a := []int{1,2,3}
x, a := a[len(a)-1], a[:len(a)-1]
fmt.Println(a,x)
How to create a pop() function that will do the same for any type of an array?
Here is what I came up with so far:
func pop(a []*interface{}) interface{}{
x := a[len(a)-1]
a = a[:len(a)-1]
return x
}
func main(){
a := []int{1,2,3}
x = pop(a)
fmt.Println(a,x) // -> [1,2] 3
}
But I get cannot use a (type []int) as type []interface {}or other error messages if I try to tweak the code by trial and error.
package main
import (
"fmt"
"reflect"
)
func pop(a interface{}) interface{} {
v := reflect.ValueOf(a).Elem()
x := v.Index(v.Len() - 1)
v.SetLen(v.Len() - 1)
return x
}
func main() {
a := []int{1, 2, 3}
x := pop(&a)
fmt.Println(a, x) // -> [1,2] 3
}
Though this can be implemented, I still think that x, a = a[len(a)-1], a[:len(a)-1] should be better than a pop function.
The go type system doesn't allow you to cast from []type1 -> []type2. Even if it did interfaces are a struct containing a type id and pointer to the object, where normally you would just have the object. Because of this you need to take a interface{} and use reflect to do the slicing.
func pop(slice interface{}) (interface{}, interface{}) {
v := reflect.ValueOf(slice)
return v.Slice(0,v.Len()-1).Interface(), v.Index(v.Len()-1).Interface()
}
Go Playground
Note that this loses compile time type safety, because it must use an interface. Additionally, due to using interfaces the poped value may be allocated, creating extra GC pressure.
Common Go style typically recommends not writing a function like this, and just inlining the small amount of code manually.
After all that really good anwers using reflection I also want to add one answer which offers a more idiomatic Go solution. Like Rob Pike said in his great talk about Go Proverbs
interface{} says nothing
Reflection is never clear
So there should be also one answer showing the idiomatic Go way. This solution does not work for slices of standard types. But there the answer of cshu shows the best solution: x, a = a[len(a)-1], a[:len(a)-1]
For own defined types we have to define a Poper interface and the Pop function takes that as input and returns an empty interface.
type Poper interface {
Pop() interface{}
}
type MyType struct {
a []int
}
func (mt *MyType) Pop() interface{} {
x := mt.a[len(mt.a)-1]
mt.a = mt.a[:len(mt.a)-1]
return x
}
func Pop(p Poper) interface{} {
return p.Pop()
}
func main() {
a := &MyType{[]int{1, 2, 3}}
fmt.Println(Pop(a), a)
}
https://play.golang.org/p/UbDkoVYSMA
At all it is not a good idea to return an empty interface, because all following code has to support the interface{}.
The following code example does not work:
func main() {
a := &MyType{[]int{1, 2, 3}}
fmt.Println(Pop(a), a)
var b int
b = Pop(a)
}
https://play.golang.org/p/wg9__O44A8
The error says everything about that problem: cannot use Pop(a) (type interface {}) as type int in assignment: need type assertion
So the Pop() function does work by returning interface{} but the rest of the code using the result of that function needs to make a type assertion. So if you can avoid it you should search for another solution using types.
Related
I decided that now that generics have been introduced into Go that something like map/reduce should be possible. So, I took a naive stab at it and I get the error:
./prog.go:18:36: cannot use thing (variable of type int) as type I in argument to mapper
Which doesn't explain if the problem is fundamental or I am simply doing something wrong syntactically. Can generic map/reduce be implemented in Go?
package main
import "fmt"
func main() {
things := []int{1, 2, 3, 4}
results := Map(things, func(t int) int {
return t + 1
})
fmt.Printf("%v", results)
}
func Map[I interface{}, O interface{}](things []I, mapper func(thing I) O) []O {
results := make([]O, 0, len(things))
for thing := range things {
results = append(results, mapper(thing))
}
return results
}
You have incorrect use of range. A single variable extracted from range will be the index (type int), not the value (type I, which is only coincidentally int in this case).
