I have the following code in io.h:
#include <iostream>
#include "shape.h"
class IODevice { // Interface for displaying CAD objects
public:
virtual void operator << (const Circle& c) = 0;
virtual void operator << (const Line& c) = 0;
};
class CmdIODevice : public IODevice {
void operator << (const Circle& c);
void operator << (const Line& c);
};
and shape.h :
#pragma once
#include "io.h"
class Shape {
public:
virtual void display(IODevice& ioDevice) = 0;
};
class Circle : public Shape {
public:
void display(IODevice& ioDevice);
};
class Line : public Shape {
public:
void display(IODevice& ioDevice);
}
};
and get the following error when I declare the virtual operator in IODevice:
Error C4430 missing type specifier - int assumed. Note: C++ does not support default-int
Apparently Circle is not seen by the compiler, I do not understand, please help.
Related
I have two omnetpp projects: Lab1 and Lab2
From Lab1 .so library is created. Lab 2 is supposed to use this library. It is clear how to import and use modules declared in .ned-files. Problems begin when I try to use message-type from the library (Bitmessage).
bitmessage.msg from the library:
message Bitmessage {
bool bit;
}
sSource.h in Lab2:
#ifndef SSOURCE_H_
#define SSOURCE_H_
#include <omnetpp.h>
#include "bitmessage_m.h"
class sSource : public cSimpleModule
{
protected:
virtual void initialize();
virtual void handleMessage(cMessage *msg);
private:
double p;
};
Define_Module(sSource);
#endif /* SSOURCE_H_ */
sSource.cc - source-file in Lab2 which is suppose to use bitmessage:
#include <sSource.h>
/*virtual*/ void sSource::initialize()
{
p = par("p").doubleValue();
}
/*virtual*/ void sSource::handleMessage(cMessage *msg)
{
if (msg->getArrivalGate() == gate("in"))
{
delete msg;
Bitmessage* bit_msg = new Bitmessage(); // **(!!!)here is error**
int num_outs = this->gateSize("out");
for (int i = 0; i < num_outs; ++i)
{
send(bit_msg->dup(), "out", i);
}
delete bit_msg;
}
else
{
delete msg;
}
}
The error is following:
undefined reference to `Bitmessage::Bitmessage(char const*, int)'
How to deal with it? Maybe the problem is that compiler can't interpret .msg-file from the library?
Given the following template in a header file, and a couple of specializations:
template<typename> class A {
static const int value;
};
template<> const int A<int>::value = 1;
template<> const int A<long>::value = 2;
and building with clang-5, it results in errors for each source unit that included the file, all complaining about multiple definitions for A<int>::value and A<long>::value.
At first, I thought that maybe the template specializations needed to be put in a specific translation unit, but on checking the spec, this apparently should be allowed, because the value is a constant integer.
Am I doing something else wrong?
EDIT: if I move the definition into a single translation unit, then I can no longer use the value of A<T>::value in the context of a const int (eg, where its value is being used to calculate the value of another const assignment) , so the value really needs to be in a header.
In c++11 you maybe can go that way:
template<typename> class B {
public:
static const int value = 1;
};
template<> class B<long> {
public:
static const int value = 2;
};
template<typename T> const int B<T>::value;
If you only want to specialize the value var, you can use CRTP for that.
From C++17 you can make your definition inline:
template<> inline const int A<int>::value = 1;
template<> inline const int A<long>::value = 2;
Also from c++17 you can remove the 'template const int B::value;' for constexpr:
template<typename> class C {
public:
static constexpr int value = 1;
};
template<> class C<long> {
public:
static constexpr int value = 2;
};
// no need anymore for: template<typename T> const int C<T>::value;
And another solution for c++11 can be to use a inline method instead of inline vars which are allowed from c++17:
template<typename T> class D {
public:
static constexpr int GetVal() { return 0; }
static const int value = GetVal();
};
template <> inline constexpr int D<int>::GetVal() { return 1; }
template <> inline constexpr int D<long>::GetVal() { return 2; }
template< typename T>
const int D<T>::value;
In addition to your last edit:
To use your values also in other dependent definitions it seems to be the most readable version if you use the inline constexpr methods.
