Binary number with two one insite it - algorithm

is there an algorithm that find all binaries numbers between a and b, in which there are exactly two one?
For example:
a = 5
b = 10
find(a, b)
It will find
5 = 00000101
6 = 00000110
9 = 00001001
10 = 00001010

A bit-hacking trick that iterates through all bit-paterns that contain the same number of 1-bits looks as follows
unsigned next_combination(unsigned x)
{
unsigned u = x & -x;
unsigned v = u + x;
x = v + (((v ^ x) / u) >> 2);
return x;
}
It generates the values in ascending order. It takes the previous value and transforms it into the next one with the same number of 1-bits. This means that you just have to start from the minimal bit combination that is greater or equal to a and iterate until you encounter a value greater than b.
Of course, in this form it will only work if your a and b are within the range of unsigned.

These numbers are of the form
2^m + 2^n
with m > n.
You can find them by exhaustive search on m, n.
M= 1
while M < b:
N= 1
while M + N <= b:
if a <= M + N:
print M + N
N+= N
M+= M
This can probably slightly be optimized to avoid searching when 2^m < a, but the benefit will be tiny: the complexity is O(log²b), which is already small.

Related

Are there any effective many-to-one algorithms without using modulo operator?

Given a set containing 1~N and I tried to fairly map them into one of M slots (N > M). I think this is many-to-one mapping problems.
The naive solution is using modulo operator, given N = 10 and M = 3, we can do mapping like:
N M
1 % 3 = 1 (assign to 2nd slot)
2 % 3 = 2 (assign to 3rd slot)
...
9 % 3 = 0 (assign to 1st slot)
This solution seems pretty fair but takes expensive operator. Are there any existing algorithm to take care of this kind of problem?
Thanks in advance!
It is debatable if % is a slow operator, but bit manipulation is faster. If you are happy to map into a number of bins that are a power of two, M=2^k, then you mask out the lower k bits
x & (M - 1);
or
x & ((1 << k)-1);
If the number of bins is a Mersenne prime, M = 2^s-1 there is also a quick way to get the remainder:
unsigned int mod_Mersenne(unsigned int x, unsigned int s)
{
unsigned int p = (1 << s) - 1;
unsigned int y = (x & p) + (x >> s);
return (y > p) ? y - p : y;
}
I believe you can also do it branchless, but I don’t remember how.
If you need to bin the numbers in sequence, as in your example, and if you can choose M to be the word size of a smaller integer, you can also exploit that unsigned integer types handle overflow like modulo, so you could do something like
unsigned char i = 0; // M = 256 (probably)
for (int j = 0; j < N; j++, i++)
bin[i]++; // do something with the bin
When i moves past the size of an unsigned char it wraps around to zero.
This is only guaranteed for unsigned, so don’t use a signed integer here. And be ware that a char doesn’t have to be eight bit, but you can check. (It is very likely to be).
Generally, unsigned arithmetic behaves as if you have already taken modulo, so you can exploit that if you can choose N to match a word size.
Modulus m = n % M with constant M is typically implemented directly from the definition
m = n - M*(n/M)
which can be easily regarded expensive - at least in comparison to bit masking.
For division by a constant, sophisticated compilers typically implement another algorithm (developed by Montgomery), which contains first an approximation by reciprocal multiplication, then one or two adjustment stages to fix some corner cases, where the first approximations m' = (n * R) >> K) can be off by one (or possibly two).
This suggests a few improvements:
carefully skipping the adjustment stages, offsetting the (1<<k)/M with some value, so that the top bits of the product of the new coefficient 0 <= m'' = (n * R) >> K < M are purely within the wanted range.
considering if the mapping function actually needs to be modulus: if it's sufficient that 0<= m'' < M, which leaves out the need to multiply the m = n - M*m''.
For N=10, M=3, the suitable coefficients are K=256/3 = 85, k = 8, which maps the values n=0..9 to m=0..2 with m = n * 85 >> 8 as
// n = 0 1 2 3 4 5 6 7 8 9
// m = 0 0 0 0 1 1 1 2 2 2 (approximation of n/3)
(The smallest numbers to get the same set of output values is btw K=16/3 = 5, k = 4).

