Can Hive table automatically update when underlying directory is changed - hadoop

If I build a Hive table on top of some S3 (or HDFS) directory like so:
create external table newtable (name string)
row format delimited
fields terminated by ','
stored as textfile location 's3a://location/subdir/';
When I add files to that S3 location, the Hive table doesn't automatically update. The new data is only included if I create a new Hive table on that location. Is there a way to build a Hive table (maybe using partitions) so that whenever new files are added to the underlying directory, the Hive table automatically shows that data (without having to recreate the Hive table)?

On HDFS each file scanned each time table being queried as #Dudu Markovitz pointed. And files in HDFS are immediately consistent.
Update: S3 is also strongly consistent now, so removed part about eventual consistency.
Also there may be a problem with using statistics when querying table after adding files, see here: https://stackoverflow.com/a/39914232/2700344

Everything #leftjoin says is correct, with one extra detail: s3 doesn't offer immediate consistency on listings. A new blob can be uploaded, HEAD/GET will return it but a list operation on the parent path may not see it. This means that Hive code which lists the directory may not see the data. Using unique names doesn't fix this, only using a consistent DB like Dynamo which is updated as files are added/removed. Even there, you have added a new thing to keep in sync...

Related

data deleted from hdfs after using hive load command [duplicate]

When load data from HDFS to Hive, using
LOAD DATA INPATH 'hdfs_file' INTO TABLE tablename;
command, it looks like it is moving the hdfs_file to hive/warehouse dir.
Is it possible (How?) to copy it instead of moving it, in order, for the file, to be used by another process.
from your question I assume that you already have your data in hdfs.
So you don't need to LOAD DATA, which moves the files to the default hive location /user/hive/warehouse. You can simply define the table using the externalkeyword, which leaves the files in place, but creates the table definition in the hive metastore. See here:
Create Table DDL
eg.:
create external table table_name (
id int,
myfields string
)
location '/my/location/in/hdfs';
Please note that the format you use might differ from the default (as mentioned by JigneshRawal in the comments). You can use your own delimiter, for example when using Sqoop:
row format delimited fields terminated by ','
I found that, when you use EXTERNAL TABLE and LOCATION together, Hive creates table and initially no data will present (assuming your data location is different from the Hive 'LOCATION').
When you use 'LOAD DATA INPATH' command, the data get MOVED (instead of copy) from data location to location that you specified while creating Hive table.
If location is not given when you create Hive table, it uses internal Hive warehouse location and data will get moved from your source data location to internal Hive data warehouse location (i.e. /user/hive/warehouse/).
An alternative to 'LOAD DATA' is available in which the data will not be moved from your existing source location to hive data warehouse location.
You can use ALTER TABLE command with 'LOCATION' option. Here is below required command
ALTER TABLE table_name ADD PARTITION (date_col='2017-02-07') LOCATION 'hdfs/path/to/location/'
The only condition here is, the location should be a directory instead of file.
Hope this will solve the problem.

Does external hive table refreshes itself, when file is added to pointing directory

I have a directory in HDFS, everyday one processed file is placed in that directory with DateTimeStamp in file name, if I create external table on top of that Directory location, does external table refreshes itself when every day file comes and resides in that directory ??
If you add files into table directory or partition directory, does not matter, external or managed table in Hive, the data will be accessible for queries, you do not need to do any additional steps to make data available, no refresh is necessary.
Hive table/partition is a metadata (DDL, location, statistics, access permissions, etc) plus data files in the location. So, data is stored in the table/partition location in HDFS.
Only if you create new directory for new partition which is not created yet, then you will need to execute ALTER TABLE ADD PARTITION LOCATION=<new location> or MSCK REPAIR TABLE command. The equivalent command on Amazon Elastic MapReduce (EMR)'s version of Hive is: ALTER TABLE table_name RECOVER PARTITIONS.
If you add files into already created table/partition locations, no refresh is necessary.
CBO can use statistics for query calculation without reading data files, for example count(*). It works for simple queries only, like count(*), max().
If you are using CBO with statistics for query calculation, you may need to refresh it using ANALYZE TABLE hive_table PARTITION(partitioned_col) COMPUTE STATISTICS. See this answer for more details: https://stackoverflow.com/a/39914232/2700344
If you do not need statistics and want your table location to be scanned every time you query it, switch it off: set hive.compute.query.using.stats=false;

How Hive stores the data (loaded from HDFS)?