Edit: "Special" version for clang, because as OP tells us, clang complains with "specialization happening after instantiation". I don't know if clang or gcc is wrong in that place...
template<typename T> class D {
public:
static constexpr int GetVal();
static const int value;
};
template <> inline constexpr int D<int>::GetVal() { return 1; }
template <> inline constexpr int D<long>::GetVal() { return 2; }
template <typename T> const int D<T>::value = D<T>::GetVal();
int main()
{
std::cout << D<int>::value << std::endl;
std::cout << D<long>::value << std::endl;
}
I told already that CRTP is possible if not the complete class should be redefined. I checked the code on clang and it compiles without any warning or error, because OP comments that he did not understand how to use it:
template<typename> class E_Impl {
public:
static const int value = 1;
};
template<> class E_Impl<long> {
public:
static const int value = 2;
};
template<typename T> const int E_Impl<T>::value;
template < typename T>
class E : public E_Impl<T>
{
// rest of class definition goes here and must not specialized
// and the values can be used here!
public:
void Check()
{
std::cout << this->value << std::endl;
}
};
int main()
{
E<long>().Check();
std::cout << E<long>::value << std::endl;
E<int>().Check();
std::cout << E<int>::value << std::endl;
}
Suppose I have class A and two derived classes, B and C, e.g.:
#include <iostream>
#include <list>
#include <string>
using namespace std;
class A {
public:
virtual void poke() const = 0;
virtual ~A() {};
};
class B : public A {
string _response;
public:
B(const string& response) : _response(response) {}
void poke () const {
cout << _response << endl;
}
};
class C : public A {
string _response;
public:
C(const string& response) : _response(response) {}
void poke () const {
cout << "Well, " << _response << endl;
}
};
Can I somehow initialize an std::list using the following initializer list: {B("Me"), C("and you")}, so that polymorphism works when I iterate over the list and call poke() (i.e., no slicing occurs)? I guess I need to define an std::list<Smth>, where Smth accepts temporary objects, has a copy constructor that does move semantics inside (because initialization lists seem to be doing copying and not moving), and supports smart pointers so I can iterate with it and do (*it)->poke(). Just for clarity, I want to be be able to write:
list<Smth> test {B("Me"), C("and you")};
for(auto it = test.begin(); it != test.end(); it++) {
(*it)->poke();
}
I was trying to find a simple solution but I got to the point where my program compiled but generated run time errors, and so I gave up at that point... Maybe somehow make a unique pointer out of a temporary object? Or can I use && somehow?
For polymorphism, you need a reference or a pointer. Both will become dangling as soon as the sentence ends, because even if you bound those objects to them somehow, you bound them to temporary objects.
The usual solution is to dynamically allocate and create the objects and holding them with pointers. This means something like the following (I also changed the loop to C++11 style, instead of using iterators directly):
std::list<std::unique_ptr<A>> test {
std::make_unique<B>("Me"), std::make_unique<C>("and you")};
for(const auto& p : test) {
p->poke();
}
Well, if I am willing to do extra copying of B and C and use a shared_ptr instead of a unique_ptr, then the following example works (I am not saying it is good programming style, but it does show the cost of having a convenient notation with initialization lists):
#include <iostream>
#include <list>
#include <memory>
#include <string>
using namespace std;
class A {
public:
virtual void poke() const = 0;
virtual ~A() {}
};
class B : public A {
string _response;
public:
B(const string& response) : _response(response) {}
void poke () const {
cout << _response << endl;
}
operator shared_ptr<A>() {
return make_shared<B>(*this);
}
};
class C : public A {
string _response;
public:
C(const string& response) : _response(response) {}
void poke () const {
cout << "Well, " << _response << endl;
}
operator shared_ptr<A>() {
return make_shared<C>(*this);
}
};
int main() {
list<shared_ptr<A>> test {B("Me"), C("and you")};
for(const auto& it : test) {
it->poke();
}
}
I was trying to work on the below code but the program crashes:
#include <iostream>
#include <string>
#include <map>
using namespace std;
typedef void (*callBackMethod)(string);
class CTest
{
private:
map<string, callBackMethod> mapMethod;
void testMethod(string msg)
{
cout << msg << endl;
}
public:
CTest()
{
addFunction("AA", (callBackMethod) &CTest::testMethod);
}
void addFunction(string funName, callBackMethod methodName)
{
mapMethod[funName] = methodName;
}
callBackMethod getMethod(string funName)
{
auto fun = mapMethod.find(funName);
if(fun == mapMethod.end()) { return nullptr; }
return fun->second;
}
void runFunction(string funName)
{
getMethod(funName)("test");
}
};
int main()
{
CTest test;
test.runFunction("AA");
return 0;
}
I have a requirement where I need to pass private methods to a map. The program compiles with warning:
converting from 'void (CTest::*)(std::__cxx11::string) {aka void (CTest::*)(std::__cxx11::basic_string<char>)}' to 'callBackMethod {aka void (*)(std::__cxx11::basic_string<char>)}'
and when I execute this, it crashes.
