Somehow, I find that it is much harder to derive Big O complexities for recursive algorithms compared to iterative algorithms. Do provide some insight about how I should go about solving these 2 questions.
*assume that submethod has linear complexity
def myMethod(n)
if (n>0)
submethod(n)
myMethod(n/2)
end
end
def myMethod(k,n)
if(n>0)
submethod(k)
myMethod(k,n/2)
end
end
For your first problem, the recurrence will be:
T(n) = n + T(n/2)
T(n/2) = n/2 + T(n/4)
...
...
...
T(2) = 2 + T(1)
T(1) = 1 + T(0) // assuming 1/2 equals 0(integer division)
adding up we get:
T(n) = n + n/2 + n/4 + n/8 + ..... 1 + T(0)
= n(1 + 1/2 + 1/4 + 1/8 .....) + k // assuming k = T(0)
= n*1/(1 - 1/2) ( sum of geometric series a/(1-r) when n tends to infinity)
= 2n + k
Therefore, T(n) = O(n). Remember i have assumed n tends to infinity ,cause this is what we do in Asymptotic analysis.
For your second problem its easy to see that, we perform k primitive operations everytime till n becomes 0. This happens log(n) times. Therefore, T(n) = O(k*log(n))
All you need to do is count how many times a basic operation is executed. This is true for analysing any kind of algorithm. In your case, we will count the number of times submethod is called.
You could break-down the running time of call myMethod(n) to be 1 + myMethod(n / 2). Which you can further break down to 1 + (1 + myMethod(n / 4)). At some point you will reach the base case, in log(n)th step. That gives you an algorithm of log(n).
The second one is no different, since k is constant all the time, it will again take log(n) time, assuming submethod takes constant time regardless of its input.
Related
Say there is an algorithm with input of size n. On the first iteration, it performs n computations, then is left with a problem instance of size floor(n/2) - for the worst case. Now it performs floor(n/2) computations. So, for example, an input of n=25 would see it perform 25+12+6+3+1 computations until an answer is reached, which is 47 total computations. How do you put this into Big O form to find worst case complexity?
You just need to write the corresponding recurrence in a formal manner:
T(n) = T(n/2) + n = n + n/2 + n/4 + ... + 1 =
n(1 + 1/2 + 1/4 + ... + 1/n) < 2 n
=> T(n) = O(n)
I want to know the best case complexity of Tower of Hanoi algorithm.
The algorithm that I used is
Algorithm
I have calculated the time complexity and it is T(2^n -1) and Big O is O(n).
But what is the best case complexity and how to calculate it?
You have incorrectly calculated the time complexity.
The correct recurrence can be represented by:
T(n) = 2*T(n-1) + 1 .... eq(1)
T(n) = (2^2)*T(n-2) + 1 + 2 .... eq(2)
T(n) = (2^3)*T(n-3) + 1 + 2 + 2^2 ....eq(3)
Therefore,
T(n) = (2^k)*T(n-k) + (2^0) + (2^1) + (2^2) + .... + (2^(k-1)) .... eq(4)
Now, substituting, n-k = 1 in eq(4), we get,
T(k+1) = (2^k)*T(1) + ((2^k) + 1)
Substituting T(1) = 1, we get,
T(k+1) = 2^k + 2^k + 1 = 2^(k+1) + 1 ... eq(5)
Finally, substituting k+1 = n in eq(5) to get the Closed Form:
T(n) = 2^n + 1
Now, the answer to your question:
The algorithm takes O(2^n) just to print out the steps, therefore the best case time complexity also remains exponential, i.e., O(2^n).
Therefore, you cannot find any better algorithm.
I think the complexity of this recursion is O(n^2/3)` by change variable and induction. but I'm not sure. Is this solution correct?
This is a fascinating recurrence and it does not solve to Θ(n). Rather, it appears to solve to Θ(n2/3).
To give an intuition for why this isn't likely to be Θ(n), let's imagine that we're dealing with a really, really large value of n. Then since
T(n) = (nT(√n) + n)1/2
under the assumption that T(√n) ≈ √n, we'd get that
T(n) = (n√n + n)1/2
= (n3/2 + n)1/2
≈ n3/4.
In other words, assuming that T(n) = Θ(n) would give us a different value of T(n) as n gets large.
