Can't understand particalur Big-O example in textbook - big-o

So far understanding Big-O notation and how it's calculated is ok...most of the situations are easy to understand. However, I just came across this one problem that I cannot for the life of me figure out.
Directions: select the best big-O notation for the expression.
(n^2 + lg(n))(n-1) / (n + n^2)
The answer is O(n). That's all fine and dandy, but how is that rationalized given the n^3 factor in the numerator? n^3 isn't the best, but I thought there was like a "minimum" basis between f(n) <= O(g(n))?
The book has not explained any mathematical inner-workings, everything has sort of been injected into a possible solution (taking f(n) and generating a g(n) that's slightly greater than f(n)).
Kinda stumped. Go crazy on the math, or math referencing, if you must.
Also, given a piece of code, how does one determine the time units per line? How do you determine logarithmic times based off of a line of code (or multiple lines of code)? I understand that declaring and setting a variable is considered 1 unit of time, but when things get nasty, how would I approach a solution?

If you throw this algorithm into Wolfram Alpha, you get this generic result:
If you expand (FOIL) it, you get (roughly) a cubic function divided by a quadratic function. With Big-O, constants don't matter and the larger power wins, so you'd result with something like this:
The rest from here is mathematical induction. The overall algorithm grows in a linear-like fashion with respect to larger and larger values of n. It's not quite linear so we can't say it has a Big-Omega of (n), but it does come fairly reasonably close to O(n) due to the amortized constant growth rate.
Alternatively, you could annoy mathematicians everywhere and say, "Since this is based on Big-O rules, we can drop the factor of n from the denominator and thus result in O(n) by simple division." However, it's important in my mind to consider that this is still not quite linear.
Mind, this is a less-rigorous explanation than might be satisfactory for your class, but this gives you some math-based perspective on its runtime.

Non-rigorous answer:
Distributing the numerator product, we find that the numerator is n^3 + n log(n) - n^2 - log n.
We note that the numerator grows as n^3 for large n, and the denominator grows as n^2 for large n.
We interpret that as growth as n^{3 - 2} for large n, or O(n).

Related

What does the O in Big-O Notation mean?

I‘m trying to wrap my head around the meaning of the Landau-Notation in the context of analysing an algorithm‘s complexity.
What exactly does the O formally mean in Big-O-Notation?
So the way I understand it is that O(g(x)) gives a set of functions which grow as rapidly or slower as g(x), meaning, for example in the case of O(n^2):
where t(x) could be, for instance, x + 3 or x^2 + 5. Is my understanding correct?
Furthermore, are the following notations correct?
I saw the following written down by a tutor. What does this mean? How can you use less or equal, if the O-Notation returns a set?
Could I also write something like this?
So the way I understand it is that O(g(x)) gives a set of functions which grow as rapidly or slower as g(x).
This explanation of Big-Oh notation is correct.
f(n) = n^2 + 5n - 2, f(n) is an element of O(n^2)
Yes, we can say that. O(n^2) in plain English, represents "set of all functions that grow as rapidly as or slower than n^2". So, f(n) satisfies that requirement.
O(n) is a subset of O(n^2), O(n^2) is a subset of O(2^n)
This notation is correct and it comes from the definition. Any function that is in O(n), is also in O(n^2) since growth rate of it is slower than n^2. 2^n is an exponential time complexity, whereas n^2 is polynomial. You can take limit of n^2 / 2^n as n goes to infinity and prove that O(n^2) is a subset of O(2^n) since 2^n grows bigger.
O(n) <= O(n^2) <= O(2^n)
This notation is tricky. As explained here, we don't have "less than or equal to" for sets. I think tutor meant that time complexity for the functions belonging to the set O(n) is less than (or equal to) the time complexity for the functions belonging to the set O(n^2). Anyways, this notation doesn't really seem familiar, and it's best to avoid such ambiguities in textbooks.
O(g(x)) gives a set of functions which grow as rapidly or slower as g(x)
That's technically right, but a bit imprecise. A better description contains the addenda
O(g(x)) gives the set of functions which are asymptotically bounded above by g(x), up to constant factors.
This may seem like a nitpick, but one inference from the imprecise definition is wrong.
The 'fixed version' of your first equation, if you make the variables match up and have one limit sign, seems to be:
This is incorrect: the ratio only has to be less than or equal to some fixed constant c > 0.
Here is the correct version:
where c is some fixed positive real number, that does not depend on n.
For example, f(x) = 3 (n^2) is in O(n^2): one constant c that works for this f is c = 4. Note that the requirement isn't 'for all c > 0', but rather 'for at least one constant c > 0'
The rest of your remarks are accurate. The <= signs in that expression are an unusual usage, but it's true if <= means set inclusion. I wouldn't worry about that expression's meaning.
There's other, more subtle reasons to talk about 'boundedness' rather than growth rates. For instance, consider the cosine function. |cos(x)| is in O(1), but its derivative fluctuates from negative one to positive one even as x increases to infinity.
If you take 'growth rate' to mean something like the derivative, example like these become tricky to talk about, but saying |cos(x)| is bounded by 2 is clear.
For an even better example, consider the logistic curve. The logistic function is O(1), however, its derivative and growth rate (on positive numbers) is positive. It is strictly increasing/always growing, while 1 has a growth rate of 0. This seems to conflict with the first definition without lots of additional clarifying remarks of what 'grow' means.
An always growing function in O(1) (image from the Wikipedia link):