When I move the callback method outside of the class it works. My requirement is to make the program flow this was (hide the methods from external call which needs to be added to a map).
Looking forward to your comments.
If you need to point to both CTest member functions and free functions, then you can use std::function<void(std::string)>.
#include <iostream>
#include <string>
#include <map>
#include <functional>
using namespace std;
using callBackFunction = std::function<void(string)>;
void testFunction(string msg)
{
cout << "[" << __PRETTY_FUNCTION__ << "] " << msg << endl;
}
class CTest
{
private:
map<string, callBackFunction> mapMethod;
void testMethod(string msg)
{
cout << "[" << __PRETTY_FUNCTION__ << "] " << msg << endl;
}
public:
CTest()
{
addFreeFunction("AA", testFunction);
addMemberFunction("BB", &CTest::testMethod);
}
void addMemberFunction(string funName, void(CTest::*methodName)(string))
{
using std::placeholders::_1;
mapMethod[funName] = std::bind(methodName, this, _1);
}
void addFreeFunction(string funName, void(*methodName)(string))
{
mapMethod[funName] = methodName;
}
callBackFunction getMethod(string funName)
{
auto fun = mapMethod.find(funName);
if(fun == mapMethod.end()) { return nullptr; }
return fun->second;
}
void runFunction(string funName)
{
getMethod(funName)("test");
}
};
int main()
{
CTest test;
test.runFunction("AA");
test.runFunction("BB");
return 0;
}
Notice that CTest must insert elements into the map in a different way depending on what type of function you are passing, since for member functions you must provide the object for which it is to be invoked, this in this example. This is achived by using std::bind.
Since you want to use member variables you need to specify the signature differently in your typedef:
In C++ Builder the following can be done:
typedef void(__closure *callBackMethod)(string);
If you do that, I do suggest that you keep a smart pointer to the object that the member belongs to so that you can check if the object is still valid before calling the function otherwise it will crash the application.
The __closure keyword is a C++ Builder extension to work around the requirement to use fully qualified member names source
To handle both global and member functions we have the following:
typedef void(__closure *callBackMethodMember)(string);
typedef void (*callBackMethodGlobal)(string);
/* And then on 2 overloaded functions */
void addFunction(string funName, callBackMethodMember methodName) {}
void addFunction(string funName, callBackMethodGlobal methodName) {}
I wanted to store a vector of function pointers, each taking different no. of arguments in a class "Store". So, wrote a templated class "Func" that would store the function as a std::function and its arguments in a tuple.
I derived this "Func" class from a non-template base class "IFunc", so that i can store a vector of pointers to this base class in the class "Store".
template<typename... Args>
class Func : public IFunc
{
public:
std::function<void (Args...)> f;
std::tuple<Args...> args;
template <typename F,typename... Ar>
Func(F&& func,Ar&&... arg): f(std::forward<F>(func)),args(std::make_tuple(std::forward<Ar>(arg)...))
{
}
virtual ~NonMemfun()
{
}
//other methods to unpack the tuple and call the function
};
The IFunc class:
class IFunc
{
public:
Ifunc(){}
virtual ~Ifunc(){}
};
The Store class:
class Store
{
std::vector<Ifunc*> funcs;
public:
template<typename... Args,typename... Args2>
void registerfunc(std::string name,int runs,void(*f)(Args...),Args2&&... arg)
{
Func<Args2...>* sample = new Func<Args2...>(f,arg...);
Ifunc* fp = sample;
funcs.push_back(fp);
}
};
I want to iterate through the vector and call each function. To do that i need to do a static cast like this:
Func<>* der = static_cast<Func<>*>(funcs[0]);
When i try to do this, the cast doesn't happen properly. I cannot specify the template paramenters(variadics) since this class(Store) is not aware of them.
I am totally stuck at this place. Something is wrong with my design i guess. Can someone please suggest me a better way to do this. Thank you.
Rather than trying to do a cast from IFunc to Func<>, you should make a pure virtual function, Apply() in IFunc, which Func<> defines as apply(f, args...);. As you iterate over the vector of IFunc pointers, simply call IFunc->Apply(), which will dispatch to the Func<>::Apply() and do the actual apply.
I'm not much of a C++ programmer, but I think you may find this useful.
I'm sure you know that templates are a compile time thing in C++ so your functions need to be known at build time.