Try
for _, thing := range things{...}
This can be done quite easily. You have an error in your code, though right here:
for thing := range things {
You are iterating over the index values (int), not the values of type I. You're also specifying 2 constraints (types I and O) both set to be interface{}. You can just use any instead (it's shorthand for interface{})
So simply write:
func Map[T any, O any](things []T, mapper func(thing T) O) []O {
result := make([]O, 0, len(things))
for _, thing := range things {
result = append(result, mapper(thing))
}
return result
}
Demo
This is quite closely related to some code I reviewed on codereview exchange here. After going through the code, and writing snippets with a ton of suggestions, I decided to just create a package and throw it up on github instead. You can find the repo here.
In it, there's some examples that may come in handy, or help you work through some other quirks WRT generics in golang. I wsa specifically thinking about this bit, where you can filter a generic map type using callbacks like so:
// given the sMap type
type sMap[K comparable, V any] struct {
mu *sync.RWMutex
m map[K]V
}
// Filter returns a map containing the elements that matched the filter callback argument
func (s *sMap[K, V]) Filter(cb func(K, V) bool) map[K]V {
s.mu.RLock()
defer s.mu.RUnlock()
ret := make(map[K]V, len(s.m))
for k, v := range s.m {
if cb(k, v) {
ret[k] = v
}
}
return ret
}
What cast / assertion need I do in Go in order to pass to a function expecting a generic function like func(interface{}) interface{}, a more specific function like func(int) int instead?
For example, in code like this, fooA can be passed to MakeExclamer, but not fooB:
func MakeExclamer(foo func (interface{}) interface{}, n int) func () {
return func() {
fmt.Printf("%v!!!", foo(n))
}
}
func fooA(x interface{}) interface{} {
return x.(int)*2
}
func fooB(x int) int {
return x * 10
}
func main() {
exclamerA := MakeExclamer(fooA, 12)
exclamerA()
exclamerB := MakeExclamer(fooB, 66)
// >> cannot use fooB (type func(int) int) as type func(interface {}) interface {} in argument to MakeExclamer
exclamerB()
}
(Go Playground link: https://play.golang.org/p/xGzfco0IAG)
I'm not interested much in alternative code structure patterns, since this is how I want it to work: a specific function should be passed to a general function transformer (accepting function of type Any -> Any) that will return another general function (Any -> Any). This may not be idiomatic in Go, but it is the pattern that I want my code to follow.
To use type assertions, every possible type must be enumerated in MakeExclamer:
func MakeExclamer(fn interface{}, arg interface{}) func() {
switch fn := fn.(type) {
case func(int) int:
return func() {
fmt.Printf("%v!!!\n", fn(arg.(int)))
}
case func(interface{}) interface{}:
return func() {
fmt.Printf("%v!!!\n", fn(arg))
}
default:
panic("not supported")
}
}
To accept a function of any type, the fn argument is declared as type interface{}. The code uses a type switch to handle the different function types.
playground example
Reflection can be used to write a more general function.
func MakeExclamer(fn interface{}, arg interface{}) func() {
fnr := reflect.ValueOf(fn)
argr := reflect.ValueOf(arg)
return func() {
resultr := fnr.Call([]reflect.Value{argr})
fmt.Printf("%v!!!\n", resultr[0].Interface())
}
}
playground example
First things first : When it comes to typing in Go, everything is theoretically possible. That's because even though the compiler does a lot of checks at compile-time, it is possible to change the runtime... at runtime. So-called runtime hacks, where you dynamically manipulate runtime structs that you're NOT supposed to handle.
Now, you have an interesting question, whose answer doesn't include the need to use the 'unsafe' package. However, the way I found of generalizing a function involves heavy reflection.
How to call a function (via reflection) ?
The documentation for the reflect package can be found here.