Why do we ignore co-efficients in Big O notation?

While searching for answers relating to "Big O" notation, I have seen many SO answers such as this, this, or this, but still I have not clearly understood some points.
Why do we ignore the co-efficients?
For example this answer says that the final complexity of 2N + 2 is O(N); we remove the leading co-efficient 2 and the final constant 2 as well.
Removing the final constant of 2 perhaps understandable. After all, N may be very large and so "forgetting" the final 2 may only change the grand total by a small percentage.
However I cannot clearly understand how removing the leading co-efficient does not make difference. If the leading 2 above became a 1 or a 3, the percentage change to the grand total would be large.
Similarly, apparently 2N^3 + 99N^2 + 500 is O(N^3). How do we ignore the 99N^2 along with the 500?
The purpose of the Big-O notation is to find what is the dominant factor in the asymptotic behavior of a function as the value tends towards the infinity.
As we walk through the function domain, some factors become more important than others.
Imagine f(n) = n^3+n^2. As n goes to infinity, n^2 becomes less and less relevant when compared with n^3.
But that's just the intuition behind the definition. In practice we ignore some portions of the function because of the formal definition:
f(x) = O(g(x)) as x->infinity
if and only if there is a positive real M and a real x_0 such as
|f(x)| <= M|g(x)| for all x > x_0.
That's in wikipedia. What that actually means is that there is a point (after x_0) after which some multiple of g(x) dominates f(x). That definition acts like a loose upper bound on the value of f(x).
From that we can derive many other properties, like f(x)+K = O(f(x)), f(x^n+x^n-1)=O(x^n), etc. It's just a matter of using the definition to prove those.
In special, the intuition behind removing the coefficient (K*f(x) = O(f(x))) lies in what we try to measure with computational complexity. Ultimately it's all about time (or any resource, actually). But it's hard to know how much time each operation take. One algorithm may perform 2n operations and the other n, but the latter may have a large constant time associated with it. So, for this purpose, isn't easy to reason about the difference between n and 2n.
From a (complexity) theory point of view, the coefficients represent hardware details that we can ignore. Specifically, the Linear Speedup Theorem dictates that for any problem we can always throw an exponentially increasing amount of hardware (money) at a computer to get a linear boost in speed.
Therefore, modulo expensive hardware purchases two algorithms that solve the same problem, one at twice the speed of the other for all input sizes, are considered essentially the same.
Big-O (Landau) notation has its origins independently in number theory, where one of its uses is to create a kind of equivalence between functions: if a given function is bounded above by another and simultaneously is bounded below by a scaled version of that same other function, then the two functions are essentially the same from an asymptotic point of view. The definition of Big-O (actually, "Big-Theta") captures this situation: the "Big-O" (Theta) of the two functions are exactly equal.
The fact that Big-O notation allows us to disregard the leading constant when comparing the growth of functions makes Big-O an ideal vehicle to measure various qualities of algorithms while respecting (ignoring) the "freebie" optimizations offered by the Linear Speedup Theorem.
Big O provides a good estimate of what algorithms are more efficient for larger inputs, all things being equal; this is why for an algorithm with an n^3 and an n^2 factor we ignore the n^2 factor, because even if the n^2 factor has a large constant it will eventually be dominated by the n^3 factor.
However, real algorithms incorporate more than simple Big O analysis, for example a sorting algorithm will often start with a O(n * log(n)) partitioning algorithm like quicksort or mergesort, and when the partitions become small enough the algorithm will switch to a simpler O(n^2) algorithm like insertionsort - for small inputs insertionsort is generally faster, although a basic Big O analysis doesn't reveal this.
The constant factors often aren't very interesting, and so they're omitted - certainly a difference in factors on the order of 1000 is interesting, but usually the difference in factors are smaller, and then there are many more constant factors to consider that may dominate the algorithms' constants. Let's say I've got two algorithms, the first with running time 3*n and the second with running time 2*n, each with comparable space complexity. This analysis assumes uniform memory access; what if the first algorithm interacts better with the cache, and this more than makes up for the worse constant factor? What if more compiler optimizations can be applied to it, or it behaves better with the memory management subsystem, or requires less expensive IO (e.g. fewer disk seeks or fewer database joins or whatever) and so on? The constant factor for the algorithm is relevant, but there are many more constants that need to be considered. Often the easiest way to determine which algorithm is best is just to run them both on some sample inputs and time the results; over-relying on the algorithms' constant factors would hide this step.