Find minimum sum that cannot be formed

Given positive integers from 1 to N where N can go upto 10^9. Some K integers from these given integers are missing. K can be at max 10^5 elements. I need to find the minimum sum that can't be formed from remaining N-K elements in an efficient way.
Example; say we have N=5 it means we have {1,2,3,4,5} and let K=2 and missing elements are: {3,5} then remaining array is now {1,2,4} the minimum sum that can't be formed from these remaining elements is 8 because :
1=1
2=2
3=1+2
4=4
5=1+4
6=2+4
7=1+2+4
So how to find this un-summable minimum?
I know how to find this if i can store all the remaining elements by this approach:
We can use something similar to Sieve of Eratosthenes, used to find primes. Same idea, but with different rules for a different purpose.
Store the numbers from 0 to the sum of all the numbers, and cross off 0.
Then take numbers, one at a time, without replacement.
When we take the number Y, then cross off every number that is Y plus some previously-crossed off number.
When we have done this for every number that is remaining, the smallest un-crossed-off number is our answer.
However, its space requirement is high. Can there be a better and faster way to do this?
Here's an O(sort(K))-time algorithm.
Let 1 &leq; x1 &leq; x2 &leq; … &leq; xm be the integers not missing from the set. For all i from 0 to m, let yi = x1 + x2 + … + xi be the partial sum of the first i terms. If it exists, let j be the least index such that yj + 1 < xj+1; otherwise, let j = m. It is possible to show via induction that the minimum sum that cannot be made is yj + 1 (the hypothesis is that, for all i from 0 to j, the numbers x1, x2, …, xi can make all of the sums from 0 to yi and no others).
To handle the fact that the missing numbers are specified, there is an optimization that handles several consecutive numbers in constant time. I'll leave it as an exercise.
Let X be a bitvector initialized to zero. For each number Ni you set X = (X | X << Ni) | Ni. (i.e. you can make Ni and you can increase any value you could make previously by Ni).
This will set a '1' for every value you can make.
Running time is linear in N, and bitvector operations are fast.
process 1: X = 00000001
process 2: X = (00000001 | 00000001 << 2) | (00000010) = 00000111
process 4: X = (00000111 | 00000111 << 4) | (00001000) = 01111111
First number you can't make is 8.
Here is my O(K lg K) approach. I didn't test it very much because of lazy-overflow, sorry about that. If it works for you, I can explain the idea:
const int MAXK = 100003;
int n, k;
int a[MAXK];
long long sum(long long a, long long b) { // sum of elements from a to b
return max(0ll, b * (b + 1) / 2 - a * (a - 1) / 2);
}
void answer(long long ans) {
cout << ans << endl;
exit(0);
}
int main()
{
cin >> n >> k;
for (int i = 1; i <= k; ++i) {
cin >> a[i];
}
a[0] = 0;
a[k+1] = n+1;
sort(a, a+k+2);
long long ans = 0;
for (int i = 1; i <= k+1; ++i) {
// interval of existing numbers [lo, hi]
int lo = a[i-1] + 1;
int hi = a[i] - 1;
if (lo <= hi && lo > ans + 1)
break;
ans += sum(lo, hi);
}
answer(ans + 1);
}
EDIT: well, thanks God #DavidEisenstat in his answer wrote the description of the approach I used, so I don't have to write it. Basically, what he mentions as exercise is not adding the "existing numbers" one by one, but all at the same time. Before this,you just need to check if some of them breaks the invariant, which can be done using binary search. Hope it helped.
EDIT2: as #DavidEisenstat pointed in the comments, the binary search is not needed, since only the first number in every interval of existing numbers can break the invariant. Modified the code accordingly.

