Assignment of variable in GNU Makefile - makefile

I am new in GNU make. I have a problem understanding Makefile program inside NETAL software (it can be downloaded from here).
Inside folder NETAL, there is a file Makefile which includes other files such as make.inc and make.headers.
I understand most of the rules in Makefile inside folder NETAL, except for these:
Line 16 and 22. $(LINK.o) $^ $(LDLIBS) $(OUTPUT_OPTION)
What does $(LINK.o) and $(OUTPUT_OPTION) refer to? I cannot find a definition/assignment of these variable anywhere (neither in make.inc and make.headers).
Line 26 and 30. $(COMPILE.c) $< $(OUTPUT_OPTION)
Same problem with variable $(COMPILE.c). I can't find its assignment anywhere, and what it refers to. Also I don't understand the meaning of $< (and why "<" has to be preceded by a dollar sign "$"). I know dollar sign is for variable, just like in PHP.
I have knocked myself out reading the manual (RTFM, I know): GNU make manual
And this is the result of my reading: In Chapter 4.3 Types of Prerequisites, I found an example which similar with what I am looking for:
OBJDIR := objdir
OBJS := $(addprefix $(OBJDIR)/,foo.o bar.o baz.o)
$(OBJDIR)/%.o : %.c
$(COMPILE.c) $(OUTPUT_OPTION) $<
all: $(OBJS)
$(OBJS): | $(OBJDIR)
$(OBJDIR):
mkdir $(OBJDIR)
Unfortunately, there is no explanation about what is "$(COMPILE.c)", "$(OUTPUT_OPTION)", and "$<" .
Can someone explain it to me in a way that is easier for me to understand?
Or give me a link/keyword so that I can Google further.

These are prefedined make variables. From the GNU make manual:
Every rule that produces an object file uses the variable OUTPUT_OPTION. make defines this variable either to contain ‘-o $#’, or to be empty, depending on a compile-time option.
and
make follows the convention that the rule to compile a .x source file uses the variable COMPILE.x. Similarly, the rule to produce an executable from a .x file uses LINK.x; and the rule to preprocess a .x file uses PREPROCESS.x.

Related

What is the semantics of '%' in Makefile?

Googling doesn't help much in understand how the % variable is being used in the Makefile snippet below.
_OBJ = a.o b.o c.o
OBJ = $(patsubst %,$(OBJDIR)/%,$(_OBJ))
$(OBJDIR)/%.o: $(SRCDIR)/%.c $(INC)
$(CC) -c -o $# $< $(CFLAGS)
Can anybody please help me out? Does it mean that if there are five .c files present under $(SRCDIR), that many *.o rules are being populated behind the scene?
That is an "implicit rule". The % makes the word $(OBJDIR)/%.o a pattern. It tells make that if it's trying to build a target and the name of the target matches that pattern (where the % can substitute for one or more characters--any characters), AND that a file that matches the pattern $(SRCDIR)/%.c (where the % here has the same value as in the target) either already exists or can be built, then make can use this recipe to build that target.
So, if make wants to build a file foo/bar.o and the variable OBJDIR has the value foo, then this pattern foo/%.o will match that file with the % matching bar (this is called the stem in the GNU make documentation).
Then if SRCDIR has the value blah and make can find (or create) a file named blah/bar.c, then this implicit rule can be used to build the target foo/bar.o by running this recipe ($(CC) -c -o $# $< $(CFLAGS)).

What is the syntax for copying in makefile [duplicate]