An other thing is that, what I have understood, the complexity of 2N^3 + 99N^2 + 500 will be O(N^3). So how do we ignore/remove 99N^2 portion even? Will it not make difference when let's say N is one miilion?
That's right, in that case the 99N^2 term is far overshadowed by the 2N^3 term. The point where they cross is at N=49.5, much less than one million.
But you bring up a good point. Asymptotic computational complexity analysis is in fact often criticized for ignoring constant factors that can make a huge difference in real-world applications. However, big-O is still a useful tool for capturing the efficiency of an algorithm in a few syllables. It's often the case that an n^2 algorithm will be faster in real life than an n^3 algorithm for nontrivial n, and it's almost always the case that a log(n) algorithm will be much faster than an n^2 algorithm.
In addition to being a handy yardstick for approximating practical efficiency, it's also an important tool for the theoretical analysis of algorithm complexity. Many useful properties arise from the composability of polynomials - this makes sense because nested looping is fundamental to computation, and those correspond to polynomial numbers of steps. Using asymptotic complexity analysis, you can prove a rich set of relationships between different categories of algorithms, and that teaches us things about exactly how efficiently certain problems can be solved.
Big O notation is not an absolute measure of complexity.
Rather it is a designation of how complexity will change as the variable changes. In other words as N increases the complexity will increase
Big O(f(N)).
To explain why terms are not included we look at how fast the terms increase.
So, Big O(2n+2) has two terms 2n and 2. Looking at the rate of increase
Big O(2) this term will never increase it does not contribute to the rate of increase at all so it goes away. Also since 2n increases faster than 2, the 2 turns into noise as n gets very large.
Similarly Big O(2n^3 + 99n^2) compares Big O(2n^3) and Big O(99n^2). For small values, say n < 50, the 99n^2 will contribute a larger nominal percentage than 2n^3. However if n gets very large, say 1000000, then 99n^2 although nominally large it is insignificant (close to 1 millionth) compared to the size of 2n^3.
As a consequence Big O(n^i) < Big O(n^(i+1)).
Coefficients are removed because of the mathematical definition of Big O.
To simplify the definition says Big O(f(n)) = Big O(f(cn)) for a constant c. This needs to be taken on faith because the reason for this is purely mathematical, and as such the proof would be too complex and dry to explain in simple terms.
The mathematical reason:
The real reason why we do this, is the way Big O-Notation is defined:
A series (or lets use the word function) f(n) is in O(g(n)) when the series f(n)/g(n) is bounded. Example:
f(n)= 2*n^2
g(n)= n^2
f(n) is in O(g(n)) because (2*n^2)/(n^2) = 2 as n approaches Infinity. The term (2*n^2)/(n^2) doesn't become infinitely large (its always 2), so the quotient is bounded and thus 2*n^2 is in O(n^2).
Another one:
f(n) = n^2
g(n) = n
The term n^2/n (= n) becomes infinetely large, as n goes to infinity, so n^2 is not in O(n).
The same principle applies, when you have
f(n) = n^2 + 2*n + 20
g(n) = n^2
(n^2 + 2*n + 20)/(n^2) is also bounded, because it tends to 1, as n goes to infinity.
Big-O Notation basically describes, that your function f(n) is (from some value of n on to infinity) smaller than a function g(n), multiplied by a constant. With the previous example:
2*n^2 is in O(n^2), because we can find a value C, so that 2*n^2 is smaller than C*n^2. In this example we can pick C to be 5 or 10, for example, and the condition will be satisfied.
So what do you get out of this? If you know your algorithm has complexity O(10^n) and you input a list of 4 numbers, it may take only a short time. If you input 10 numbers, it will take a million times longer! If it's one million times longer or 5 million times longer doesn't really matter here. You can always use 5 more computers for it and have it run in the same amount of time, the real problem here is, that it scales incredibly bad with input size.
For practical applications the constants does matter, so O(2 n^3) will be better than O(1000 n^2) for inputs with n smaller than 500.
There are two main ideas here: 1) If your algorithm should be great for any input, it should have a low time complexity, and 2) that n^3 grows so much faster than n^2, that perfering n^3 over n^2 almost never makes sense.