Find pairs in an array such that a%b = k , where k is a given integer

Here is an interesting programming puzzle I came across . Given an array of positive integers, and a number K. We need to find pairs(a,b) from the array such that a % b = K.
I have a naive O(n^2) solution to this where we can check for all pairs such that a%b=k. Works but inefficient. We can certainly do better than this can't we ? Any efficient algorithms for the same? Oh and it's NOT homework.
Sort your array and binary search or keep a hash table with the count of each value in your array.
For a number x, we can find the largest y such that x mod y = K as y = x - K. Binary search for this y or look it up in your hash and increment your count accordingly.
Now, this isn't necessarily the only value that will work. For example, 8 mod 6 = 8 mod 3 = 2. We have:
x mod y = K => x = q*y + K =>
=> x = q(x - K) + K =>
=> x = 1(x - K) + K =>
=> x = 2(x - K)/2 + K =>
=> ...
This means you will have to test all divisors of y as well. You can find the divisors in O(sqrt y), giving you a total complexity of O(n log n sqrt(max_value)) if using binary search and O(n sqrt(max_value)) with a hash table (recommended especially if your numbers aren't very large).
Treat the problem as having two separate arrays as input: one for the a numbers and a % b = K and one for the b numbers. I am going to assume that everything is >= 0.
First of all, you can discard any b <= K.
Now think of every number in b as generating a sequence K, K + b, K + 2b, K + 3b... You can record this using a pair of numbers (pos, b), where pos is incremented by b at each stage. Start with pos = 0.
Hold these sequences in a priority queue, so you can find the smallest pos value at any given time. Sort the array of a numbers - in fact you could do this ahead of time and discard any duplicates.
For each a number
While the smallest pos in the priority queue is <= a
Add the smallest multiple of b to it to make it >= a
If it is == a, you have a match
Update the stored value of pos for that sequence, re-ordering the priority queue
At worst, you end up comparing every number with every other number, which is the same as the simple solution, but with priority queue and sorting overhead. However, large values of b may remain unexamined in the priority queue while several a numbers pass through, in which case this does better - and if there are a lot of numbers to process and they are all different, some of them must be large.
This answer mentions the main points of an algorithm (called DL because it uses “divisor lists” ) and gives details via a program, called amodb.py.
Let B be the input array, containing N positive integers. Without much loss of generality, suppose B[i] > K for all i and that B is in ascending order. (Note that x%B[i] < K if B[i] < K; and where B[i] = K, one can report pairs (B[i], B[j]) for all j>i. If B is not sorted initially, charge a cost of O(N log N) to sort it.)
In algorithm DL and program amodb.py, A is an array with K pre-subtracted from the input array elements. Ie, A[i] = B[i] - K. Note that if a%b == K, then for some j we have a = b*j + K or a-K = b*j. That is, a%b == K iff a-K is a multiple of b. Moreover, if a-K = b*j and p is any factor of b, then p is a factor of a-K.
