in each table. Stats should not be used as an accurate measure of the row count. However, the fact that you have not refreshed your stats for 1.5 years is quite concerning, unless you have a database that has not had data added in that period. I suspect that you next SO post will be that of a performance problem ;)

Related

how to get select statement query which was used to create table in oracle

I created a table in oracle like
CREATE TABLE suppliers AS (SELECT * FROM companies WHERE id > 1000);
I would like to know the complete select statement which was used to create this table.
I have already tried get_ddl but it is not giving the select statement. Can you please let me know how to get the select statement?
If you're lucky one of these statements will show the DDL used to generate the table:
select *
from gv$sql
where lower(sql_fulltext) like '%create table suppliers%';
select *
from dba_hist_sqltext
where lower(sql_text) like '%create table%';
I used the word lucky because GV$SQL will usually only have results for a few hours or days, until the data is purged from the shared pool. DBA_HIST_SQLTEXT will only help if you have AWR enabled, the statement was run in the last X days that AWR is configured to hold data (the default is 8), the statement was run after the last snapshot collection (by default it happens every hour), and the statement ran long enough for AWR to think it's worth saving.
And for each table Oracle does not always store the full SQL. For security reasons, DDL statements are often truncated in the data dictionary. Don't be surprised if the text suddenly cuts off after the first N characters.
And depending on how the SQL is called the case and space may be different. Use lower and lots of wildcards to increase the chance of finding the statement.
TRY THIS:
select distinct table_name
from
all_tab_columns where column_name in
(
select column_name from
all_tab_columns
where table_name ='SUPPLIERS'
)
you can find table which created from table

What's the best practice to filter out specific year in query in Netezza?

I am a SQL Server guy and just started working on Netezza, one thing pops up to me is a daily query to find out the size of a table filtered out by year: 2016,2015, 2014, ...
What I am using now is something like below and it works for me, but I wonder if there is a better way to do it:
select count(1)
from table
where extract(year from datacolumn) = 2016
extract is a built-in function, applying a function on a table with size like 10 billion+ is not imaginable in SQL Server to my knowledge.
Thank you for your advice.
The only problem i see with the query is the where clause which executes a function on the 'variable' side. That effectively disables zonemaps and thus forces netezza to scan all data pages, not only those with data from that year.
Instead write something like:
select count(1)
from table
where datecolumn between '2016-01-01' and '2016-12-31'
A more generic alternative is to create a 'date dimension table' with one row per day in your tables (and a couple of years into the future)
This is an example for Postgres: https://medium.com/#duffn/creating-a-date-dimension-table-in-postgresql-af3f8e2941ac
This enables you to write code like this:
Select count(1)
From table t join d_date d on t.datecolumn=d.date_actual
Where year_actual=2016
You may not have the generate_series() function on your system, but a 'select row_number()...' can do the same trick. A download is available here: https://www.ibm.com/developerworks/community/wikis/basic/anonymous/api/wiki/76c5f285-8577-4848-b1f3-167b8225e847/page/44d502dd-5a70-4db8-b8ee-6bbffcb32f00/attachment/6cb02340-a342-42e6-8953-aa01cbb10275/media/generate_series.tgz
A couple of further notices in 'date interval' where clauses:
Those columns are the most likely candidate for a zonemaps optimization. Add a 'organize on (datecolumn)' at the bottom of your table DDL and organize your table. That will cause netezza to move around records to pages with similar dates, and the query times will be better.
Furthermore you should ensure that the 'distribute on' clause for the table results in an even distribution across data slices of the table is big. The execution of the query will never be faster than the slowest dataslice.
I hope this helps

SP using table/index with volatile statistics that differ at compile and run time