Algorithms bounds and functions describing algorithm

ok so basically i need to understand how i can compare functions so that i can find big O big theta and big omega for algorithms of a program
my mathematics background is not very strong but i have the foundations down
and my question is
is there a mathematical way to find where two functions will intersect and eventually one dominate the other from some point n
for example if i have a function
2n^2 and 64nlog(n) [with log to base 2]
how can i find at which values of n, 2n^2 will upper bound( hope i used the correct term here) 64nlog(n) and also how to apply this to any other function
is it just simply guess work?
You just need to find the intercepts of the two functions. So set them equal to each other and solve for n. Or just plot them and get a rough idea of the intercepts so you know at what size of data you should switch between each algorithm. Also, Wolfram Alpha has useful function solving and plotting tools too, just in case you are a bit rusty on math.
Big O, Big Theta, and Big Omega are about general sorts of growth patterns for algorithms. Each algorithm can be implemented an infinite number of ways. Each implementation may have a specific execution time, which relates to the Big O of the algorithm. You can compare the execution-time-per-input-size of two implementations of an algorithm, but not for an algorithm by itself. Big O, Big Theta, and Big Omega say next-to-nothing about the execution-time of an algorithm. As such, you cannot even guess a specific intersection point of where one algorithm becomes faster, because such a concept makes no sense. We can discuss intersection points in theory, but not in detail, because it has no value for algorithms, only implementations.
It's also important to note that Big O (and similar) have no constant factors, like your functions do.
http://en.wikipedia.org/wiki/Big_O_notation
You can divide out an n on both sides, and a common factor 2, and then solve this:
32 log(n) <= c n for n >= n_0
Let's say c = 32, because then it's log(n) <= n (which looks nice), and n_0 can be 1.
But this sort of thing has already been done. Unless you are in CS class, you can just say that O(n log n) is a subset of O(n2) without proving it, it's well-known anyway.
For big-O, big-Theta, and big-Omega, you don't have to find the intersection point. You just have to prove that one function eventually dominates the other (up to constant factors). One useful tool for this for example is L'Hopital's rule: Take the ratio of the two running time functions and compute the limit as n goes to infinity, and if the limit is infinity/infinity then you can apply L'Hopital's rule to get that the limit of the ratio is equal to the limit of the ratio of derivatives, and sometimes get a solution. For example this shows that log(n) = O(n^c) for any c > 0.