On the other hand, let's assume that T(n) = Θ(n2/3). Then the same calculation gives us that
T(n) = (nT(n) + n)1/2
= (n · n2/3 + n)1/2
≈ (n4/3)1/2
= n2/3,
which is consistent with itself.
To validate this, I wrote a short program that printed out different values of T(n) given different inputs and plotted the results. Here's the version of T(n) that I wrote up:
double T(double n) {
if (n <= 2) return n;
return sqrt(n * T(sqrt(n)) + n);
}
I decided to use 2 as a base case, since repeatedly taking square roots will never let n drop to one. I also decided to use real-valued arguments rather than discrete integer values just to make the math easier.
If you plot the values of T(n), you get this curve:
.
This doesn't look like what I'd expect from a linear plot. To figure out what this was, I plotted it on a log/log plot, which has the nice property that all polynomial functions get converted to straight lines whose slope is equal to the exponent. Here's the result:
I consulted my Handy Neighborhood Regression Software and asked it to determine the slope of this line. Here's what it gave back:
Slope: 0.653170918815869
R2: 0.999942627574643
That's a very good fit, and the slope of 0.653 is pretty close to 2/3. So that's more empirical evidence supporting that the recurrence solves to Θ(n2/3).
All that's left to do now is to work out the math. We'll solve this recurrence using a series of substitutions.
First, I'm generally not that comfortable working with exponents in the way that this recurrence uses them, so let's take the log of both sides. (Throughout this exposition, I'll use lg n to mean log2 n).
lg T(n) = lg (nT(√n) + n)1/2
= (1/2) lg (nT(√n) + n)
= (1/2) lg(T(√n) + 1) + (1/2)lg n
≈ (1/2) lg T(√n) + (1/2) lg n
Now, let's define S(n) = lg T(n). Then we have
S(n) = lg T(n)
≈ (1/2) lg T(√ n) + (1/2) lg n
= (1/2) S(√ n) + (1/2) lg n
That's a lot easier to work with, though we still have the problem of the recurrence shrinking by powers each time. To address this, let's do one more substitution, which is a fairly common one when working with these sorts of expressions. Let's define R(n) = S(2n). Then we have that
R(n) = S(2n)
≈ (1/2)S(√2n) + (1/2) lg 2n
= (1/2)S(2n/2) + (1/2) n
= (1/2) R(n / 2) + (1/2) n
Great! All that's left to do now is to solve R(n).
Now, there is a slight catch here. We could immediately use the Master Theorem to conclude that R(n) = Θ(n). The problem with this is that just knowing that R(n) = Θ(n) won't allow us to determine what T(n) is. Specifically, let's suppose that we just know R(n) = Θ(n). Then we could say that
S(n) = S(2lg n) = R(lg n) = Θ(log n)
to get that S(n) = Θ(log n). However, we get stuck when trying to solve for T(n) in terms of S(n). Specifically, we know that
T(n) = 2S(n) = 2Θ(log n),
but we cannot go from this to saying that T(n) = Θ(n). The reason is that the hidden coefficient in the Θ(log n) is significant here. Specifically, if S(n) = k lg n, then we have that
2k lg n = 2lg nk = nk,
so the leading coefficient of the logarithm will end up determining the exponent on the polynomial. As a result, when solving R, we need to determine the exact coefficient of the linear term, which translates into the exact coefficient of the logarithmic term for S.
So let's jump back to R(n), which we know is
R(n) ≈ (1/2) R(n/2) + (1/2)n.
If we iterate this a few times, we see this pattern:
R(n) ≈ (1/2) R(n/2) + (1/2)n
≈ (1/2)((1/2) R(n/4) + (1/4)n) + (1/2)n
≈ (1/4)R(n/4) + (1/8)n + (1/2)n
≈ (1/4)((1/2)R(n/8) + n/8) + (1/8)n + (1/2)n
≈ (1/8)R(n/8) + (1/32)n + (1/8)n + (1/2)n.
The pattern appears to be that, after k iterations, we get that
R(n) ≈ (1/2k)R(n/2k) + n(1/2 + 1/8 + 1/32 + 1/128 + ... + 1/22k+1).
This means we should look at the sum
(1/2) + (1/8) + (1/32) + (1/128) + ...
This is
(1/2)(1 + 1/4 + 1/16 + 1/64 + ... )
which, as the sum of a geometric series, solves to
(1/2)(4/3)
= 2/3.