So, like all elements in Golang, functions have a Type. Without going through all fields, functions do take an array of arguments and produce an array of results. It is possible to investigate the Type of arguments and results through the In(int) and Out(int) method.
func investigate(fn interface{}) {
fnType := reflect.TypeOf(fn)
for idx := 0; idx < fnType.NumIn(); idx ++ {
fmt.Printf("Input arg %d has type %v\n", idx, fnType.In(idx))
}
for idx := 0; idx < fnType.NumOut(); idx ++ {
fmt.Printf("Output arg %d has type %v\n", idx, fnType.Out(idx))
}
}
We won't use this code. However, two important things are to be noted at this point :
The generic type under which a function can be passed around without caring about its type is interface{}. Something like "func(interface{}) interface{}" is not a generalization of a function, it is already a concrete type. Hence, "func(interface{}) interface{}" is not a generalization of "func(int) int", those are two different function types entirely. This is why you can't use type assertions/cast to convert from one function type to another.
A function can be represented as something that takes an input array and produces and output array.
Now, in order to call a function, you have to get not its Type, but its Value. Once you get its value, you can call it using an array of arguments, which must all be Values.
The prototype is:
func (v Value) Call(in []Value) []Value
Using this method, it is possible to call any function.
The code
So, the only thing you need is to convert whichever arguments array you have to an array of Values, then you will be able to call your function.
Here is your code:
package main
import (
"fmt"
"reflect"
)
func MakeExclamer(foo interface{}, n int) func() {
exclamer := generalize(foo, n)
return func() {
fmt.Printf("%v!!!\n", exclamer())
}
}
func fooA(x interface{}) interface{} {
return x.(int) * 2
}
func fooB(x int) int {
return x * 10
}
func generalize(implem interface{}, args ...interface{}) func() interface{} {
valIn := make([]reflect.Value, len(args), len(args))
fnVal := reflect.ValueOf(implem)
for idx, elt := range args {
valIn[idx] = reflect.ValueOf(elt)
}
ret := func() interface{} {
res := fnVal.Call(valIn)
// We assume the function produces exactly one result
return res[0].Interface()
}
return ret
}
func main() {
exclamerA := MakeExclamer(fooA, 12)
exclamerA()
exclamerB := MakeExclamer(fooB, 66)
exclamerB()
}
Playground
The important bit is the generalize function which makes the translation between your arguments and an array of Values, then returns a new function whith all parameters already filled.
Do not hesitate if you need any precision !
I am writing a generic function to get the size of any type of structure, similar to sizeof function in C.
I am trying to do this using interfaces and reflection but I'm not able to get the correct result. Code is below:
package main
import (
"fmt"
"reflect"
"unsafe"
)
func main() {
type myType struct {
a int
b int64
c float32
d float64
e float64
}
info := myType{1, 2, 3.0, 4.0, 5.0}
getSize(info)
}
func getSize(T interface{}) {
v := reflect.ValueOf(T)
const size = unsafe.Sizeof(v)
fmt.Println(size)
}
This code returns wrong result as 12. I am very new to Go, kindly help me on this.
You're getting the size of the reflect.Value struct, not of the object contained in the interface T. Fortunately, reflect.Type has a Size() method:
size := reflect.TypeOf(T).Size()
This gives me 40, which makes sense because of padding.
Go 1.18
With Go 1.18 you can use a generic function with unsafe.Sizeof:
func getSize[T any]() uintptr {
var v T
return unsafe.Sizeof(v)
}
Note that this will be more performant than using reflect, but it will introduce unsafe in your code base — some static analysis tools may give warnings about that.
