_kernel void kmp(__global char pattern[2*4], __global char* string, __global int failure[2*4], __global int ret[2], int g_length, int l_length, int thread_num){
int pattern_num = 2;
int pattern_size = 4;
int gid = get_group_id(0);
int glid = get_global_id(0);
int lid = get_local_id(0);
int i, j, x = 0;
int old = 0;
__local char tmp_string[32768];
event_t event;
event = async_work_group_copy(tmp_string+lid*l_length, string+glid*l_length, l_length, 0);
wait_group_events(1, &event);
for(i = 0; i < pattern_num; i++){
x = i*pattern_size;
for(j = lid*l_length; j < (lid+1)*l_length; j++){
while(tmp_string[j] != pattern[x] && x > 0 && x != i*pattern_size){
x = failure[x-1]+i*pattern_size;
}
if(tmp_string[j] == pattern[x]){
if(x == (i+1)*pattern_size-1){
//ret[i]++;
old = atomic_add(&ret[i], 1);
x = failure[x]+i*pattern_size;
}
else{
x++;
}
}
}
}
barrier(CLK_LOCAL_MEM_FENCE);
}
I need help with this code.
To find the matched pattern in the string, I wrote code like this.
I'm using AMD Hawaii and it has 44 groups which have 64 cores in each group(Total 2816 computing units, I mean).
The problem is when I try using more than 44 computing units(Using more than 1 core in one group; like 88 units-using 2 cores in each group- or 2816 units-using 64 cores in each group-), it doesn't work well.
It couldn't correctly find the matched number.
I checked the index of string, ids(glid, gid, lid) and the size of all variable.
But, there is nothing wrong.
Anyone who has some advice, please help!
What is going wrong that you saying it doesn't work well? Also why are you not doing anything within async copy? Maybe a simple global to local assignment could work. Why is there a local barrier at the end of kernel?
Anyway, the error seems to be the async copy. It has different values for each thread in a group. For it to work right, it must be given exact same numbers in all threads of a group. Thats why it works with local size = 1 and not for bigger local groups.
For example, glid is different for all 64 threads in a group so it wouldn't work. Async work group copy command makes all threads of a group work on same copy. Not different copies. If you need different copies, you need multiple async commands serially but they would work async if you use the waiting on all of them at once.
Related
This is the device code I have written so far.
__global__ void syndrom(int *d_s, int *d_cx) {
int tid = threadIdx.x + blockDim.x * blockIdx.x + 1;
int t2 = 5460;
int N_BCH = 16383;
if (tid <= t2) {
d_s[Usetid] = 0;
for (int j = 0; j < N_BCH; j ++) {
if (d_cx[j] != 0) {
d_s[tid] ^= d_alpha_to[(tid * j) % N_BCH];
}
}
d_s[tid] = d_index_of[d_s[tid]];
}
}
I call it in the host
dim3 grid(96);
dim3 block(256);
But the speed is not very good, I want to get help. Thanks.
This is not a Complete and Verifiable Example, which you are expected to provide here on StackOverflow (for example - what is d_alpha_to?), but I can still make a few suggestions:
Use more threads instead of having each thread iterate a very large number of times. They way GPU work parallelizes is saturating the processors with threads which are ready to perform more computation.
Don't operate on (the same place in) global memory repeatedly. Put d_s[tid] in a local variable (which will be placed in a register), work on it there, and when you're done, write it back. Accessing global memory is obviously much much slower than accessing registers.
Decorate your pointers with __restrict__ (and make d_cx a const pointer). Read more about __restrict__ here.
I am writing some OpenCL code. My kernel should create a special "accumulator" output based on an input image. I have tried two concepts and both are equally slow, although the second one uses local memory. Could you please help me identify why the local memory version is so slow? The target GPU for the kernels is a AMD Radeon Pro 450.