I am fairly new to Hadoop (HDFS and Hbase) and Hadoop Eco system (Hive, Pig, Impala etc.). I have got a good understanding of Hadoop components such as NamedNode, DataNode, Job Tracker, Task Tracker and how they work in tandem to store the data in efficient manner.
While trying to understand fundamentals of data access layer such as Hive, I need to understand where exactly a table’s data (created in Hive) gets stored? We can create external and internal table in Hive. As external tables can be in HDFS or any other file system, Hive doesnt store data for such tables in warehouse. What about internal tables? This table will be created as a directory on one of the data nodes on Hadoop Cluster. Once we load data in these tables from local or HDFS file system, are there further files getting created to store data in tables created in Hive?
Say for example:
A sample file named test_emp_feedback.csv was brought from local file system to HDFS.
A table (emp_feedback) was created in Hive with a structure similar to csv file structure. This lead to creation of a directory in Hadoop cluster say /users/big_data/hive/emp_feedback
Now once I create the table and load data in emp_feedback table from test_emp_feedback.csv
Is Hive going to create a copy of file in emp_feedback directory? Wont it cause data redundancy?
Creating a Managed table will create a directory with Same name as table name at Hive warehouse directory(Usually at /user/hive/warehouse/dbname/tablename).Also the table structure(Hive Metadata) is created in the metastore(RDBMS/HCat).
Before you load the data on the table, this directory(with the same name as table name under hive warehouse) is empty.
There could be 2 possible scenarios.
If the table is external the data is not copied to warehouse directory at all.
If the table is managed(not external), when you load your data to the table it is moved(not Copied) from current HDFS location to Hive warehouse directory9/user/hive/warehouse//). So this will not replicate the data.
Caution: It is always advisable to create external table unless the data is only used by hive. Dropping a managed table would delete the data from HDFS(Warehouse of HIVE).
HadoopGig
To answer you Question :
For External Tables:
Hive does not move the data into its warehouse directory. If the external table is dropped, then the table metadata is deleted but not the data.
For Internal tables
Hive moves data into its warehouse directory. If the table is dropped, then the table metadata and the data will be deleted.
For your reference
Difference between Internal & External tables:
For External Tables
External table stores files on the HDFS server but tables are not linked to the source file completely.
If you delete an external table the file still remains on the HDFS server.
As an example if you create an external table called “table_test” in HIVE using HIVE-QL and link the table to file “file”, then deleting “table_test” from HIVE will not delete “file” from HDFS.
External table files are accessible to anyone who has access to HDFS file structure and therefore security needs to be managed at the HDFS file/folder level.
Meta data is maintained on master node, and deleting an external table from HIVE only deletes the metadata not the data/file.
For Internal Tables
Stored in a directory based on settings in hive.metastore.warehouse.dir, by default internal tables are stored in the following directory /user/hive/warehouse you can change it by updating the location in the config file.
Deleting the table deletes the metadata and data from master-node and HDFS respectively.
Internal table file security is controlled solely via HIVE. Security needs to be managed within HIVE, probably at the schema level (depends on organization).
Hive may have internal or external tables, this is a choice that affects how data is loaded, controlled, and managed.
Use EXTERNAL tables when:
The data is also used outside of Hive. For example, the data files are read and processed by an existing program that doesn’t lock the files.
Data needs to remain in the underlying location even after a DROP TABLE. This can apply if you are pointing multiple schema (tables or views) at a single data set or if you are iterating through various possible schema.
Hive should not own data and control settings, directories, etc., you may have another program or process that will do those things.
You are not creating table based on existing table (AS SELECT).
Use INTERNAL tables when:
The data is temporary.
You want Hive to completely manage the life-cycle of the table and data.
Source:
HDInsight: Hive Internal and External Tables Intro
Internal & external tables in Hadoop- HIVE
It would not cause data redundancy. For managed (not external) tables Hive moves the data into its warehouse directory. In your example, the data will be moved from original location on HDFS to '/users/big_data/hive/emp_feedback'.
Be careful with the removal of the managed table, it will lead to removal data on HDFS also.
You can send data in two days
A) use LOAD DATA INPATH 'file_location_of_csv' INTO TABLE emp_feedback;
Note that this command will remove content at source directory and create a internal table
OR)
B) Use copyFromLocal or put command to copy local file into HDFS and then create external table and copy the data into table. Now data won't be moved from source. You can drop external table but still source data is available.
e.g.
create external table emp_feedback (
emp_id int,
emp_name string
)
location '/location_in_hdfs_for_csv file';
When you drop an external table, it only drops the meta data of HIVE table. Data still exists at HDFS file location.
Got it. This is what I was able to understand so far.
It all depends upon which type of table is being created and where from the file is picked up. Below are possible use cases
enter image description here

Where is HIVE metadata stored by default?