CC=g++
CFLAGS=-c -Wall
LDFLAGS=
SOURCES=main.cpp hello.cpp factorial.cpp
OBJECTS=$(SOURCES:.cpp=.o)
EXECUTABLE=hello
all: $(SOURCES) $(EXECUTABLE)
$(EXECUTABLE): $(OBJECTS)
$(CC) $(LDFLAGS) $(OBJECTS) -o $#
.cpp.o:
$(CC) $(CFLAGS) $< -o $#
What do the $# and $< do exactly?
$# is the name of the target being generated, and $< the first prerequisite (usually a source file). You can find a list of all these special variables in the GNU Make manual.
For example, consider the following declaration:
all: library.cpp main.cpp
In this case:
$# evaluates to all
$< evaluates to library.cpp
$^ evaluates to library.cpp main.cpp
From Managing Projects with GNU Make, 3rd Edition, p. 16 (it's under GNU Free Documentation License):
Automatic variables are set by make after a rule is matched. They
provide access to elements from the target and prerequisite lists so
you don’t have to explicitly specify any filenames. They are very
useful for avoiding code duplication, but are critical when defining
more general pattern rules.
There are seven “core” automatic variables:
$#: The filename representing the target.
$%: The filename element of an archive member specification.
$<: The filename of the first prerequisite.
$?: The names of all prerequisites that are newer than the target,
separated by spaces.
$^: The filenames of all the prerequisites, separated by spaces. This
list has duplicate filenames removed since for most uses, such as
compiling, copying, etc., duplicates are not wanted.
$+: Similar to $^, this is the names of all the prerequisites separated
by spaces, except that $+ includes duplicates. This variable was
created for specific situations such as arguments to linkers where
duplicate values have meaning.
$*: The stem of the target filename. A stem is typically a filename
without its suffix. Its use outside of pattern rules is
discouraged.
In addition, each of the above variables has two variants for
compatibility with other makes. One variant returns only the directory
portion of the value. This is indicated by appending a “D” to the
symbol, $(#D), $(<D), etc. The other variant returns only the file
portion of the value. This is indicated by appending an “F” to the
symbol, $(#F), $(<F), etc. Note that these variant names are more than
one character long and so must be enclosed in parentheses. GNU make
provides a more readable alternative with the dir and notdir
functions.
The $# and $< are called automatic variables. The variable $# represents the name of the target and $< represents the first prerequisite required to create the output file.
For example:
hello.o: hello.c hello.h
gcc -c $< -o $#
Here, hello.o is the output file. This is what $# expands to. The first dependency is hello.c. That's what $< expands to.
The -c flag generates the .o file; see man gcc for a more detailed explanation. The -o specifies the output file to create.
For further details, you can read this article on linoxide about Linux Makefiles.
Also, you can check the GNU make manuals. It will make it easier to make Makefiles and to debug them.
If you run this command, it will output the makefile database:
make -p
The $# and $< are special macros.
Where:
$# is the file name of the target.
$< is the name of the first dependency.
The Makefile builds the hello executable if any one of main.cpp, hello.cpp, factorial.cpp changed. The smallest possible Makefile to achieve that specification could have been:
hello: main.cpp hello.cpp factorial.cpp
g++ -o hello main.cpp hello.cpp factorial.cpp
pro: very easy to read
con: maintenance nightmare, duplication of the C++ dependencies
con: efficiency problem, we recompile all C++ even if only one was changed
To improve on the above, we only compile those C++ files that were edited. Then, we just link the resultant object files together.
OBJECTS=main.o hello.o factorial.o
hello: $(OBJECTS)
g++ -o hello $(OBJECTS)
main.o: main.cpp
g++ -c main.cpp
hello.o: hello.cpp
g++ -c hello.cpp
factorial.o: factorial.cpp
g++ -c factorial.cpp
pro: fixes efficiency issue
con: new maintenance nightmare, potential typo on object files rules
To improve on this, we can replace all object file rules with a single .cpp.o rule:
OBJECTS=main.o hello.o factorial.o
hello: $(OBJECTS)
g++ -o hello $(OBJECTS)
.cpp.o:
g++ -c $< -o $#
pro: back to having a short makefile, somewhat easy to read
Here the .cpp.o rule defines how to build anyfile.o from anyfile.cpp.
$< matches to first dependency, in this case, anyfile.cpp
$# matches the target, in this case, anyfile.o.
The other changes present in the Makefile are:
Making it easier to changes compilers from g++ to any C++ compiler.
Making it easier to change the compiler options.
Making it easier to change the linker options.
Making it easier to change the C++ source files and output.
Added a default rule 'all' which acts as a quick check to ensure all your source files are present before an attempt to build your application is made.
in exemple if you want to compile sources but have objects in an different directory :
You need to do :
gcc -c -o <obj/1.o> <srcs/1.c> <obj/2.o> <srcs/2.c> ...
but with most of macros the result will be all objects followed by all sources, like :
gcc -c -o <all OBJ path> <all SRC path>
so this will not compile anything ^^ and you will not be able to put your objects files in a different dir :(
the solution is to use these special macros
$# $<
this will generate a .o file (obj/file.o) for each .c file in SRC (src/file.c)
$(OBJ):$(SRC)
gcc -c -o $# $< $(HEADERS) $(FLAGS)
it means :
$# = $(OBJ)
$< = $(SRC)
but lines by lines INSTEAD of all lines of OBJ followed by all lines of SRC