// version one
__kernel void find_points(__global const unsigned char* input, __global unsigned int* output) {
const unsigned int x = get_global_id(0);
const unsigned int y = get_global_id(1);
int ind;
for(k = SOME_BEGINNING; k <= SOME_END; k++) {
// some pretty wild calculation
// ind is not linear and accesses different areas of the output
ind = ...
if(input[y * WIDTH + x] == 255) {
atomic_inc(&output[ind]);
}
}
}
// variant two
__kernel void find_points(__global const unsigned char* input, __global unsigned int* output) {
const unsigned int x = get_global_id(0);
const unsigned int y = get_global_id(1);
__local int buf[7072];
if(y < 221 && x < 32) {
buf[y * 32 + x] = 0;
}
barrier(CLK_LOCAL_MEM_FENCE);
int ind;
int k;
for(k = SOME_BEGINNING; k <= SOME_END; k++) {
// some pretty wild calculation
// ind is not linear and access different areas of the output
ind = ...
if(input[y * WIDTH + x] == 255) {
atomic_inc(&buf[ind]);
}
}
barrier(CLK_LOCAL_MEM_FENCE);
if(get_local_id(0) == get_local_size(0) - 1)
for(k = 0; k < 7072; k++)
output[k] = buf[k];
}
}
I would expect that the second variant is faster than the first one, but it isn't. Sometimes it is even slower.
Local buffer size __local int buf[7072] (28288 bytes) is too big. I don't know how big shared memory for AMD Radeon Pro 450 is but likely that is 32kB or 64kB per computing unit.
32768/28288 = 1, 65536/28288 = 2 means only 1 or maximum 2 wavefronts (64 work items) can run simultaneously only, so occupancy of computing unit is very very low hence poor performance.
Your aim should be to reduce local buffer as much as possible so that more wavefronts can be processed simultaneously.
Use CodeXL to profile your kernel - there are tools to show you all of this.
Alternatively you can have a look at CUDA occupancy calculator excel spreadsheet if you don't want to run the profiler to get a better idea of what that is about.
When I try this I get the wrong result at 'output' even though I am copying the values of 'cum' array to output.
But if I rename the 'cum' array mentioned earlier in the code. I get the correct value of array. Therefore I am unable to reuse the result values.
The device has 8 cores with no shared memory.
Any and all comments/suggestions appreciated.
kernel void histogram(global unsigned int *input,
global unsigned int *output,
global unsigned int *frequency,
global unsigned int *cum,
unsigned int N)
{
int pid = get_global_id(0);
//cumulative sum
for(int i=0; i < 16; i++)
{
cum[(i*16)+(2*pid)+1] = frequency[(i*16)+(2*pid)] + frequency[(i*16)+(2*pid)+1];
}
barrier(CLK_GLOBAL_MEM_FENCE);
for(int i=0; i < 32; i++)
{
output[(i*8)+pid] = cum[(i*8)+pid];
}
barrier(CLK_GLOBAL_MEM_FENCE);
}
Make sure you understand parallel prefix sums. In particular I don't see a downsweep step of the total sum or parts:
Parallel Prefix Sum (Scan) with CUDA
I'd look in the TI's Keystone II SDK you're using in OpenCL device memory read/write issue to see if they have any scan or parallel prefix sum implementations or built in functions.
Summary:
Any ideas about how to further improve upon the basic scatter operation in CUDA? Especially if one knows it will only be used to compact a larger array into a smaller one? or why the below methods of vectorizing memory ops and shared memory didn't work? I feel like there may be something fundamental I am missing and any help would be appreciated.
EDIT 03/09/15: So I found this Parallel For All Blog post "Optimized Filtering with Warp-Aggregated Atomics". I had assumed atomics would be intrinsically slower for this purpose, however I was wrong - especially since I don't think I care about maintaining element order in the array during my simulation. I'll have to think about it some more and then implement it to see what happens!
