Is there a standard symbol for "is a"? - logic

Simple question, is there an accepted standard symbol for an "is a" relationship? I know in math there are the ⊆ - subset, ⊂ - proper subset, ∈ - element of symbols, do I just use one of those or is there a more code specific one to use?
This came up while trying to respond to a statement written as sedan === car and I wondered what a better symbol to use for the === was.

As far as I understand, you are looking for something like intensional membership symbol. You don't want to use traditional set-theory "∈" due to its extensional nature.
Right, set-theory "∈" (as well as the set theory itself) is extensional due to these axioms:
∀P∃A∀X (X∈A ⇔ P(X)) — comprehension axiom (in a very naive form),
∀A∀B (∀X (X∈A ⇔ X∈B ) ⇔ A=B ) — axiom of extensionality.
In set theory jargon, one might write something like this:
my_sedan ∈ Cars, or
my_sedan ∈ {x : Car(x)}, or
Car(my_sedan).
There is not accepted standard symbol for "intensional membership". You can try:
my_sedan : Car — in a type theory manner;
my_sedan η Car — as used here or here;
my_sedan a Car — as in RDF 1.1 Turtle Syntax;
my_sedan cop. Car.

Related

Coq `simpl` reduces `S n + m` to `S(n + m)` for free?

I'm just beginning to learn Coq via software foundations. One of the homework Theorems (with my successful proof elided) in Induction.v is:
Theorem plus_n_Sm : forall n m : nat,
S (n + m) = n + (S m).
Proof.
(* elided per request of authors *)
Qed.
Later, I noticed that the following similar "leftward" statement comes for free with the built-in tactic .simpl:
Example left_extract : forall n m : nat, S n + m = S (n + m).
Proof.
intros. simpl. reflexivity.
Qed.
I've perused the documentation and haven't been able to figure out why .simpl gives us one direction "for free" but the other direction requires a user-supplied proof. The documentation is over my head at this very early point in my learning.
I guess it has something to do with left-ness being built-in and right-ness being not, but the propositions seem to my childlike eyes to be of equal complexity and subtlety. Would someone be so kind as to explain why, and perhaps give me some guidance about what is going on with .simpl?
Why should I NOT be surprised by my finding?
What other good things can I expect from .simpl, so it surprises me less and so I can eventually predict what it's going to do and rely on it?
What's the best way to wade through the theory -- unfolding of iota reductions and what not -- to focus on the relevant bits for this phenomenon? Or do I have to learn all the theory before I can understand this one bit?
I believe your surprise stems from the fact that you are accustomed to think of addition as a primitive concept. It is not, it is a function that has been defined and other primitive concepts are used to explain its behavior.
The addition function is defined by a function with a name written with letters (not the + symbol) in a way that looks like this:
Fixpoint add (n m : nat) : nat :=
match n with
| 0 =>
| S p => S (add p)
end.
You can find this information by typing
Locate "_ + _".
The + notation is used for two functions, only one of them can be applied on numbers.
Coming back to the add function, its very description explains that add 0 m computes to m and add (S n) m computes to S (add m n), but it does not say anything when the second argument has the form S m, it is just not written anywhere. Still the theory of Coq makes it possible to prove the fact.
So the equality that is given for free comes directly from the definition of addition. There are a few other equality statements that are natural to the human eye, but not given for free. They can just be proved by induction.
Would it be possible to design the Coq system in such a way that both equality statements would be given for free? The answer is probably yes, but the theory must be designed carefully for that.