Let the prime numbers from 2 to 97 be called “small factors”. When N numbers are uniformly randomly selected from some interval [X,Y], on the order of N/ln(Y) of the numbers will have no small factors; a similar number will have a greatest small factor of 2; and declining proportions will have successively larger greatest small factors. For example, on the average about N/97 will be divisible by 97, about N/89-N/(89*97) by 89 but not 97, etc. Generally, when members of B are random, lists of members with certain greatest small factors or with no small factors are sub-O(N/ln(Y)) in length.
Given a list Bd containing members of B divisible by largest small factor p, DL tests each element of Bd against elements of list Ad, those elements of A divisible by p. But given a list Bp for elements of B without small factors, DL tests each of Bp's elements against all elements of A. Example: If N=25, p=13, Bd=[18967, 23231], and Ad=[12779, 162383], then DL tests if any of 12779%18967, 162383%18967, 12779%23231, 162383%23231 are zero. Note that it is possible to cut the number of tests in half in this example (and many others) by noticing 12779<18967, but amodb.py does not include that optimization.
DL makes J different lists for J different factors; in one version of amodb.py, J=25 and the factor set is primes less than 100. A larger value of J would increase the O(N*J) time to initialize divisor lists, but would slightly decrease the O(N*len(Bp)) time to process list Bp against elements of A. See results below. Time to process other lists is O((N/logY)*(N/logY)*J), which is in sharp contrast to the O(n*sqrt(Y)) complexity for a previous answer's method.
Shown next is output from two program runs. In each set, the first Found line is from a naïve O(N*N) test, and the second is from DL. (Note, both DL and the naïve method would run faster if too-small A values were progressively removed.) The time ratio in the last line of the first test shows a disappointingly low speedup ratio of 3.9 for DL vs naïve method. For that run, factors included only the 25 primes less than 100. For the second run, with better speedup of ~ 4.4, factors included numbers 2 through 13 and primes up to 100.
$ python amodb.py
N: 10000 K: 59685 X: 100000 Y: 1000000
Found 208 matches in 21.854 seconds
Found 208 matches in 5.598 seconds
21.854 / 5.598 = 3.904
$ python amodb.py
N: 10000 K: 97881 X: 100000 Y: 1000000
Found 207 matches in 21.234 seconds
Found 207 matches in 4.851 seconds
21.234 / 4.851 = 4.377
Program amodb.py:
import random, time
factors = [2,3,4,5,6,7,8,9,10,11,12,13,17,19,23,29,31,37,41,43,47,53,59,61,67,71,73,79,83,89,97]
X, N = 100000, 10000
Y, K = 10*X, random.randint(X/2,X)
print "N: ", N, " K: ", K, "X: ", X, " Y: ", Y
B = sorted([random.randint(X,Y) for i in range(N)])
NP = len(factors); NP1 = NP+1
A, Az, Bz = [], [[] for i in range(NP1)], [[] for i in range(NP1)]
t0 = time.time()
for b in B:
a, aj, bj = b-K, -1, -1
A.append(a) # Add a to A
for j,p in enumerate(factors):
if a % p == 0:
aj = j
Az[aj].append(a)
if b % p == 0:
bj = j
Bz[bj].append(b)
Bp = Bz.pop() # Get not-factored B-values list into Bp
di = time.time() - t0; t0 = time.time()
c = 0
for a in A:
for b in B:
if a%b == 0:
c += 1
dq = round(time.time() - t0, 3); t0 = time.time()
c=0
for i,Bd in enumerate(Bz):
Ad = Az[i]
for b in Bd:
for ak in Ad:
if ak % b == 0:
c += 1
for b in Bp:
for ak in A:
if ak % b == 0:
c += 1
dr = round(di + time.time() - t0, 3)
print "Found", c, " matches in", dq, "seconds"
print "Found", c, " matches in", dr, "seconds"
print dq, "/", dr, "=", round(dq/dr, 3)