EDIT 01/04/16: I realized I never wrote about my results. Unfortunately in that Parallel for All Blog post they compared the global atomic method for compact to the Thrust prefix-sum compact method, which is actually quite slow. CUB's Device::IF is much faster than Thrust's - as is the prefix-sum version I wrote using CUB's Device::Scan + custom code. The warp-aggregrate global atomic method is still faster by about 5-10%, but nowhere near the 3-4x faster I had been hoping for based on the results in the blog. I'm still using the prefix-sum method as while maintaining element order is not necessary, I prefer the consistency of the prefix-sum results and the advantage from the atomics is not very big. I still try various methods to improve compact, but so far only marginal improvements (2%) at best for dramatically increased code complexity.
Details:
I am writing a simulation in CUDA where I compact out elements I am no longer interested in simulating every 40-60 time steps. From profiling it seems that the scatter op takes up the most amount of time when compacting - more so than the filter kernel or the prefix sum. Right now I use a pretty basic scatter function:
__global__ void scatter_arrays(float * new_freq, const float * const freq, const int * const flag, const int * const scan_Index, const int freq_Index){
int myID = blockIdx.x*blockDim.x + threadIdx.x;
for(int id = myID; id < freq_Index; id+= blockDim.x*gridDim.x){
if(flag[id]){
new_freq[scan_Index[id]] = freq[id];
}
}
}
freq_Index is the number of elements in the old array. The flag array is the result from the filter. Scan_ID is the result from the prefix sum on the flag array.
Attempts I've made to improve it are to read the flagged frequencies into shared memory first and then write from shared memory to global memory - the idea being that the writes to global memory would be more coalesced amongst the warps (e.g. instead of thread 0 writing to position 0 and thread 128 writing to position 1, thread 0 would write to 0 and thread 1 would write to 1). I also tried vectorizing the reads and the writes - instead of reading and writing floats/ints I read/wrote float4/int4 from the global arrays when possible, so four numbers at a time. This I thought might speed up the scatter by having fewer memory ops transferring larger amounts of memory. The "kitchen sink" code with both vectorized memory loads/stores and shared memory is below:
const int compact_threads = 256;
__global__ void scatter_arrays2(float * new_freq, const float * const freq, const int * const flag, const int * const scan_Index, const int freq_Index){
int gID = blockIdx.x*blockDim.x + threadIdx.x; //global ID
int tID = threadIdx.x; //thread ID within block
__shared__ float row[4*compact_threads];
__shared__ int start_index[1];
__shared__ int end_index[1];
float4 myResult;
int st_index;
int4 myFlag;
int4 index;
for(int id = gID; id < freq_Index/4; id+= blockDim.x*gridDim.x){
if(tID == 0){
index = reinterpret_cast<const int4*>(scan_Index)[id];
myFlag = reinterpret_cast<const int4*>(flag)[id];
start_index[0] = index.x;
st_index = index.x;
myResult = reinterpret_cast<const float4*>(freq)[id];
if(myFlag.x){ row[0] = myResult.x; }
if(myFlag.y){ row[index.y-st_index] = myResult.y; }
if(myFlag.z){ row[index.z-st_index] = myResult.z; }
if(myFlag.w){ row[index.w-st_index] = myResult.w; }
}
__syncthreads();
if(tID > 0){
myFlag = reinterpret_cast<const int4*>(flag)[id];
st_index = start_index[0];
index = reinterpret_cast<const int4*>(scan_Index)[id];
myResult = reinterpret_cast<const float4*>(freq)[id];
if(myFlag.x){ row[index.x-st_index] = myResult.x; }
if(myFlag.y){ row[index.y-st_index] = myResult.y; }
if(myFlag.z){ row[index.z-st_index] = myResult.z; }
if(myFlag.w){ row[index.w-st_index] = myResult.w; }
if(tID == blockDim.x -1 || gID == mutations_Index/4 - 1){ end_index[0] = index.w + myFlag.w; }
}
__syncthreads();
int count = end_index[0] - st_index;
int rem = st_index & 0x3; //equivalent to modulo 4
int offset = 0;
if(rem){ offset = 4 - rem; }
if(tID < offset && tID < count){
new_mutations_freq[population*new_array_Length+st_index+tID] = row[tID];
}
int tempID = 4*tID+offset;
if((tempID+3) < count){
reinterpret_cast<float4*>(new_freq)[tID] = make_float4(row[tempID],row[tempID+1],row[tempID+2],row[tempID+3]);
}
tempID = tID + offset + (count-offset)/4*4;
if(tempID < count){ new_freq[st_index+tempID] = row[tempID]; }
}
int id = gID + freq_Index/4 * 4;
if(id < freq_Index){
if(flag[id]){
new_freq[scan_Index[id]] = freq[id];
}
}
}
Obviously it gets a bit more complicated. :) While the above kernel seems stable when there are hundreds of thousands of elements in the array, I've noticed a race condition when the array numbers in the tens of millions. I'm still trying to track the bug down.