Converting first-order logic to CNF without exponential blowup

When attempting to solve logic problems on a computer, it is usual to first convert them to CNF, because the best solving algorithms expect CNF as input.
For propositional logic, the textbook rules for this conversion are simple, but if you apply them as is, the result is one of the very rare cases where a program encounters double exponential resource consumption without being specifically constructed to do so:
a <=> (b <=> (c <=> ...))
with N variables, generates 2^2^N clauses, one exponential blowup in the conversion of equivalence to AND/OR, and another in the distribution of OR into AND.
The solution to this is to rename subterms. If we rewrite the above as something like
r <=> (c <=> ...)
a <=> (b <=> r)
where r is a fresh symbol that is being defined to be equal to a subterm - in general, we may need O(N) such symbols - the exponential blowups can be avoided.
Unfortunately, this runs into a problem when we try to extend it to first-order logic. Using TPTP notation where ? means 'there exists' and variables begin with capital letters, consider
a <=> ?[X]:p(X)
Admittedly this case is simple enough that there is no actual need to rename the subterm, but it's necessary to use a simple case for illustration, so suppose we are using an algorithm that just automatically renames arguments of the equivalence operator; the point generalizes to more complex cases.
If we try the above trick and rename the ? subterm, we get
r <=> ?[X]:p(X)
Existential variables are converted to Skolem symbols, so that ends up as
r <=> p(s)
The original formula then expands to
(~a | r) & (a | ~r)
Which is by construction equivalent to
(~a | p(s)) & (a | ~p(s))
But this is not correct! Suppose we had not done the renaming, but just expanded the original formula as it was, we would get
(~a | ?[X]:p(X)) & (a | ~?[X]:p(X))
(~a | ?[X]:p(X)) & (a | ![X]:~p(X))
(~a | p(s)) & (a | ~p(X))
which is critically different from the version we got with the renaming.
The problem is that equivalence needs both the positive and negative versions of each argument, but applying negation to terms that contain universal or existential quantifiers, structurally changes those terms; you cannot just encapsulate them in a definition, then apply the negation to the defined symbol.
The upshot of this is that when you have equivalence and the arguments may contain such quantifiers, you actually need to recur through each argument twice, once for the positive version, once for the negative. This suffices to bring back the existential blowup we hoped to avoid by doing the renaming. As far as I can see, this problem is not caused by the way a particular algorithm works, but by the nature of the task.
So my question:
Given an input formula that may contain arbitrary nesting of equivalence and quantifiers, is there any algorithm that will correctly turn this to CNF with a polynomial rather than exponential number of clauses?
As you observed, an existential such as ∃X.p(X) is not in fact equivalent to a Skolemized expression p(S). Its negation ¬∃X.p(X) is not equivalent to ¬p(S), but to ∀Y.¬p(Y).
Possible approaches that avoid the exponential blow-up:
Convert existentials such as ∃X.p(X) to universals such as ¬∀Y.p(Y), or vice versa, so you have a canonical form. Skolemize at a later step.
Remember when you convert that your p(S) is a Skolemized existential, and that its negation is ∀Y.¬p(Y).
Define terms equivalent to universals and existentials, such that a represents ∀Y.p(Y) and ¬a then represents ¬∀Y.p(Y), or equivalently, ∃X.¬p(X).
Use the symmetry of Boolean duals, so that the same transformations apply with AND and OR swapped, De Morgan’s Laws, and the equivalence between existentials and negated universals, to restore the symmetry between the expansions of r and ~r. The negations in the conversion between universals and existentials and in De Morgan's Laws cancel each other out, and the duality of switching AND and OR means you can re-use the result on the left to generate the one on the right mechanically again?
Given that you need to support ALL and NOT ALL statements anyway, this should not create any new problems. Just canonicalize and use the same approach you would for a universal.
If you’re solving by converting to SAT, your terms can represent universals, too. So, in your example, you’re trying to replace a with r, but you can still use ~a, equivalent to the negative universal.
In your expressions. you’d still use (~a | r) & (a | ~r), but expand ~r to its correct rather than the incorrect value. That example is trivial, since that’s just ~a, but you’d normally define r as equivalent to a more complex transformation, and in that case you need to remember what both r and ~r represent. It is not really a simple mechanical transformation of the Skolemized expression.
In this example, I’m not sure why it’s a problem that (~a | r) & (a | ~r) is equivalent to (~a | r) & (a | ~a), which simplifies to (~a | r). That’s not going to give you exponential blow-up? When you translate back to first-order predicate logic, make the correct translation.
Update
Thanks for clarifying what the problem was in chat. As I currently think I understand it, what you have is an equivalence with a left and a right side, which contains other nested equivalences, and you want to expand both the equivalence and its negation. The problem is that, because the negation does not have symmetrical form, you need to recurse twice for each nested equivalence in the tree, once when expanding the equivalence and once when expanding its negation?
You should define a transformation that generates the negative expansion from the positive expansion in linear time, and divide-and-conquer the expressions containing nested equivalences using that. This seems to be what you were after with the ~p(S) transformation.
To do this, you recall that ¬∃X.p(X) is equivalent to ∀X.¬p(X), and vice versa. Then if you’ve expanded p(x) into normal form as conjunctions and disjunctions, De Morgan’s Laws lets you turn an expression like ¬(a ∨ ¬b) into ¬a ∧ b. The inner ¬ on the quantifier transformation and the outer ¬ on the De Morgan transformation cancel each other out. Finally, the dual of any Boolean equivalence remains valid when you replace each ∨ and ∧ with the other and any atom a or ¬a with its inverse.
So, while I might be making an error, especially at 1 AM, it looks to me like what you want is the dual transformation that substitutes:
An outer ∃ for ∀ and vice versa
∧ for ∨ and vice versa
Each term t with ¬t and vice versa
Apply this to the expansion of the positive equivalence to generate the negative dual in time proportional to its length, without further recursion.