Double Squares: counting numbers which are sums of two perfect squares

Source: Facebook Hacker Cup Qualification Round 2011
A double-square number is an integer X which can be expressed as the sum of two perfect squares. For example, 10 is a double-square because 10 = 32 + 12. Given X, how can we determine the number of ways in which it can be written as the sum of two squares? For example, 10 can only be written as 32 + 12 (we don't count 12 + 32 as being different). On the other hand, 25 can be written as 52 + 02 or as 42 + 32.
You need to solve this problem for 0 ≤ X ≤ 2,147,483,647.
Examples:
10 => 1
25 => 2
3 => 0
0 => 1
1 => 1
Factor the number n, and check if it has a prime factor p with odd valuation, such that p = 3 (mod 4). It does if and only if n is not a sum of two squares.
The number of solutions has a closed form expression involving the number of divisors of n. See this, Theorem 3 for a precise statement.
Here is my simple answer in O(sqrt(n)) complexity
x^2 + y^2 = n
x^2 = n-y^2
x = sqrt(n - y^2)
x should be integer so (n-y^2) should be perfect square. Loop to y=[0, sqrt(n)] and check whether (n-y^2) is perfect square or not
Pseudocode :
count = 0;
for y in range(0, sqrt(n))
if( isPerfectSquare(n - y^2))
count++
return count/2
Here's a much simpler solution:
create list of squares in the given range (that's 46340 values for the example given)
for each square value x
if list contains a value y such that x + y = target value (i.e. does [target - x] exist in list)
output √x, √y as solution (roots can be stored in a std::map lookup created in the first step)
Looping through all pairs (a, b) is infeasible given the constrains on X. There is a faster way though!
For fixed a, we can work out b: b = √(X - a2). b won't always be an integer though, so we have to check this. Due to precision issues, perform the check with a small tolerance: if b is x.99999, we can be fairly certain it's an integer. So we loop through all possible values of a and count all cases where b is an integer. We need to be careful not to double-count, so we place the constraint that a <= b. For X = a2 + b2, a will be at most √(X/2) with this constraint.
Here is an implementation of this algorithm in C++:
int count = 0;
// add EPS to avoid flooring x.99999 to x
for (int a = 0; a <= sqrt(X/2) + EPS; a++) {
int b2 = X - a*a; // b^2
int b = (int) (sqrt(b2) + EPS);
if (abs(b - sqrt(b2)) < EPS) // check b is an integer
count++;
}
cout << count << endl;
See it on ideone with sample input
Here's a version which is trivially O(sqrt(N)) and avoids all loop-internal branches.
Start by generating all squares up to the limit, easily done without any multiplications, then initialize a l and r index.
In each iteration you calculate the sum, then update the two indices and the count based on a comparison with the target value. This is sqrt(N) iterations to generate the table and maximum sqrt(N) iterations of the search loop. Estimated running time with a reasonable compiler is max 10 clock cycles per sqrt(N), so for a maximum input value if 2^31 (sqrt(N) ~= 46341) this should correspond to less than 500K clock cycles or a few tenths of a second:
unsigned countPairs(unsigned n)
{
unsigned sq = 0, i;
unsigned square[65536];
for (i = 0; sq <= n; i++) {
square[i] = sq;
sq += i+i+1;
}
unsigned l = 0, r = i-1, count = 0;
do {
unsigned sum = square[l] + square[r];
l += sum <= n; // Increment l if the sum is <= N
count += sum == n; // Increment the count if a match
r -= sum >= n; // Decrement r if the sum is >= N
} while (l <= r);
return count;
}
A good compiler can note that the three compares at the end are all using the same operands so it only needs a single CMP opcode followed by three different conditional move operations (CMOVcc).
I was in a hurry, so solved it using a rather brute-force approach (very similar to marcog's) using Python 2.6.
def is_perfect_square(x):
rt = int(math.sqrt(x))
return rt*rt == x
def double_sqaures(n):
rng = int(math.sqrt(n))
ways = 0
for i in xrange(rng+1):
if is_perfect_square(n - i*i):
ways +=1
if ways % 2 == 0:
ways = ways // 2
else:
ways = ways // 2 + 1
return ways
Note: ways will be odd when the number is a perfect sqaure.
The number of solutions (x,y) of
x^2+y^2=n
over the integers is exactly 4 times the number of divisors of n congruent to 1 mod 4.
Similar identities exist also for the problems
x^2 + 2y^2 = n
and
x^2 + y^2 + z^2 + w^2 = n.