Big-Oh Notation

I seem to be confused by a question.
Here's the question, followed by my assumptions:
Al and Bob are arguing about their algorithms. Al claims his O(n log n)-time method is always faster than Bob’s O(n^2)-time method. To settle the issue, they perform a set of experiments. To Al’s dismay, they find that if n<100, the O(n^2)-time algorithm runs faster, and only when n>= 100 is the O(n log n)-time one better. Explain how this is possible.
Based on what I understand, an algorithm written in an O(n^2)-time method is effective only for small amounts of input n. As the input increases, the efficiency decreases as the run time increases dramatically since the run time is proportional to the square of the input. The O(n^2)-time method is more efficient than the O(n log n)-time method only for very small amounts of input (in this case for inputs less than 100), but as the input grows larger (in this case 100 or larger), the O(n log n) becomes the much more efficient method.
Am I only stating what is obvious and presented in the question or does the answer seem to satisfy the question?
You noted in your answer that to be O(N^2), the run-time is proportional to the square of the size of the input. Follow up on that -- there is a constant of proportionality which is present but not described by big-O notation. For actual timings, the magnitudes of the constants matter.
Big-O also ignores lower order terms, since asymptotically they are dominated by the highest order term, but those lower order terms still contribute to the actual timings.
As a consequence of either (or both) of these issues, a function which has a higher growth rate can nevertheless have a smaller outcome for a limited range of inputs.
No, I think this is not enough.
I would expect an answer to explain how the big-oh definition allows a function f(x) > g(x), for some x, even if O(f(x)) < O(g(x)). There a formalism that would answer it in two lines.
Another option is to answer it more intuitively, explaining how the constant term of the time function plays a fundamental role in small input sizes.
You are correct if you consider input explicitly i.e., n<=100 and so on. But actually asymptotic analysis( big O, omega etc) is done for considerable large inputs, like when n tends to infinite. nlogn is efficient than n^2. This statement is true when n is sufficiently large. We talk about big-oh without considering the input size. This means asymtotic analysis by default assumes input size is very large. We ignore specific values of n considering them as machine dependent. That is the reason why constants are ignored( as n approaches sufficient large , effect of constants becomes negligible)
Your answer is correct as far as it goes but it does not mention how or why this can happen. One explanation is that there is a fixed amount of (extra) overhead with the O(n log n)-time method such that the total benefit of the method doesn't add up to equal/exceed the overhead until 100 such benefits have aggregated.
By definition:
T(n) is O(f(n)) if and only if exists two constants C and n0 that:
T(n) < Cf(n) when n > n0.
In your cases this means that coefficients before n^2 is smaller than before nlogn or asymptotic limits can be acquired on n > 100.