Hey, look! It's the 2/3 we were talking about earlier. This means that R(n) works out to approximately (2/3)n + c for some constant c that depends on the base case of the recurrence. Therefore, we see that
T(n) = 2S(n)
= 2S(2lg n)
= 2R(lg n)
≈ 2(2/3)lg n + c
= 2lg n2/3 + c
= 2c 2lg n2/3
= 2c n2/3
= Θ(n2/3)
Which matches the theoretically predicted and empirically observed values from earlier.
This was a very fun problem to work through and I'll admit I'm surprised by the answer! I am a bit nervous, though, that I may have missed something when going from
lg T(n) = (1/2) lg (T(√n) + 1) + (1/2) lg n
to
lg T(n) ≈ (1/2) lg T(√ n) + (1/2) lg n.
It's possible that this +1 term actually introduces some other term into the recurrence that I didn't recognize. For example, is there an O(log log n) term that arises as a result? That wouldn't surprise me, given that we have a recurrence that shrinks by a square root. However, I've done some simple data explorations and I'm not seeing any terms in there that look like there's a double log involved.
Hope this helps!
We know that:
T(n) = sqrt(n) * sqrt(T(sqrt(n)) + 1)
Hence:
T(n) < sqrt(n) * sqrt(T(sqrt(n)) + T(sqrt(n)))
1 is replaced by T(sqrt(n)). So,
T(n) < sqrt(2) * sqrt(n) * sqrt(T(sqrt(n))
Now, to find an upper bound we need to solve the following recurrent relation:
G(n) = sqrt(2n) * sqrt(G(sqrt(n))
To solve this, we need to expand it (suppose n = 2^{2^k} and T(1) = 1):
G(n) = (2n)^{1/2} * (2n)^{1/8} * (2n)^{1/32} * ... * (2n)^(1/2^k) =>
G(n) = (2n)^{1/2 + 1/8 + 1/32 + ... + 1/2^k} =
If we take a factor 1/2 from 1/2 + 1/8 + 1/32 + ... + 1/2^k we will have 1/2 * (1 + 1/4 + 1/8 + ... + 1/2^{k-1}).
As we know that 1 + 1/4 + 1/8 + ... + 1/2^{k-1} is a geometric series with a ratio 1/4, it is equal to 4/3 at infinity. Therefore G(n) = Theta(n^{2/3}) and T(n) = O(n^{2/3}).
Notice that as sqrt(n) * sqrt(T(sqrt(n)) < T(n), we can show similar to the previous case that T(n) = Omega(n^{2/3}). It means T(n) = Theta(n^{2/3}).
Hi I am having a tough time showing the run time of these three algorithms for T(n). Assumptions include T(0)=0.
1) This one i know is close to Fibonacci so i know it's close to O(n) time but having trouble showing that:
T(n) = T(n-1) + T(n-2) +1
2) This on i am stumped on but think it's roughly about O(log log n):
T(n) = T([sqrt(n)]) + n. n greater-than-or-equal to 1. sqrt(n) is lower bound.
3) i believe this one is in roughly O(n*log log n):
T(n) = 2T(n/2) + (n/(log n)) + n.
Thanks for the help in advance.
T(n) = T(n-1) + T(n-2) + 1
Assuming T(0) = 0 and T(1) = a, for some constant a, we notice that T(n) - T(n-1) = T(n-2) + 1. That is, the growth rate of the function is given by the function itself, which suggests this function has exponential growth.
Let T'(n) = T(n) + 1. Then T'(n) = T'(n-1) + T'(n-2), by the above recurrence relation, and we have eliminated the troublesome constant term. T(n) and U(n) differ by a constant factor of 1, so assuming they are both non-decreasing (they are) then they will have the same asymptotic complexity, albeit for different constants n0.
To show T'(n) has asymptotic growth of O(b^n), we would need some base cases, then the hypothesis that the condition holds for all n up to, say, k - 1, and then we'd need to show it for k, that is, cb^(n-2) + cb^(n-1) < cb^n. We can divide through by cb^(n-2) to simplify this to 1 + b <= b^2. Rearranging, we get b^2 - b - 1 > 0; roots are (1 +- sqrt(5))/2, and we must discard the negative one since we cannot use a negative number as the base for our exponent. So for b >= (1+sqrt(5))/2, T'(n) may be O(b^n). A similar thought experiment will show that for b <= (1+sqrt(5))/2, T'(n) may be Omega(b^n). Thus, for b = (1+sqrt(5))/2 only, T'(n) may be Theta(b^n).