With that said, if you do know your functions and you just want to map them to say a string command and then dynamically bind arguments from something like a stream then this code should help you. It is actually able to use a dynamic_cast to retrieve the command from the map.
this snippet is from a school project I did a while back that had a similar goal:
#include <map>
#include <string>
#include <sstream>
#include <tuple>
using namespace std;
class Shell {
class Command {
public:
virtual ~Command() {};
virtual void executeWithArgStream(Shell*, istream& s)=0;
};
template <typename... ArgTypes>
class ShellCommand : public Command {
private:
// FIXME: its probably more apropriate for FuncType to return an int for exit code...
typedef function<void(Shell*, ArgTypes...)> FuncType;
FuncType _f;
tuple<ArgTypes...> args;
template<int... Is>
struct seq { };
template<int N, int... Is>
struct gen_seq : gen_seq<N - 1, N - 1, Is...> { };
template<int... Is>
struct gen_seq<0, Is...> : seq<Is...> { typedef seq<Is...> type; };
template<size_t I = 0, class ...P>
typename std::enable_if<I == sizeof...(P)>::type
// template for functions with no arguments
parseArgs(istream& is, std::tuple<P...> &) {}
template<size_t I = 0, class ...P>
typename std::enable_if<I < sizeof...(P)>::type
parseArgs(istream& is, std::tuple<P...> & parts) {
// this is the magic bit that takes a tuple of pointers (representing the command arguments)
// created at compile time and creates new instances of each argument type and populates it from
// the given input stream :D
auto& part = std::get<I>(args);
// hmmm should we delete or recycle...
delete part;
part = new typeof(*part);
is >> *part;
parseArgs<I + 1>(is, parts);
}
template<int ...S>
void callFunc(Shell* shell, seq<S...>) {
_f(shell, get<S>(args) ...);
}
public:
static constexpr size_t numArgs = sizeof...(ArgTypes);
ShellCommand(FuncType f) : _f(f) {};
void operator()(Shell* shell, ArgTypes... args) {
_f(shell, args...);
};
void executeWithArgStream(Shell* shell, istream& s)
{
parseArgs(s, args);
callFunc(shell, typename gen_seq<sizeof...(ArgTypes)>::type());
};
};
private:
typedef shared_ptr<Command> CommandPtr;
typedef map<string, CommandPtr> FMap;
FMap _cmdMap;
ostream& _out;
istream& _in;
public:
Shell(istream& is = cin, ostream& os = cout)
: _out(os), _in(is)
{
// populate
_cmdMap.insert(pair<string, CommandPtr>("chdir", make_shared<ShellCommand<string*>>(&Shell::chdir)));
_cmdMap.insert(pair<string, CommandPtr>("list", make_shared<ShellCommand<>>(&Shell::list)));
_cmdMap.insert(pair<string, CommandPtr>("count", make_shared<ShellCommand<>>(&Shell::count)));
};
int run();
// FIXME: its probably more apropriate for execute to return an int for exit code...
template <typename... ArgTypes>
void execute(string& command, ArgTypes... args);
void executeWithArgStream(string& command, istream& istr);
// shell commands:
// any command parameters must be done as a pointer!
// the magic that parses string arguments into real types depends on it!
void list() {
list command
};
void chdir(string* dir) {
// chdir command
};
void count() {
// count command
};
};
template <typename... ArgTypes>
void Shell::execute(string& command, ArgTypes... args)
{
typedef ShellCommand<ArgTypes...> CommandType;
CommandType* c = dynamic_cast<CommandType*>(_cmdMap[command].get());
// TODO: neeed to diferentiate between invalid commands and some kind of dynamic_cast failure
if (c) {
(*c)(this, args...);
} else {
// dynamic cast failure
throw runtime_error("Broken Implementation for:" + command);
}
}
void Shell::executeWithArgStream(string& command, istream& istr)
{
Command* c = _cmdMap[command].get();
if (c) {
c->executeWithArgStream(this, istr);
} else {
throw runtime_error("Invalid Shell Command: " + command);
}
}
int Shell::run()
{
do {
string cmd, argString;
_out << _currentDir->name() << "> ";
_in.clear();
_in >> cmd;
if (cmd == "q") {
return 0;
}
if (_in.peek() == ' ')
_in.ignore(1, ' ');
getline(cin, argString);
if (_cmdMap[cmd]) {
try {
if (argString.length()) {
istringstream s(argString);
executeWithArgStream(cmd, s);
} else {
execute(cmd);
}
} catch (runtime_error& e) {
_out << e.what() << endl;
}
} else {
_out << "unrecognized command: " << cmd << endl;
}
} while (true);
}
int main(int argc, const char * argv[])
{
// start the interactive "shell"
Shell shell();
return shell.run();
}