I have created an external table in Hive using following:
create external table hpd_txt(
WbanNum INT,
YearMonthDay INT ,
Time INT,
HourlyPrecip INT)
ROW FORMAT DELIMITED
FIELDS TERMINATED BY ','
LINES TERMINATED BY '\n'
stored as textfile
location 'hdfs://localhost:9000/user/hive/external';
Now this table is created in location */hive/external.
Step-1: I loaded data in this table using:
load data inpath '/input/hpd.txt' into table hpd_txt;
the data is successfully loaded in the specified path ( */external/hpd_txt)
Step-2: I delete the table from */hive/external path using following:
hadoop fs -rmr /user/hive/external/hpd_txt
Questions:
why is the table deleted from original path? (*/input/hpd.txt is deleted from hdfs but table is created in */external path)
After I delete the table from HDFS as in step 2, and again I use show tables; It still gives the table hpd_txt in the external path.
so where is this coming from.
Thanks in advance.
Hive doesn't know that you deleted the files. Hive still expects to find the files in the location you specified. You can do whatever you want in HDFS and this doesn't get communicated to hive. You have to tell hive if things change.
hadoop fs -rmr /user/hive/external/hpd_txt
For instance the above command doesn't delete the table it just removes the file. The table still exists in hive metastore. If you want to delete the table then use:
drop if exists tablename;
Since you created the table as an external table this will drop the table from hive. The files will remain if you haven't removed them. If you want to delete an external table and the files the table is reading from you can do one of the following:
Drop the table and then remove the files
Change the table to managed and drop the table
Finally the location of the metastore for hive is by default located here /usr/hive/warehouse.
The EXTERNAL keyword lets you create a table and provide a LOCATION so that Hive does not use a default location for this table. This comes is handy if you already have data generated. Else, you will have data loaded (conventionally or by creating a file in the directory being pointed by the hive table)
When dropping an EXTERNAL table, data in the table is NOT deleted from the file system.
An EXTERNAL table points to any HDFS location for its storage, rather than being stored in a folder specified by the configuration property hive.metastore.warehouse.dir.
Source: Hive docs
So, in your step 2, removing the file /user/hive/external/hpd_txt removes the data source(data pointing to the table) but the table still exists and would continue to point to hdfs://localhost:9000/user/hive/external as it was created
#Anoop : Not sure if this answers your question. let me know if you have any questions further.
Do not use load path command. The Load operation is used to MOVE ( not COPY) the data into corresponding Hive table. Use put Or copyFromLocal to copy file from non HDFS format to HDFS format. Just provide HDFS file location in create table after execution of put command.
Deleting a table does not remove HDFS file from disk. That is the advantage of external table. Hive tables just stores metadata to access data files. Hive tables store actual data of data file in HIVE tables. If you drop the table, the data file is untouched in HDFS file location. But in case of internal tables, both metadata and data will be removed if you drop table.
After going through you helping comments and other posts, I have found answer to my question.
If I use LOAD INPATH command then it "moves" the source file to the location where external table is being created. Which although, wont be affected in case of dropping the table, but changing the location is not good. So use local inpath in case of loading data in Internal tables .
To load data in external tables from a file located in the HDFS, use the location in the CREATE table query which will point to the source file, for example:
create external table hpd(WbanNum string,
YearMonthDay string ,
Time string,
hourprecip string)
ROW FORMAT DELIMITED
FIELDS TERMINATED BY ','
LINES TERMINATED BY '\n'
stored as textfile
location 'hdfs://localhost:9000/input/hpd/';
So this sample location will point to the data already present in HDFS in this path. so no need to use LOAD INPATH command here.
Its a good practice to store a source files in their private dedicated directories. So that there is no ambiguity while external tables are created as data is in a properly managed directory system.
Thanks a lot for helping me understand this concept guys! Cheers!

Difference between Hive internal tables and external tables?