But regardless, neither method (shared memory or vectorization) together or alone improved performance. I was especially surprised by the lack of benefit from vectorizing the memory ops. It had helped in other functions I had written, though now I am wondering if maybe it helped because it increased Instruction-Level-Parallelism in the calculation steps of those other functions rather than the fewer memory ops.
I found the algorithm mentioned in this poster (similar algorithm also discussed in this paper) works pretty well, especially for compacting large arrays. It uses less memory to do it and is slightly faster than my previous method (5-10%). I put in a few tweaks to the poster's algorithm: 1) eliminating the final warp shuffle reduction in phase 1, can simply sum the elements as they are calculated, 2) giving the function the ability to work over more than just arrays sized as a multiple of 1024 + adding grid-strided loops, and 3) allowing each thread to load their registers simultaneously in phase 3 instead of one at a time. I also use CUB instead of Thrust for Inclusive sum for faster scans. There may be more tweaks I can make, but for now this is good.
//kernel phase 1
int myID = blockIdx.x*blockDim.x + threadIdx.x;
//padded_length is nearest multiple of 1024 > true_length
for(int id = myID; id < (padded_length >> 5); id+= blockDim.x*gridDim.x){
int lnID = threadIdx.x % warp_size;
int warpID = id >> 5;
unsigned int mask;
unsigned int cnt=0;//;//
for(int j = 0; j < 32; j++){
int index = (warpID<<10)+(j<<5)+lnID;
bool pred;
if(index > true_length) pred = false;
else pred = predicate(input[index]);
mask = __ballot(pred);
if(lnID == 0) {
flag[(warpID<<5)+j] = mask;
cnt += __popc(mask);
}
}
if(lnID == 0) counter[warpID] = cnt; //store sum
}
//kernel phase 2 -> CUB Inclusive sum transforms counter array to scan_Index array
//kernel phase 3
int myID = blockIdx.x*blockDim.x + threadIdx.x;
for(int id = myID; id < (padded_length >> 5); id+= blockDim.x*gridDim.x){
int lnID = threadIdx.x % warp_size;
int warpID = id >> 5;
unsigned int predmask;
unsigned int cnt;
predmask = flag[(warpID<<5)+lnID];
cnt = __popc(predmask);
//parallel prefix sum
#pragma unroll
for(int offset = 1; offset < 32; offset<<=1){
unsigned int n = __shfl_up(cnt, offset);
if(lnID >= offset) cnt += n;
}
unsigned int global_index = 0;
if(warpID > 0) global_index = scan_Index[warpID - 1];
for(int i = 0; i < 32; i++){
unsigned int mask = __shfl(predmask, i); //broadcast from thread i
unsigned int sub_group_index = 0;
if(i > 0) sub_group_index = __shfl(cnt, i-1);
if(mask & (1 << lnID)){
compacted_array[global_index + sub_group_index + __popc(mask & ((1 << lnID) - 1))] = input[(warpID<<10)+(i<<5)+lnID];
}
}
}
}
EDIT: There is a newer article by a subset of the poster authors where they examine a faster variation of compact than what is written above. However, their new version is not order preserving, so not useful for myself and I haven't implemented it to test it out. That said, if your project doesn't rely on object order, their newer compact version can probably speed up your algorithm.