finding a^b^c^... mod m

I would like to calculate:
abcd... mod m
Do you know any efficient way since this number is too big but a , b , c , ... and m fit in a simple 32-bit int.
Any Ideas?
Caveat: This question is different from finding ab mod m.
Also please note that abc is not the same as (ab)c. The later is equal to abc. Exponentiation is right-associative.
abc mod m = abc mod n mod m, where n = φ(m) Euler's totient function.
If m is prime, then n = m-1.
Edit: as Nabb pointed out, this only holds if a is coprime to m. So you would have to check this first.
The answer does not contain full formal mathematical proof of correctness. I assumed that it is unnecessary here. Besides, it would be very illegible on SO, (no MathJax for example).
I will use (just a little bit) specific prime factorization algorithm. It's not best option, but enough.
tl;dr
We want calculate a^x mod m. We will use function modpow(a,x,m). Described below.
If x is small enough (not exponential form or exists p^x | m) just calculate it and return
Split into primes and calculate p^x mod m separately for each prime, using modpow function
Calculate c' = gcd(p^x,m) and t' = totient(m/c')
Calculate w = modpow(x.base, x.exponent, t') + t'
Save pow(p, w - log_p c', m) * c' in A table
Multiple all elements from A and return modulo m
Here pow should look like python's pow.
Main problem:
Because current best answer is about only special case gcd(a,m) = 1, and OP did not consider this assumption in question, I decided to write this answer. I will also use Euler's totient theorem. Quoting wikipedia:
Euler's totient theorem:
If n and a are coprime positive integers, then
where φ(n) is Euler's totient function.
The assumption numbers are co-primeis very important, as Nabb shows in comment. So, firstly we need to ensure that the numbers are co-prime. (For greater clarity assume x = b^(c^...).) Because , where we can factorize a, and separately calculate q1 = (p1^alpha)^x mod m,q2 = (p2^beta)^x mod m... and then calculate answer in easy way (q1 * q2 * q3 * ... mod m). Number has at most o(log a) prime factors, so we will be force to perform at most o(log a) calculations.
In fact we doesn't have to split to every prime factor of a (if not all occur in m with other exponents) and we can combine with same exponent, but it is not noteworthy by now.
Now take a look at (p^z)^x mod m problem, where p is prime. Notice some important observation:
If a,b are positive integers smaller than m and c is some positive integer and , then true is sentence .
Using the above observation, we can receive solution for actual problem. We can easily calculate gcd((p^z)^x, m). If x*z are big, it is number how many times we can divide m by p. Let m' = m /gcd((p^z)^x, m). (Notice (p^z)^x = p^(z*x).) Let c = gcd(p^(zx),m). Now we can easily (look below) calculate w = p^(zx - c) mod m' using Euler's theorem, because this numbers are co-prime! And after, using above observation, we can receive p^(zx) mod m. From above assumption wc mod m'c = p^(zx) mod m, so the answer for now is p^(zx) mod m = wc and w,c are easy to calculate.
Therefore we can easily calculate a^x mod m.
Calculate a^x mod m using Euler's theorem
Now assume a,m are co-prime. If we want calculate a^x mod m, we can calculate t = totient(m) and notice a^x mod m = a^(x mod t) mod m. It can be helpful, if x is big and we know only specific expression of x, like for example x = 7^200.
Look at example x = b^c. we can calculate t = totient(m) and x' = b^c mod t using exponentiation by squaring algorithm in Θ(log c) time. And after (using same algorithm) a^x' mod m, which is equal to solution.
If x = b^(c^(d^...) we will solve it recursively. Firstly calculate t1 = totient(m), after t2 = totient(t1) and so on. For example take x=b^(c^d). If t1=totient(m), a^x mod m = a^(b^(c^d) mod t1), and we are able to say b^(c^d) mod t1 = b^(c^d mod t2) mod t1, where t2 = totient(t1). everything we are calculating using exponentiation by squaring algorithm.
Note: If some totient isn't co-prime to exponent, it is necessary to use same trick, as in main problem (in fact, we should forget that it's exponent and recursively solve problem, like in main problem). In above example, if t2 isn't relatively prime with c, we have to use this trick.
Calculate φ(n)
Notice simple facts:
if gcd(a,b)=1, then φ(ab) = φ(a)*φ(b)
if p is prime φ(p^k)=(p-1)*p^(k-1)