Can anyone tell me the difference between Hive's external table and internal tables.
I know the difference comes when dropping the table. I don't understand what you mean by the data and metadata is deleted in internal and only metadata is deleted in external tables.
Can anyone explain me in terms of nodes please.
Hive has a relational database on the master node it uses to keep track of state.
For instance, when you CREATE TABLE FOO(foo string) LOCATION 'hdfs://tmp/';, this table schema is stored in the database.
If you have a partitioned table, the partitions are stored in the database(this allows hive to use lists of partitions without going to the file-system and finding them, etc). These sorts of things are the 'metadata'.
When you drop an internal table, it drops the data, and it also drops the metadata.
When you drop an external table, it only drops the meta data. That means hive is ignorant of that data now. It does not touch the data itself.
Hive tables can be created as EXTERNAL or INTERNAL. This is a choice that affects how data is loaded, controlled, and managed.
Use EXTERNAL tables when:
The data is also used outside of Hive. For example, the data files are read and processed by an existing program that doesn't lock the files.
Data needs to remain in the underlying location even after a DROP TABLE. This can apply if you are pointing multiple schemas (tables or views) at a single data set or if you are iterating through various possible schemas.
You want to use a custom location such as ASV.
Hive should not own data and control settings, dirs, etc., you have another program or process that will do those things.
You are not creating table based on existing table (AS SELECT).
Use INTERNAL tables when:
The data is temporary.
You want Hive to completely manage the lifecycle of the table and data.
To answer you Question :
For External Tables, Hive stores the data in the LOCATION specified during creation of the table(generally not in warehouse directory). If the external table is dropped, then the table metadata is deleted but not the data.
For Internal tables, Hive stores data into its warehouse directory. If the table is dropped then both the table metadata and the data will be deleted.
For your reference,
Difference between Internal & External tables :
For External Tables -
External table stores files on the HDFS server but tables are not linked to the source file completely.
If you delete an external table the file still remains on the HDFS server.
As an example if you create an external table called “table_test” in HIVE using HIVE-QL and link the table to file “file”, then deleting “table_test” from HIVE will not delete “file” from HDFS.
External table files are accessible to anyone who has access to HDFS file structure and therefore security needs to be managed at the HDFS
file/folder level.
Meta data is maintained on master node, and deleting an external table from HIVE only deletes the metadata not the data/file.
For Internal Tables-
Stored in a directory based on settings in hive.metastore.warehouse.dir,
by default internal tables are stored in the following directory “/user/hive/warehouse” you can change it by updating the location in the config file .
Deleting the table deletes the metadata and data from master-node and HDFS respectively.
Internal table file security is controlled solely via HIVE. Security needs to be managed within HIVE, probably at the schema level (depends
on organization).
Hive may have internal or external tables, this is a choice that affects how data is loaded, controlled, and managed.
Use EXTERNAL tables when:
The data is also used outside of Hive. For example, the data files are read and processed by an existing program that doesn’t lock the files.
Data needs to remain in the underlying location even after a DROP TABLE. This can apply if you are pointing multiple schema (tables or views) at a single data set or if you are iterating through various possible schema.
Hive should not own data and control settings, directories, etc., you may have another program or process that will do those things.
You are not creating table based on existing table (AS SELECT).
Use INTERNAL tables when:
The data is temporary.
You want Hive to completely manage the life-cycle of the table and data.
Source :
HDInsight: Hive Internal and External Tables Intro
Internal & external tables in Hadoop- HIVE
An internal table data is stored in the warehouse folder, whereas an external table data is stored at the location you mentioned in table creation.
So when you delete an internal table, it deletes the schema as well as the data under the warehouse folder, but for an external table it's only the schema that you will loose.
So when you want an external table back you again after deleting it, can create a table with the same schema again and point it to the original data location. Hope it is clear now.
The only difference in behaviour (not the intended usage) based on my limited research and testing so far (using Hive 1.1.0 -cdh5.12.0) seems to be that when a table is dropped
the data of the Internal (Managed) tables gets deleted from the HDFS file system
while the data of the External tables does NOT get deleted from the HDFS file system.
(NOTE: See Section 'Managed and External Tables' in https://cwiki.apache.org/confluence/display/Hive/LanguageManual+DDL which list some other difference which I did not completely understand)
I believe Hive chooses the location where it needs to create the table based on the following precedence from top to bottom
Location defined during the Table Creation
Location defined in the Database/Schema Creation in which the table is created.
Default Hive Warehouse Directory (Property hive.metastore.warehouse.dir in hive.site.xml)
When the "Location" option is not used during the "creation of a hive table", the above precedence rule is used. This is applicable for both Internal and External tables. This means an Internal table does not necessarily have to reside in the Warehouse directory and can reside anywhere else.