I'm new to OpenCL and trying to understand how to optimise matrix multiplication to become familiar with the various paradigms. Here's the current code.
If I'm multipliying matrices A and B. I allocate a row of A in private memory to start with (because each work item uses it), and a column of B in local memory (because each work group uses it).
1) the code is currently incorrect, unfortunately I'm struggling on how to use local work ids to get the correct code, but I can't find my mistake? I'm basing myself on http://www.cs.bris.ac.uk/home/simonm/workshops/OpenCL_lecture3.pdf but (slide 27) it seems that this is wrong as they don't make use of loc_size in their internal loop)
2) Are there any other optimisations you would suggest with this code?
__kernel void mmul(
__global int* C,
__global int* A,
__global int* B,
const int rA,
const int rB,
const int cC,
__local char* local_mem)
{
int k,ty;
int tx = get_global_id(0);
int loctx = get_local_id(0);
int loc_size = get_local_size(0);
int value = 0 ;
int tmp_array[1000];
for(k=0;k<rB;k++) {
tmp_array[k] = A[tx * cA + k] ;
}
for (ty=0 ; ty < cC ; ty++) { \n" \
for (k = loctx ; k < rB ; k+=loc_size) {
local_mem[k] = B[ty + k * cC] ;
}
barrier(CLK_LOCAL_MEM_FENCE);
value = 0 ;
for(k=0;k<rB;k+=1) {
int i = loctx + k*loc_size;
value += tmp_array[k] * local_mem[i];
}
C[ty + (tx * cC)] = value;
}
}
where I set the global and local work items as follows
const size_t globalWorkItems[1] = {result_row};
const size_t localWorkItems[1] = {(size_t)local_wi_size};
local_wi_size is result_row/number of compute units (such that result_row % compute units == 0)
Your code is pretty close, but the indexing into the local memory array is actually simpler that you think. You have a row in private memory and a column in local memory, and you need to compute the dot product of these two vectors. You just need to sum row[k]*col[k], for k = 0 up to N-1:
for(k=0;k<rB;k+=1) {
value += tmp_array[k] * local_mem[k];
}
There's actually a second, more subtle bug that is also present in the example solution given on the slides you are using. Since you are reading and writing local memory inside a loop, you actually need two barriers, in order to make sure that work-items writing to local memory on iteration i don't overwrite values that are being read by other work-items executing iteration i-1.
Therefore, the full code for your kernel (tested and working), should look something like this:
__kernel void mmul(
__global int* C,
__global int* A,
__global int* B,
const int rA,
const int rB,
const int cC,
__local char* local_mem)
{
int k,ty;
int tx = get_global_id(0);
int loctx = get_local_id(0);
int loc_size = get_local_size(0);
int value = 0;
int tmp_array[1000];
for(k=0;k<rB;k++) {
tmp_array[k] = A[tx * cA + k] ;
}
for (ty=0 ; ty < cC ; ty++) {
for (k = loctx ; k < rB ; k+=loc_size) {
local_mem[k] = B[ty + k * cC];
}
barrier(CLK_LOCAL_MEM_FENCE); // First barrier to ensure writes have finished
value = 0;
for(k=0;k<rB;k+=1) {
value += tmp_array[k] * local_mem[k];
}
C[ty + (tx * cC)] = value;
barrier(CLK_LOCAL_MEM_FENCE); // Second barrier to ensure reads have finished
}
}
You can find the full set of exercises and solutions that go with the slides you are looking at on the HandsOnOpenCL GitHub page. There's also a more complete set of slides from the same tutorial available here, which go on to show a much more optimised matrix multiply example that uses a blocking approach to better exploit temporal and spatial locality. The aforementioned missing barrier bug has been fixed in the example solution code, but not on the slides (yet).