Therefore we can factorize n (ak. n = p1^k1 * p2^k2 * ...) and separately calculate φ(p1^k1),φ(p2^k2),... using fact 2. Then combine this using fact 1. φ(n)=φ(p1^k1)*φ(p2^k2)*...
It is worth remembering that, if we will calculate totient repeatedly, we may want to use Sieve of Eratosthenes and save prime numbers in table. It will reduce the constant.
python example: (it is correct, for the same reason as this factorization algorithm)
def totient(n) : # n - unsigned int
result = 1
p = 2 #prime numbers - 'iterator'
while p**2 <= n :
if(n%p == 0) : # * (p-1)
result *= (p-1)
n /= p
while(n%p == 0) : # * p^(k-1)
result *= p
n /= p
p += 1
if n != 1 :
result *= (n-1)
return result # in O(sqrt(n))
Case: abc mod m
Cause it's in fact doing the same thing many times, I believe this case will show you how to solve this generally.
Firstly, we have to split a into prime powers. Best representation will be pair <number,
exponent>.
c++11 example:
std::vector<std::tuple<unsigned, unsigned>> split(unsigned n) {
std::vector<std::tuple<unsigned, unsigned>> result;
for(unsigned p = 2; p*p <= n; ++p) {
unsigned current = 0;
while(n % p == 0) {
current += 1;
n /= p;
}
if(current != 0)
result.emplace_back(p, current);
}
if(n != 1)
result.emplace_back(n, 1);
return result;
}
After split, we have to calculate (p^z)^(b^c) mod m=p^(z*(b^c)) mod m for every pair. Firstly we should check, if p^(z*(b^c)) | m. If, yes the answer is just (p^z)^(b^c), but it's possible only in case in which z,b,c are very small. I believe I don't have to show code example to it.
And finally if p^(z*b^c) > m we have to calculate the answer. Firstly, we have to calculate c' = gcd(m, p^(z*b^c)). After we are able to calculate t = totient(m'). and (z*b^c - c' mod t). It's easy way to get an answer.
function modpow(p, z, b, c, m : integers) # (p^z)^(b^c) mod m
c' = 0
m' = m
while m' % p == 0 :
c' += 1
m' /= p
# now m' = m / gcd((p^z)^(b^c), m)
t = totient(m')
exponent = z*(b^c)-c' mod t
return p^c' * (p^exponent mod m')
And below Python working example:
def modpow(p, z, b, c, m) : # (p^z)^(b^c) mod m
cp = 0
while m % p == 0 :
cp += 1
m /= p # m = m' now
t = totient(m)
exponent = ((pow(b,c,t)*z)%t + t - (cp%t))%t
# exponent = z*(b^c)-cp mod t
return pow(p, cp)*pow(p, exponent, m)
Using this function, we can easily calculate (p^z)^(b^c) mod m, after we just have to multiple all results (mod m), we can also calculate everything on an ongoing basis. Example below. (I hope I didn't make mistake, writing.) Only assumption, b,c are big enough (b^c > log(m) ak. each p^(z*b^k) doesn't divide m), it's simple check and I don't see point to make clutter by it.
def solve(a,b,c,m) : # split and solve
result = 1
p = 2 # primes
while p**2 <= a :
z = 0
while a % p == 0 :
# calculate z
a /= p
z += 1
if z != 0 :
result *= modpow(p,z,b,c,m)
result %= m
p += 1
if a != 1 : # Possible last prime
result *= modpow(a, 1, b, c, m)
return result % m
Looks, like it works.
DEMO and it's correct!
Since for any relationship a=x^y, the relationship is invariant with respect to the numeric base you are using (base 2, base 6, base 16, etc).
Since the mod N operation is equivalent to extracting the least significant digit (LSD) in base N
Since the LSD of the result A in base N can only be affected by the LSD of X in base N, and not digits in higher places. (e.g. 34*56 = 30*50+30*6+50*4+4*5 = 10*(3+50+3*6+5*4)+4*6)
Therefore, from LSD(A)=LSD(X^Y) we can deduce
LSD(A)=LSD(LSD(X)^Y)
Therefore
A mod N = ((X mod N) ^ Y) mod N
and
(X ^ Y) mod N = ((X mod N) ^ Y) mod N)
Therefore you can do the mod before each power step, which keeps your result in the range of integers.
This assumes a is not negative, and for any x^y, a^y < MAXINT
This answer answers the wrong question. (alex)
Modular Exponentiation is a correct way to solve this problem, here's a little bit of hint:
To find abcd % m
You have to start with calculating
a % m, then ab % m, then abc % m and then abcd % m ... (you get the idea)
To find ab % m, you basically need two ideas: [Let B=floor(b/2)]
ab = (aB)2 if b is even OR ab = (aB)2*a if b is odd.
(X*Y)%m = ((X%m) * (Y%m)) % m
(% = mod)
Therefore,
if b is even
ab % m = (aB % m)2 % m
or if b is odd
ab % m = (((aB % m)2) * (a % m)) % m
So if you knew the value of aB, you can calculate this value.
To find aB, apply similar approach, dividing B until you reach 1.
e.g. To calculate 1613 % 11:
1613 % 11 = (16 % 11)13 % 11 = 513 % 11