Note: I might have missed some scenarios, but based on my limited exploration, the behaviour of both Internal and Extenal table seems to be the same except for the one difference (data deletion) described above. I tried the following scenarios for both Internal and External tables.
Creating table with and without Location option
Creating table with and without Partition Option
Adding new data using the Hive Load and Insert Statements
Adding data files to the Table location outside of Hive (using HDFS commands) and refreshing the table using the "MSCK REPAIR TABLE command
Dropping the tables
In external tables, if you drop it, it deletes only schema of the table, table data exists in physical location. So to deleted the data use hadoop fs - rmr tablename .
Managed table hive will have full control on tables. In external tables users will have control on it.
INTERNAL : Table is created First and Data is loaded later
EXTERNAL : Data is present and Table is created on top of it.
Internal tables are useful if you want Hive to manage the complete lifecycle of your data including the deletion, whereas external tables are useful when the files are being used outside of Hive.
External hive table has advantages that it does not remove files when we drop tables,we can set row formats with different settings , like serde....delimited
Also Keep in mind that Hive is a big data warehouse. When you want to drop a table you dont want to lose Gigabytes or Terabytes of data. Generating, moving and copying data at that scale can be time consuming.
When you drop a 'Managed' table hive will also trash its data.
When you drop a 'External' table only the schema definition from hive meta-store is removed. The data on the hdfs still remains.
Consider this scenario which best suits for External Table:
A MapReduce (MR) job filters a huge log file to spit out n sub log files (e.g. each sub log file contains a specific message type log) and the output i.e n sub log files are stored in hdfs.
These log files are to be loaded into Hive tables for performing further analytic, in this scenario I would recommend an External Table(s), because the actual log files are generated and owned by an external process i.e. a MR job besides you can avoid an additional step of loading each generated log file into respective Hive table as well.
The best use case for an external table in the hive is when you want to create the table from a file either CSV or text
Both Internal and External tables are owned by HIVE. The only difference being the ownership of data. The commands for creating both tables are shown below. Only an additional EXTERNAL keyword comes in case of external table creation. Both tables can be created/deleted/modified using SQL Statements.
In case of Internal Tables, both the table and the data contained in the tables are managed by HIVE. That is, we can add/delete/modify any data using HIVE. When we DROP the table, along with the table, the data will also get deleted.
Eg: CREATE TABLE tweets (text STRING, words INT, length INT) ROW FORMAT DELIMITED FIELDS TERMINATED BY ',' STORED AS TEXTFILE;
In case of External Tables, only the table is managed by HIVE. The data present in these tables can be from any storage locations like HDFS. We cant add/delete/modify the data in these tables. We can only use the data in these tables using SELECT statements. When we DROP the table, only the table gets deleted and not the data contained in it. This is why its said that only meta-data gets deleted. When we create EXTERNAL tables, we need to mention the location of the data.
Eg: CREATE EXTERNAL TABLE tweets (text STRING, words INT, length INT) ROW FORMAT DELIMITED FIELDS TERMINATED BY ',' STORED AS TEXTFILE LOCATION '/user/hive/warehouse/tweets';
hive stores only the meta data in metastore and original data in out side of hive when we use external table we can give location' ' by these our original data wont effect when we drop the table
When there is data already in HDFS, an external Hive table can be created to describe the data. It is called EXTERNAL because the data in the external table is specified in the LOCATION properties instead of the default warehouse directory.
When keeping data in the internal tables, Hive fully manages the life cycle of the table and data. This means the data is removed once the internal table is dropped. If the external table is dropped, the table metadata is deleted but the data is kept. Most of the time, an external table is preferred to avoid deleting data along with tables by mistake.
For managed tables, Hive controls the lifecycle of their data. Hive stores the data for managed tables in a sub-directory under the directory defined by hive.metastore.warehouse.dir by default.
When we drop a managed table, Hive deletes the data in the table.But managed tables are less convenient for sharing with other tools. For example, lets say we have data that is created and used primarily by Pig , but we want to run some queries against it, but not give Hive ownership of the data.
At that time, external table is defined that points to that data, but doesn’t take ownership of it.
In Hive We can also create an external table. It tells Hive to refer to the data that is at an existing location outside the warehouse directory.
Dropping External tables will delete metadata but not the data.
I would like to add that
Internal tables are used when the data needs to be updated or some rows need to be deleted because ACID properties can be supported on the Internal tables but ACID properties cannot be supported on the external tables.
Please ensure that there is a backup of the data in the Internal table because if a internal table is dropped then the data will also be lost.
In simple words, there are two things:
Hive can manage things in warehouse i.e. it will not delete data out of warehouse.
When we delete table:
1) For internal tables the data is managed internally in warehouse. So will be deleted.
2) For external tables the data is managed eternal from warehouse. So can't be deleted and clients other then hive can also use it.

Resources