Spark Streaming with Kinesis - How to force checkpoint? - spark-streaming

I have a streaming application that reads data from Aws Kinesis.
By default when you create the stream receivers you can choose at which interval to do the checkpoint, that is done on DynamoDB.
At a certain point I would like to stop my application (sparkStreamingContext.stop()) but before that I would like to force a checkpoint.
Is it possible to do that?
I know that if the checkpoint would be on a filesystem I should do sparkStreamingContext.checkpoint(directoryName) but the checkpoint for kinesis is on DynamoDB, so how can I do it?
Thanks!

Forcing a checkpoint isn't possible. Checkpointing is sort of an implementation detail of Spark in a means to do recovery and guarantee delivery of messages., thus you can't simply "invoke a checkpoint" as you wish.
If you really want to control when saving of the data happens, you'll need to also manage the state yourself.

Related

apache beam stream processing failure recovery

Running a streaming beam pipeline where i stream files/records from gcs using avroIO and then create minutely/hourly buckets to aggregate events and add it to BQ. In case the pipeline fails how can i recover correctly and process the unprocessed events only ? I do not want to double count events .
One approach i was thinking was writing to spanner or bigtable but it may be the case the write to BQ succeeds but the DB fails and vice versa ?
How can i maintain a state in reliable consistent way in streaming pipeline to process only unprocessed events ?
I want to make sure the final aggregated data in BQ is the exact count for different events and not under or over counting ?
How does spark streaming pipeline solve this (I know they have some checkpointing directory for managing state of query and dataframes ) ?
Are there any recommended techniques to solve accurately these kind of problem in streaming pipelines ?
Based on clarification from the comments, this question boils down to 'can we achieve exactly-once semantics across two successive runs of a streaming job, assuming both runs are start from scratch?'. Short answer is no. Even if the user is willing store some state in external storage, it needs to be committed atomically/consistently with streaming engine internal state. Streaming engines like Dataflow, Flink store required state internally, which is needed for to 'resume' a job. With Flink you could resume from latest savepoint, and with Dataflow you can 'update' a running pipeline (note that Dataflow does not actually kill your job even when there are errors, you need to cancel a job explicitly). Dataflow does provide exactly-once processing guarantee with update.
Some what relaxed guarantees would be feasible with careful use of external storage. The details really depend on specific goals (often it is is no worth the extra complexity).

How can NiFi handle burst data?

If the submitted data to NiFi are not coming in a steady flow (but on bursty) how can NiFi handle them? Does it use a message broker to buffer them? I haven't seen anything like this in its documentation.
NiFi connections (the links between processors) have the capability of buffering FlowFiles (the unit of data that NiFi handles, basically content + metadata about that content), and NiFi also has the feature of backpressure, the ability of a processor to "tell" the upstream flow that it cannot handle any more data at a particular time. The relevant discussion from User Guide is here.
Basically you can set up connection(s) to be as "wide" as you expect the burst to be, or if that is not prudent, you can set it to a more appropriate value, and NiFi will do sort of a "leaky bucket with notification" approach, where it will handle what data it can, and the framework will handle scheduling of upstream processors based on whether they would be able to do their job.
If you are getting data from a source system that does not buffer data, then you can suffer data loss when backpressure is applied; however that is because the source system must push data when NiFi can not prudently accept it, and thus the alterations should be made on the source system vs the NiFi flow.

Amazon Web Services: Spark Streaming or Lambda

I am looking for some high level guidance on an architecture. I have a provider writing "transactions" to a Kinesis pipe (about 1MM/day). I need to pull those transactions off, one at a time, validating data, hitting other SOAP or Rest services for additional information, applying some business logic, and writing the results to S3.
One approach that has been proposed is use Spark job that runs forever, pulling data and processing it within the Spark environment. The benefits were enumerated as shareable cached data, availability of SQL, and in-house knowledge of Spark.
My thought was to have a series of Lambda functions that would process the data. As I understand it, I can have a Lambda watching the Kinesis pipe for new data. I want to run the pulled data through a bunch of small steps (lambdas), each one doing a single step in the process. This seems like an ideal use of Step Functions. With regards to caches, if any are needed, I thought that Redis on ElastiCache could be used.
Can this be done using a combination of Lambda and Step Functions (using lambdas)? If it can be done, is it the best approach? What other alternatives should I consider?
This can be achieved using a combination of Lambda and Step Functions. As you described, the lambda would monitor the stream and kick off a new execution of a state machine, passing the transaction data to it as an input. You can see more documentation around kinesis with lambda here: http://docs.aws.amazon.com/lambda/latest/dg/with-kinesis.html.
The state machine would then pass the data from one Lambda function to the next where the data will be processed and written to S3. You need to contact AWS for an increase on the default 2 per second StartExecution API limit to support 1MM/day.
Hope this helps!

Kinesis + AWS Lambda: monitoring Stream

I just wonder what are good metrics to ensure the current number of lambda functions processing the stream are actually coping with the load.
With spark applications + Kinesis one can easily take a look at the throughput/current checkpoint of receivers within the stream.
The lambda metrics you get out of the box with Lambda are not very useful for this.
We publish our own custom CloudWatch metric from our Lambda functions called 'SecondsBehind' which is the difference between the current timestamp and the approximateArrivalTimestamp from the kinesis record.
This shows us if we are starting to fall behind.

How to restore bolt state during failover

I'm trying to figure out how to restore the state of a storm bolt intance during failover. I can persist the state externally (DB or file system), however once the bolt instance is restarted I need to point to the specific state of that bolt instance to recover it.
The prepare method of a bolt receives a context, documented here http://nathanmarz.github.io/storm/doc/backtype/storm/task/TopologyContext.html
What is not clear to me is - is there any piece of this context that uniquely identifies the specific bolt instance so I can understand which persistent state to point to? Is that ID preserved during failover? Alternatively, is there any variable/object I can set for the specific bolt/instance that is preserved during failover? Any help appreciated!
br
Sib
P.S.
New to stackoverflow so pls bear with me...
You can probably look for Trident Its basically an abstraction built on top of storm . The documentation says
Trident has first-class abstractions for reading from and writing to stateful sources. The state can either be internal to the topology – e.g., kept in-memory and backed by HDFS – or externally stored in a database like Memcached or Cassandra
In case of any fail over it says
Trident manages state in a fault-tolerant way so that state updates are idempotent in the face of retries and failures.
You can go through the documentation for any further clarification.
Tx (and credit) to Storm user group!
http://mail-archives.apache.org/mod_mbox/storm-user/201312.mbox/%3C74083558E4509844944FF5CF2BA7B20F1060FD0E#ESESSMB305.ericsson.se%3E
In original Storm, both spout and bolt are stateless. Storm can managed to restart nodes but it will require some effort to restore the states of nodes. There are two solutions that I can think of:
If a message fails to process, Storm will replay it from ROOT of the topology and the logic of replay has to be implemented by user. So in this case I would like to put more state information (e.g. the ID of some external state storage and id of this task) in messages.
Or you can use Trident. It can provides txid to each transaction and simplify storage process.
I'm OK with first solution because my app doesn't require transactional operations and I have a better understanding of the original Storm (Storm generates simpler log than Trident does).
You can use the task ID.
Task ids are assigned at topology creation and are static. If a task dies/restarts or gets reassigned somewhere else, it will still have the same id.

Resources