Object file directory per compiler option combinations

I was reading gnu make section 10.5.4 "How patterns match" and it does not sound like I can do what I want.
I want to setup a directory structure where my source code is in one directory, and there are sub-directories to hold object files.
One sub-directory for each build configuration.
So I might have these files
a.c
debug/a.o # compiled with -g
release/a.o # compiled with -O
So I would like to make rules like this
debug/%.o : %.c
gcc -c -g %.c -o $#
release/%.o : %.c
gcc -c -O %.c -o $#
But section 10.5.4 tells me a match on "debug/a.o" will make the stem be "debug/a" so gnu make
will look for the source file at "debug/a.c" which is not what I want.
Is there a way to get GNU make to help me ?
Your makefile will work as written.
From that section of the manual:
When the target pattern does not contain a slash (and it usually does
not), directory names in the file names are removed from the file name
before it is compared with the target prefix and suffix. After the
comparison of the file name to the target pattern, the directory
names, along with the slash that ends them, are added on to the
prerequisite file names generated from the pattern rule's prerequisite
patterns... [bold added]
Your target patterns do contain slashes.
Try it if you don't believe me.
EDIT:
Correction: in the commands you should use $< rather than %.c.
CC=gcc
DEBUGFLAGS=-g
RELEASEFLAGS=-O
debug/%.o : %.c
$(CC) $(DEBUGFLAGS) -c $< -o $#
release/%.o : %.c
$(CC) $(RELEASEFLAGS) -c $< -o $#

.cu file Makefile issue

I am new to linux development.
I wrote a project using MPI and cuda. When
it gets bigger and bigger, I realize that I
need a Makefile now. So I learned how to write
one. The Makefile works, but will only compile
cpp files even if I have both of the following
lines in my Makefile:
.cpp.o:
$(CC) $(CCFLAGS) $<
.cu.o:
$(NVCC) $(CCFLAGS) $<
Any idea why this is happening? Thanks.
UNDERSTANDING MAKE
Make is all about generating missing files.
If you have TWO rules that generate the SAME file upon existence of a source then the first one in make's list that actually has a source file present will get invoked. So for instance if you have the rules:
.c.o:
$(CC) -o $# -c $<
.cpp.o:
$(CXX) -o $# -c $<
and you have two files, foo.c and bar.cpp then you can type:
$ make foo.o
it will use the first rule... and when you type
$ make bar.o
it will use the second rule.
Now suppose you have TWO files foo.c and foo.cpp
Here make has to make a choice as to which takes precedence. Make uses suffixes of files intimately for its build rules. What is considered a suffix is controlled by the .SUFFIXES directive.
The .SUFFIXES directive has a default built-in value that defines common suffixes such as .c .cpp .cc .o etc. in a particular order. If we want to change the order of precedence we clear that out with a blank line in Makefile i.e.:
.SUFFIXES:
and then follow it with our definition:
.SUFFIXES: .cpp .c .o
if you don't blank the line out, then make just appends the listed suffixes to its current list, that way multiple makefiles can simply add new suffixes without worrying about breaking each other.
Now since the .cpp is before .c the .cpp.o rule will take precedence (in case foo.cpp and foo.c are both present)
NOTE: Yes there is a "." before the words SUFFIXES and yes it is all capital letters.
Try to play with this Makefile to see the effects:
.SUFFIXES:
.SUFFIXES: .cpp .c .o
.c.o:
echo Compiling C
.cpp.o:
echo Compiling CPP
Make is very very powerful, and quite well documented so well worth the read. GNU make, which is probably the strongest implementation with amazing extensions has made me a lot of money in the past :-) enjoy the experience.
Your rule is wrong, you want something like this:
%.o : %.cu
$(NVCC) $(CCFLAGS) $< -o $#
That's assuming the command line you need to execute is something like
nvcc foo.cu -o foo.o
Otherwise, edit to suit.

What do the makefile symbols $# and $< mean?