Trying to understand Big-oh notation

Hi I would really appreciate some help with Big-O notation. I have an exam in it tomorrow and while I can define what f(x) is O(g(x)) is, I can't say I thoroughly understand it.
The following question ALWAYS comes up on the exam and I really need to try and figure it out, the first part seems easy (I think) Do you just pick a value for n, compute them all on a claculator and put them in order? This seems to easy though so I'm not sure. I'm finding it very hard to find examples online.
From lowest to highest, what is the
correct order of the complexities
O(n2), O(log2 n), O(1), O(2n), O(n!),
O(n log2 n)?
What is the
worst-case computational-complexity of
the Binary Search algorithm on an
ordered list of length n = 2k?
That guy should help you.
From lowest to highest, what is the
correct order of the complexities
O(n2), O(log2 n), O(1), O(2n), O(n!),
O(n log2 n)?
The order is same as if you compare their limit at infinity. like lim(a/b), if it is 1, then they are same, inf. or 0 means one of them is faster.
What is the worst-case
computational-complexity of the Binary
Search algorithm on an ordered list of
length n = 2k?
Find binary search best/worst Big-O.
Find linked list access by index best/worst Big-O.
Make conclusions.
Hey there. Big-O notation is tough to figure out if you don't really understand what the "n" means. You've already seen people talking about how O(n) == O(2n), so I'll try to explain exactly why that is.
When we describe an algorithm as having "order-n space complexity", we mean that the size of the storage space used by the algorithm gets larger with a linear relationship to the size of the problem that it's working on (referred to as n.) If we have an algorithm that, say, sorted an array, and in order to do that sort operation the largest thing we did in memory was to create an exact copy of that array, we'd say that had "order-n space complexity" because as the size of the array (call it n elements) got larger, the algorithm would take up more space in order to match the input of the array. Hence, the algorithm uses "O(n)" space in memory.
Why does O(2n) = O(n)? Because when we talk in terms of O(n), we're only concerned with the behavior of the algorithm as n gets as large as it could possibly be. If n was to become infinite, the O(2n) algorithm would take up two times infinity spaces of memory, and the O(n) algorithm would take up one times infinity spaces of memory. Since two times infinity is just infinity, both algorithms are considered to take up a similar-enough amount of room to be both called O(n) algorithms.
You're probably thinking to yourself "An algorithm that takes up twice as much space as another algorithm is still relatively inefficient. Why are they referred to using the same notation when one is much more efficient?" Because the gain in efficiency for arbitrarily large n when going from O(2n) to O(n) is absolutely dwarfed by the gain in efficiency for arbitrarily large n when going from O(n^2) to O(500n). When n is 10, n^2 is 10 times 10 or 100, and 500n is 500 times 10, or 5000. But we're interested in n as n becomes as large as possible. They cross over and become equal for an n of 500, but once more, we're not even interested in an n as small as 500. When n is 1000, n^2 is one MILLION while 500n is a "mere" half million. When n is one million, n^2 is one thousand billion - 1,000,000,000,000 - while 500n looks on in awe with the simplicity of it's five-hundred-million - 500,000,000 - points of complexity. And once more, we can keep making n larger, because when using O(n) logic, we're only concerned with the largest possible n.
(You may argue that when n reaches infinity, n^2 is infinity times infinity, while 500n is five hundred times infinity, and didn't you just say that anything times infinity is infinity? That doesn't actually work for infinity times infinity. I think. It just doesn't. Can a mathematician back me up on this?)
This gives us the weirdly counterintuitive result where O(Seventy-five hundred billion spillion kajillion n) is considered an improvement on O(n * log n). Due to the fact that we're working with arbitrarily large "n", all that matters is how many times and where n appears in the O(). The rules of thumb mentioned in Julia Hayward's post will help you out, but here's some additional information to give you a hand.
One, because n gets as big as possible, O(n^2+61n+1682) = O(n^2), because the n^2 contributes so much more than the 61n as n gets arbitrarily large that the 61n is simply ignored, and the 61n term already dominates the 1682 term. If you see addition inside a O(), only concern yourself with the n with the highest degree.
Two, O(log10n) = O(log(any number)n), because for any base b, log10(x) = log_b(*x*)/log_b(10). Hence, O(log10n) = O(log_b(x) * 1/(log_b(10)). That 1/log_b(10) figure is a constant, which we've already shown drop out of O(n) notation.
Very loosely, you could imagine picking extremely large values of n, and calculating them. Might exceed your calculator's range for large factorials, though.
If the definition isn't clear, a more intuitive description is that "higher order" means "grows faster than, as n grows". Some rules of thumb:
O(n^a) is a higher order than O(n^b) if a > b.
log(n) grows more slowly than any positive power of n
exp(n) grows more quickly than any power of n
n! grows more quickly than exp(kn)
Oh, and as far as complexity goes, ignore the constant multipliers.
That's enough to deduce that the correct order is O(1), O(log n), O(2n) = O(n), O(n log n), O(n^2), O(n!)
For big-O complexities, the rule is that if two things vary only by constant factors, then they are the same. If one grows faster than another ignoring constant factors, then it is bigger.
So O(2n) and O(n) are the same -- they only vary by a constant factor (2). One way to think about it is to just drop the constants, since they don't impact the complexity.
The other problem with picking n and using a calculator is that it will give you the wrong answer for certain n. Big O is a measure of how fast something grows as n increases, but at any given n the complexities might not be in the right order. For instance, at n=2, n^2 is 4 and n! is 2, but n! grows quite a bit faster than n^2.
It's important to get that right, because for running times with multiple terms, you can drop the lesser terms -- ie, if O(f(n)) is 3n^2+2n+5, you can drop the 5 (constant), drop the 2n (3n^2 grows faster), then drop the 3 (constant factor) to get O(n^2)... but if you don't know that n^2 is bigger, you won't get the right answer.
In practice, you can just know that n is linear, log(n) grows more slowly than linear, n^a > n^b if a>b, 2^n is faster than any n^a, and n! is even faster than that. (Hint: try to avoid algorithms that have n in the exponent, and especially avoid ones that are n!.)
For the second part of your question, what happens with a binary search in the worst case? At each step, you cut the space in half until eventually you find your item (or run out of places to look). That is log2(2k). A search where you just walk through the list to find your item would take n steps. And we know from the first part that O(log(n)) < O(n), which is why binary search is faster than just a linear search.
Good luck with the exam!
In easy to understand terms the Big-O notation defines how quickly a particular function grows. Although it has its roots in pure mathematics its most popular application is the analysis of algorithms which can be analyzed on the basis of input size to determine the approximate number of operations that must be performed.
The benefit of using the notation is that you can categorize function growth rates by their complexity. Many different functions (an infinite number really) could all be expressed with the same complexity using this notation. For example, n+5, 2*n, and 4*n + 1/n all have O(n) complexity because the function g(n)=n most simply represents how these functions grow.
I put an emphasis on most simply because the focus of the notation is on the dominating term of the function. For example, O(2*n + 5) = O(2*n) = O(n) because n is the dominating term in the growth. This is because the notation assumes that n goes to infinity which causes the remaining terms to play less of a role in the growth rate. And, by convention, any constants or multiplicatives are omitted.
Read Big O notation and Time complexity for more a more in depth overview.
See this and look up for solutions here is first one.

Resources