However if your goal is to improve code reuse or get sizes at run time (read on for the solution to that), this won't help much because you still need to call the function with proper instantiation:
type myType struct {
a int
b int64
c float32
d float64
e float64
}
func main() {
fmt.Println(getSize[myType]())
}
You might get the most out of this when used as part of some other generic code, e.g. a generic type or function where you pass a type param into getSize. Although if you have the argument v this is equivalent to calling unsafe.Sizeof(v) directly. Using a function could be still useful to hide usage of unsafe. A trivial example:
func printSize[T any](v T) {
// (doing something with v)
// instantiate with T and call
s := getSize[T]()
// s := unsafe.Sizeof(v)
fmt.Println(s)
}
Otherwise you can pass an actual argument to getSize. Then type inference will make it unnecessary to specify the type param. This code perhaps is more flexible and allows you to pass arbitrary arguments at runtime, while keeping the benefits of avoiding reflection:
func getSize[T any](v T) uintptr {
return unsafe.Sizeof(v)
}
func main() {
type myType struct {
a int
b int64
c float32
d float64
e float64
}
info := myType{1, 2, 3.0, 4.0, 5.0}
// inferred type params
fmt.Println(getSize(info)) // 40
fmt.Println(getSize(5.0)) // 8
fmt.Println(getSize([]string{})) // 24
fmt.Println(getSize(struct {
id uint64
s *string
}{})) // 16
}
Playground: https://go.dev/play/p/kfhqYHUwB2S
Consider the following function -- a binder of the second argument.
func bindSecond(value interface{}, f func(a interface{}, b interface{})) func (c interface{}) {
return func(arg interface{}) {
f(arg, value)
}
}
Consider a function
func f(x int, y int) {}
When trying to use it as a parameter in binder, go compiler says:
cannot use f (type func(int, int)) as type func(interface {}, interface {}) in argument to bindSecond.
Could you please suggest me the proper way of implementing binders in go (golang)?
Replace interface{} with int and it will work.
Or, more to the point, try to find a solution to your original problem using the features Go provides, instead of trying to force a solution from a different paradigm.
I see what you're trying to do, some templates, right? But this is not going to work this way. Your f func(a interface{}, b interface{}) argument is not an interface, so it must be of the matching type. You could achieve what you want by passing f interface{} and then manipulate it with reflect package.
Some naive example:
package main
import (
"fmt"
"reflect"
)
func bindSecond(value interface{}, f interface{}) func(c interface{}) {
return func(arg interface{}) {
reflect.ValueOf(f).Call([]reflect.Value{reflect.ValueOf(arg), reflect.ValueOf(value)})
}
}
func main() {
sum := func(x int, y int) { fmt.Println(x + y) }
inc := bindSecond(1, sum)
inc(10)
}
// Prints 11
Doable, but not very pretty. And panics in runtime if anything unexpected happens, for example f is not callable and doesn't take exactly two arguments. Or you pass a wrong type to inc. Complier won't help you anymore.
How can I convert func add (a, b int) int to func(...interface{}) interace{} type ?
Any ideas about implementing generic functions using the reflect package ?
As JimB said, you can't cast in Go and you cannot convert functions just like that but by using closures, you can rapidly wrap your function:
func add(a, b int) int {
return a + b;
}
wrap := func(args ...interface{}) interface{} {
return interface{} (add(args[0].(int), args[1].(int)))
}
Note that wrap will panic if you give it arguments that are not of type int. If you want to avoid that you can slightly modify wrap:
wrap := func(args ...interface{}) (interface{}, error) {
a, k := args[0].(int)
b, l := args[1].(int)
if !k || !l {
return nil, errors.New("Arguments must be of type int")
}
return add(a,b), nil
}
If you'd like to do different things with wrap, depending on it's arguments types you can do so by using a type switch:
func addInts(a, b int) int {
return a + b;
}
func addFloat64s(a, b float64) float64 {
return a + b;
}
wrap := func(args ...interface{}) interface{} {
switch args[0].(type) {
case int: return interface{}(addInts(args[0].(int), args[1].(int)))
case float64: return interface{}(addFloat64s(args[0].(float64), args[1].(float64)))
}
}
Note that this last version of wrap makes the assumption that all given parameters will have the same type and at least 2 arguments are given.
There is no "casting" is go (well, using the "unsafe" package kind of is like casting).
You cannot convert function types like this, since they have different layouts in memory. Generic-like functions can be made through the reflect package, though with significant overhead. See http://golang.org/pkg/reflect/#example_MakeFunc for an example.
For most use cases of generic functions, you're probably better off accepting an interface, and using type assertions or switches (http://golang.org/ref/spec#Type_switches), rather than the reflection library.