I’m a longtime MSSQL developer who finds himself back in PL/SQL for the first time since Oracle 7. I’m looking for some tuning advice re a large export stored procedure, which is sporadically and not very reproducably running slow at certain points. This happens around some static working tables which it truncates, fills and uses as part of the export. The code in outline typically looks like this:
create or replace Procedure BigMultiPurposeExport as (
-- about 2000 lines of other code
INSERT WORK_TABLE_5 SELECT WHATEVER1 FROM WHEREVER1;
INSERT WORK_TABLE_5 SELECT WHATEVER2 FROM WHEREVER2;
INSERT WORK_TABLE_5 SELECT WHATEVER3 FROM WHEREVER3;
INSERT WORK_TABLE_5 SELECT WHATEVER4 FROM WHEREVER4;
-- WORK_TABLE_5 now has 0 to ~500k rows whose content can vary drastically from run to run
-- e.g. one hourly run exports 3 whale sightings, next exports all tourist visits to Kenya this decade
-- about 1000 lines of other code
INSERT OUTPUT_TABLE_3
SELECT THIS, THAT, THE_OTHER
FROM BUSINESS_TABLE_1 BT1
INNER JOIN BUSINESS_TABLE_2 ON etc -- typical join on indexed columns
INNER JOIN BUSINESS_TABLE_3 ON etc -- typical join on indexed columns
INNER JOIN BUSINESS_TABLE_4 ON etc -- typical join on indexed columns
LEFT OUTER JOIN WORK_TABLE_1 ON etc -- typical join on indexed columns
LEFT OUTER JOIN WORK_TABLE_2 ON etc -- typical join on indexed columns
LEFT OUTER JOIN WORK_TABLE_3 ON etc -- typical join on indexed columns
LEFT OUTER JOIN WORK_TABLE_4 ON etc -- typical join on indexed columns
LEFT OUTER JOIN WORK_TABLE_5 WT5 ON BT1.ID = WT5.BT1_ID AND WT5.RECORD_TYPE = 21
-- join above is now supported by indexes on BUSINESS_TABLE_1 (ID) and WORK_TABLE_5 (BT1_ID, RECORD_TYPE), originally wasn't
LEFT OUTER JOIN WORK_TABLE_6 ON etc -- typical join on indexed columns
LEFT OUTER JOIN WORK_TABLE_7 ON etc -- typical join on indexed columns
-- about 4000 lines of other code
)
That final insert into OUTPUT_TABLE_3 usually runs in under 10 seconds, but once in a while on certain customer servers it times out at our default 99 minutes. Then we have them take the tiemout off and run it on Friday night, and it finishes but takes 16 hours.
I narrowed the problem down to the join to WORK_TABLE_5, which had no index support, and put an index on the join terms. The next run took 4 seconds. But success has been intermittent, the customer occasionally gets some slow runs when they drastically change their export selection (i.e. drastically change the data in WORK_TABLE_5). And if we update statistics and rebuild indexes after a timed out export, it runs fine at the next attempt.
So, I am wondering about how best to handle truncating/filling static work tables with static indexes, statistics updated overnight, and a stored procedure compiled when the statistics are nothing like runtime.
I have a few general questions about things I'd like to understand better:
Is the nature of the data in the work table going to substantially effect the query plan? Does Oracle form its query plan when you compile the stored procedure? Could we get a highly inappropriate query plan if we compile the stored procedure with the table empty then use a table with 500k rows at runtime?
I expect that if this were an ad-hoc script then updating statistics on the problem table just before selecting from it would eliminate the sporadic slowdowns. But what if I were to update statistics inside the stored procedure, which is compiled with different statistics from runtime?
Anything else you'd like to add...
Thanks for any advice. I hope my MSSQL preconceptions haven't made me too far off base.
This is happening in Oracle 11g, but the code is deployed to assorted customers using Oracle 10 through 12 and I'd like to cater to all of those if possible.
-- Joel
Huge differences in table or index sizes can most definitely cause performance problems. The solution is to add statistics gathering to the procedure instead of relying on the default statistics jobs.
If you've been away from Oracle since version 7, the most important new feature is the Cost Based Optimizer. Oracle now builds query execution plans based on the optimizer statistics of tables, indexes, columns, expressions, system statistics, outlines, directives, dynamic sampling, etc. If you're a full time Oracle developer you should probably spend a day reading about optimizer statistics. Start with Managing Optimizer Statistics and DBMS_STATS in the official documentation.
Eventually the stored procedure should look like this:
--1: Insert into working tables.
insert into work_table...
--2: Gather statistics on working tables.
dbms_stats.gather_table_stats('SCHEMA_NAME', 'WORK_TABLE', ...);
--3: Use working tables.
insert into other_table select * from work_table...
There are so many statistics features it's hard to know exactly what parameters to use in that second step above. Here are some guesses about some features you might find useful:
DEGREE - One reason people avoid gathering statistics inside a process is the time is takes. You can significantly improve the run time by setting the degree. Although this also uses significantly more resources.
NO_INVALIDATE - It can be tricky to know when exactly are the statistics "set" for a query. Gathering statistics usually quickly invalidates execution plans that were based on old statistics. But not always. If you want to be 100% sure that the next query is using the latest statistics you want to set NO_INVALIDATE=>FALSE.
ESTIMATE_PERCENT In 11g and above you definitely want to use the default, which uses a faster algorithm. In 10g and below you may need to set the value to something low to make the gathering fast enough.
Although Oracle 10g and above comes with default statistics gathering jobs you cannot rely on them for a few reasons:
They are scheduled and may not run at the right time. If a process significantly changes the data then new stats are needed right away, not at 10 PM. If there are a lot of tables that need to be analyzed the job may not get to them all in one day.
Many DBAs disable the jobs. This is ridiculous and almost always a mistake. But you'll find many DBAs that disabled the job because they think they can do it better. Instead of working with the auto tasks, and settings preferences, many DBAs like to throw the whole thing out and replace it with a custom procedure that rots over time.