Completing the proof by induction that T(n) = O(b^n) is left as an exercise.
T(n) = T([sqrt(n)]) + n
Obviously, T(n) is at least linear, assuming the boundary conditions require T(n) be nonnegative. We might guess that T(n) is Theta(n) and try to prove it. Base case: let T(0) = a and T(1) = b. Then T(2) = b + 2 and T(4) = b + 6. In both cases, a choice of c >= 1.5 will work to make T(n) < cn. Suppose that whatever our fixed value of c is works for all n up to and including k. We must show that T([sqrt(k+1)]) + (k+1) <= c*(k+1). We know that T([sqrt(k+1)]) <= csqrt(k+1) from the induction hypothesis. So T([sqrt(k+1)]) + (k+1) <= csqrt(k+1) + (k+1), and csqrt(k+1) + (k+1) <= c(k+1) can be rewritten as cx + x^2 <= cx^2 (with x = sqrt(k+1)); dividing through by x (OK since k > 1) we get c + x <= cx, and solving this for c we get c >= x/(x-1) = sqrt(k+1)/(sqrt(k+1)-1). This eventually approaches 1, so for large enough n, any constant c > 1 will work.
Making this proof totally rigorous by fixing the following points is left as an exercise:
making sure enough base cases are proven so that all assumptions hold
distinguishing the cases where (a) k + 1 is a perfect square (hence [sqrt(k+1)] = sqrt(k+1)) and (b) k + 1 is not a perfect square (hence sqrt(k+1) - 1 < [sqrt(k+1)] < sqrt(k+1)).
T(n) = 2T(n/2) + (n/(log n)) + n
This T(n) > 2T(n/2) + n, which we know is the recursion relation for the runtime of Mergesort, which by the Master theorem is O(n log n), s we know our complexity is no less than that.
Indeed, by the master theorem: T(n) = 2T(n/2) + (n/(log n)) + n = 2T(n/2) + n(1 + 1/(log n)), so
a = 2
b = 2
f(n) = n(1 + 1/(log n)) is O(n) (for n>2, it's always less than 2n)
f(n) = O(n) = O(n^log_2(2) * log^0 n)
We're in case 2 of the Master Theorem still, so the asymptotic bound is the same as for Mergesort, Theta(n log n).
Func(n)
{
i = n
while(i>=1)
g(i);
i = i/3;
}
what is the complexity of this algorithm?
(while the complexity of g(n) is theta(n²))
I assumed for bigger n's you say that the complexity is
n² + (n/3)² + (n/3²)² + (n/3³)²..... to infinity.
And the answer is theta(n²).
Is that true?
As you have observed, the loop runs as follows.
Iteration 1: n^2 = n^2/3^0
Iteration 2: (n/3)^2 = n^2/3^2
Iteration 3: (n/3^2)^2 = n^2/3^4
Iteration 4: (n/3^3)^2 = n^2/3^6
...
Iteration k: (n/3^(k-1))^2 = n^2/3^(2*(k-1))
Using the formula for Summation of a geometric progression, we get that total time taken is
T(iteration1) + T(iteration2) + ... + T(Iterationk)
term 1 = n^2
ratio = 1/9
sum = 9 * n^2 / 8
When K is a large number that can be assumed to be infinite.
Since Big O notation ignores constants,
O( 9* n^2 /8) = O(n^2)
Lets look at the series that we have got in our hands.
=> n² + (n²/3) + (n/3)² + (n/3²)² + (n/3³)².....
taking n² common
=> n² * [ 1 + (1/3) + (1/3)² + (1/3²)² + (1/3³)²..... ]
As [ 1 + (1/3) + (1/3)² + (1/3²)² + (1/3³)²..... ] is a decreasing series, it is equal to 1.
Thus the answer is O(n²)
EDIT 1:
Prove for the sum of series [ 1 + (1/3) + (1/3)² + (1/3²)² + (1/3³)²..... ], is below.
Rigorously speaking, i is an integer and it soon becomes exactly 0 (after floor(log3(n)) iterations), so there is no reason to go to infinity.
Anyway, considering i as a rational results in an approximation of the true formula that doesn't change the asymptotic behavior, still O(n²). The approximation appears in two ways
i/3 may differ from floor(i/3);
one can add to infinity; the terms smaller than 1 just add to 4/3 at worse, which is completely neglectible.