CC=g++
CFLAGS=-c -Wall
LDFLAGS=
SOURCES=main.cpp hello.cpp factorial.cpp
OBJECTS=$(SOURCES:.cpp=.o)
EXECUTABLE=hello
all: $(SOURCES) $(EXECUTABLE)
$(EXECUTABLE): $(OBJECTS)
$(CC) $(LDFLAGS) $(OBJECTS) -o $#
.cpp.o:
$(CC) $(CFLAGS) $< -o $#
What do the $# and $< do exactly?
$# is the name of the target being generated, and $< the first prerequisite (usually a source file). You can find a list of all these special variables in the GNU Make manual.
For example, consider the following declaration:
all: library.cpp main.cpp
In this case:
$# evaluates to all
$< evaluates to library.cpp
$^ evaluates to library.cpp main.cpp
From Managing Projects with GNU Make, 3rd Edition, p. 16 (it's under GNU Free Documentation License):
Automatic variables are set by make after a rule is matched. They
provide access to elements from the target and prerequisite lists so
you don’t have to explicitly specify any filenames. They are very
useful for avoiding code duplication, but are critical when defining
more general pattern rules.
There are seven “core” automatic variables:
$#: The filename representing the target.
$%: The filename element of an archive member specification.
$<: The filename of the first prerequisite.
$?: The names of all prerequisites that are newer than the target,
separated by spaces.
$^: The filenames of all the prerequisites, separated by spaces. This
list has duplicate filenames removed since for most uses, such as
compiling, copying, etc., duplicates are not wanted.
$+: Similar to $^, this is the names of all the prerequisites separated
by spaces, except that $+ includes duplicates. This variable was
created for specific situations such as arguments to linkers where
duplicate values have meaning.
$*: The stem of the target filename. A stem is typically a filename
without its suffix. Its use outside of pattern rules is
discouraged.
In addition, each of the above variables has two variants for
compatibility with other makes. One variant returns only the directory
portion of the value. This is indicated by appending a “D” to the
symbol, $(#D), $(<D), etc. The other variant returns only the file
portion of the value. This is indicated by appending an “F” to the
symbol, $(#F), $(<F), etc. Note that these variant names are more than
one character long and so must be enclosed in parentheses. GNU make
provides a more readable alternative with the dir and notdir
functions.
The $# and $< are called automatic variables. The variable $# represents the name of the target and $< represents the first prerequisite required to create the output file.
For example:
hello.o: hello.c hello.h
gcc -c $< -o $#
Here, hello.o is the output file. This is what $# expands to. The first dependency is hello.c. That's what $< expands to.
The -c flag generates the .o file; see man gcc for a more detailed explanation. The -o specifies the output file to create.
For further details, you can read this article on linoxide about Linux Makefiles.
Also, you can check the GNU make manuals. It will make it easier to make Makefiles and to debug them.
If you run this command, it will output the makefile database:
make -p
The $# and $< are special macros.
Where:
$# is the file name of the target.
$< is the name of the first dependency.
The Makefile builds the hello executable if any one of main.cpp, hello.cpp, factorial.cpp changed. The smallest possible Makefile to achieve that specification could have been:
hello: main.cpp hello.cpp factorial.cpp
g++ -o hello main.cpp hello.cpp factorial.cpp
pro: very easy to read
con: maintenance nightmare, duplication of the C++ dependencies
con: efficiency problem, we recompile all C++ even if only one was changed
To improve on the above, we only compile those C++ files that were edited. Then, we just link the resultant object files together.
OBJECTS=main.o hello.o factorial.o
hello: $(OBJECTS)
g++ -o hello $(OBJECTS)
main.o: main.cpp
g++ -c main.cpp
hello.o: hello.cpp
g++ -c hello.cpp
factorial.o: factorial.cpp
g++ -c factorial.cpp
pro: fixes efficiency issue
con: new maintenance nightmare, potential typo on object files rules
To improve on this, we can replace all object file rules with a single .cpp.o rule:
OBJECTS=main.o hello.o factorial.o
hello: $(OBJECTS)
g++ -o hello $(OBJECTS)
.cpp.o:
g++ -c $< -o $#
pro: back to having a short makefile, somewhat easy to read
Here the .cpp.o rule defines how to build anyfile.o from anyfile.cpp.
$< matches to first dependency, in this case, anyfile.cpp
$# matches the target, in this case, anyfile.o.
The other changes present in the Makefile are:
Making it easier to changes compilers from g++ to any C++ compiler.
Making it easier to change the compiler options.
Making it easier to change the linker options.
Making it easier to change the C++ source files and output.
Added a default rule 'all' which acts as a quick check to ensure all your source files are present before an attempt to build your application is made.
in exemple if you want to compile sources but have objects in an different directory :
You need to do :
gcc -c -o <obj/1.o> <srcs/1.c> <obj/2.o> <srcs/2.c> ...
but with most of macros the result will be all objects followed by all sources, like :
gcc -c -o <all OBJ path> <all SRC path>
so this will not compile anything ^^ and you will not be able to put your objects files in a different dir :(
the solution is to use these special macros
$# $<
this will generate a .o file (obj/file.o) for each .c file in SRC (src/file.c)
$(OBJ):$(SRC)
gcc -c -o $# $< $(HEADERS) $(FLAGS)
it means :
$# = $(OBJ)
$< = $(SRC)
but lines by lines INSTEAD of all lines of OBJ followed by all lines of SRC

Resources