Slow Postgres performance with in clause

I have a quiet simple query:
SELECT
contract.ctrId,
contract.ctrNr
FROM
changeLog,
contract
where
changelog.entid in (select contract.ctrid from contract where contract.ctrnr LIKE '1000002%');
This query takes 800 ms.
If I change the query with the inner select clause to the result of the select (which is a single number)
SELECT
contract.ctrId,
contract.ctrNr
FROM
changeLog,
contract
where
changelog.entid in (100000001611624);
This query only takes 16 ms.
The inner select executed alone takes 4 ms.
Chnagelog.entid has an index. Contract.ctris id a primary key. The contract table has just 2 rows the changelog table has about 40 thousand.
Still I really cannot get my head around this. What can be the problem with the inners select?
Sorry for providing not enough details, I will be more precise and follow the tag descriptions next time.
The join of changelog and contract did not have much effect on performance.
The problem here was that changelog is a VIEW. It is a union of changelogActive and changelogPendig tables. Postgres needed to join the two tables in the view on every select.
Thank you guys all for the hints, you helped a lot!

ORACLE db performance tuning

We are running into performance issue where I need some suggestions ( we are on Oracle 10g R2)
The situation is sth like this
1) It is a legacy system.
2) In some of the tables it holds data for the last 10 years ( means data was never deleted since the first version was rolled out). Now in most of the OLTP tables they are having around 30,000,000 - 40,000,000 rows.
3) Search operations on these tables is taking flat 5-6 minutes of time. ( a simple query like select count(0) from xxxxx where isActive=’Y’ takes around 6 minutes of time.) When we saw the explain plan we found that index scan is happening on isActive column.
4) We have suggested archive and purge of the old data which is not needed and team is working towards it. Even if we delete 5 years of data we are left with around 15,000,000 - 20,000,000 rows in the tables which itself is very huge, so we thought of having table portioning on these tables, but we found that the user can perform search of most of the columns of these tables from UI,so which will defeat the very purpose of table partitioning.
so what are the steps which need to be taken to improve this situation.
First of all: question why you are issuing the query select count(0) from xxxxx where isactive = 'Y' in the first place. Nine out of ten times it is a lazy way to check for existence of a record. If that's the case with you, just replace it with a query that select 1 row (rownum = 1 and a first_rows hint).
The number of rows you mention are nothing to be worried about. If your application doesn't perform well when number of rows grows, then your system is not designed to scale. I'd investigate all queries that take too long using a SQL*Trace or ASH and fix it.
By the way: nothing you mentioned justifies the term legacy, IMHO.
Regards,
Rob.
Just a few observations:
I'm guessing that the "isActive" column can have two values - 'Y' and 'N' (or perhaps 'Y', 'N', and NULL - although why in the name of Fred there wouldn't be a NOT NULL constraint on such a column escapes me). If this is the case an index on this column would have very poor selectivity and you might be better off without it. Try dropping the index and re-running your query.
#RobVanWijk's comment about use of SELECT COUNT(*) is excellent. ONLY ask for a row count if you really need to have the count; if you don't need the count, I've found it's faster to do a direct probe (SELECT whatever FROM wherever WHERE somefield = somevalue) with an apprpriate exception handler than it is to do a SELECT COUNT(*). In the case you cited, I think it would be better to do something like
BEGIN
SELECT IS_ACTIVE
INTO strIsActive
FROM MY_TABLE
WHERE IS_ACTIVE = 'Y';
bActive_records_found := TRUE;
EXCEPTION
WHEN NO_DATA_FOUND THEN
bActive_records_found := FALSE;
WHEN TOO_MANY_ROWS THEN
bActive_records_found := TRUE;
END;
As to partitioning - partitioning can be effective at reducing query times IF the field on which the table is partitioned is used in all queries. For example, if a table is partitioned on the TRANSACTION_DATE variable, then for the partitioning to make a difference all queries against this table would have to have a TRANSACTION_DATE test in the WHERE clause. Otherwise the database will have to search each partition to satisfy the query, so I doubt any improvements would be noted.
Share and enjoy.

Resources