= (56 % 11) * (56 % 11) * (5 % 11) <---- (I)
To find 56 % 11:
56 % 11 = ((53 % 11) * (53 % 11)) % 11 <----(II)
To find 53%11:
53 % 11 = ((51 % 11) * (51 % 11) * (5 % 11)) % 11
= (((5 * 5) % 11) * 5) % 11 = ((25 % 11) * 5) % 11 = (3 * 5) % 11 = 15 % 11 = 4
Plugging this value to (II) gives
56 % 11 = (((4 * 4) % 11) * 5) % 11 = ((16 % 11) * 5) % 11 = (5 * 5) % 11 = 25 % 11 = 3
Plugging this value to (I) gives
513 % 11 = ((3 % 11) * (3 % 11) * 5) % 11 = ((9 % 11) * 5) % 11 = 45 % 11 = 4
This way 513 % 11 = 4
With this you can calculate anything of form a513 % 11 and so on...
Look at the behavior of A^X mod M as X increases. It must eventually go into a cycle. Suppose the cycle has length P and starts after N steps. Then X >= N implies A^X = A^(X+P) = A^(X%P + (-N)%P + N) (mod M). Therefore we can compute A^B^C by computing y=B^C, z = y < N ? y : y%P + (-N)%P + N, return A^z (mod m).
Notice that we can recursively apply this strategy up the power tree, because the derived equation either has an exponent < M or an exponent involving a smaller exponent tower with a smaller dividend.
The only question is if you can efficiently compute N and P given A and M. Notice that overestimating N is fine. We can just set N to M and things will work out. P is a bit harder. If A and M are different primes, then P=M-1. If A has all of M's prime factors, then we get stuck at 0 and P=1. I'll leave it as an exercise to figure that out, because I don't know how.
///Returns equivalent to list.reverse().aggregate(1, acc,item => item^acc) % M
func PowerTowerMod(Link<int> list, int M, int upperB = M)
requires M > 0, upperB >= M
var X = list.Item
if list.Next == null: return X
var P = GetPeriodSomehow(base: X, mod: M)
var e = PowerTowerMod(list.Next, P, M)
if e^X < upperB then return e^X //todo: rewrite e^X < upperB so it doesn't blowup for large x
return ModPow(X, M + (e-M) % P, M)
Tacet's answer is good, but there are substantial simplifications possible.
The powers of x, mod m, are preperiodic. If x is relatively prime to m, the powers of x are periodic, but even without that assumption, the part before the period is not long, at most the maximum of the exponents in the prime factorization of m, which is at most log_2 m. The length of the period divides phi(m), and in fact lambda(m), where lambda is Carmichael's function, the maximum multiplicative order mod m. This can be significantly smaller than phi(m). Lambda(m) can be computed quickly from the prime factorization of m, just as phi(m) can. Lambda(m) is the GCD of lambda(p_i^e_i) over all prime powers p_i^e_i in the prime factorization of m, and for odd prime powers, lambda(p_i^e_i) = phi(p_i^e^i). lambda(2)=1, lamnda(4)=2, lambda(2^n)=2^(n-2) for larger powers of 2.
Define modPos(a,n) to be the representative of the congruence class of a in {0,1,..,n-1}. For nonnegative a, this is just a%n. For a negative, for some reason a%n is defined to be negative, so modPos(a,n) is (a%n)+n.
Define modMin(a,n,min) to be the least positive integer congruent to a mod n that is at least min. For a positive, you can compute this as min+modPos(a-min,n).
If b^c^... is smaller than log_2 m (and we can check whether this inequality holds by recursively taking logarithms), then we can simply compute a^b^c^... Otherwise, a^b^c^... mod m = a^modMin(b^c^..., lambda(m), [log_2 m])) mod m = a^modMin(b^c^... mod lambda(m), lambda(m),[log_2 m]).
For example, suppose we want to compute 2^3^4^5 mod 100. Note that 3^4^5 only has 489 digits, so this is doable by other methods, but it's big enough that you don't want to compute it directly. However, by the methods I gave here, you can compute 2^3^4^5 mod 100 by hand.
Since 3^4^5 > log_2 100,
2^3^4^5 mod 100
= 2^modMin(3^4^5,lambda(100),6) mod 100
= 2^modMin(3^4^5 mod lambda(100), lambda(100),6) mod 100
= 2^modMin(3^4^5 mod 20, 20,6) mod 100.
Let's compute 3^4^5 mod 20. Since 4^5 > log_2 20,
3^4^5 mod 20
= 3^modMin(4^5,lambda(20),4) mod 20
= 3^modMin(4^5 mod lambda(20),lambda(20),4) mod 20
= 3^modMin(4^5 mod 4, 4, 4) mod 20
= 3^modMin(0,4,4) mod 20
= 3^4 mod 20
= 81 mod 20
= 1
We can plug this into the previous calculation:
2^3^4^5 mod 100
= 2^modMin(3^4^5 mod 20, 20,6) mod 100
= 2^modMin(1,20,6) mod 100
= 2^21 mod 100
= 2097152 mod 100
= 52.
Note that 2^(3^4^5 mod 20) mod 100 = 2^1 mod 100 = 2, which is not correct. You can't reduce down to the preperiodic part of the powers of the base.

Resources