Solve specific combination in propositional logic rule set (SAT Solver)

In the car industry you have thousand of different variants of components available to choose from when you buy a car. Not every component is combinable, so for each car there exist a lot of rules that are expressed in propositional logic. In my case each car has between 2000 and 4000 rules.
They look like this:
A → B ∨ C ∨ D
C → ¬F
F ∧ G → D
...
where "∧" = "and" / "∨" = "or" / "¬" = "not" / "→" = "implication".
With the tool "limboole" (http://fmv.jku.at/limboole/) I am able to to convert the propositional logic expressions into conjunctive normal form (CNF). This is needed in case I have to use a SAT solver.
Now, I would like to check the buildability feasibility for specific components within the rule set. For example, for each of the following expressions or combinations, I would like to check if the are feasible within the rule set.
(A) ∧ (B)
(A) ∧ (C ∨ F)
(B ∨ G)
...
My question is how to solve this problem. I asked a similar questions before (Tool to solve propositional logic / boolean expressions (SAT Solver?)), but with a different focus and now I am stuck again. Or I just do not understand it.
One option is to calculate all solutions with an ALLSAT approach of the rule set. Then I could check if each combination is part of any solution. If yes, I can derive that this specific combination is feasible.
Another option would be, that I add the combination to the rule set and then run a normal SAT solver. But I would have to do it for each expression I want to check.
What do you think is the most elegant or rather easiest way to solve this problem?
The best method which is known to me is to use "incremental solving under assumptions" technique. It was motivated by the same problem you have: multiple SAT instances (CNF formulae) which have some common subformulae.
Formally, you have some core Boolean formula C in CNF. And you have a set of assumptions {A_i}, i=1..n, where A_i is a Boolean formula in CNF also.
On the step 0 you provide to the solver your core formula C. It tries to solve it, says a result to you and save its state (lets call this state as core-state). If formula C is satisfiable, on the step i you provide assumption A_i to the solver and it continues its execution from the core-state. Actually, it tries to solve a formula C ∧ A_i but not from the beginning.
You can find a bunch of papers related to this topic easily, where much information is located. Also, you can check you favorite SAT-solver for the support of this technique.

Flattening quantification over relations

I have a Relation f defined as f: A -> B × C. I would like to write a firsr-order formula to constrain this relation to be a bijective function from A to B × C?
To be more precise, I would like the first order counter part of the following formula (actually conjunction of the three):
∀a: A, ∃! bc : B × C, f(a)=bc -- f is function
∀a1,a2: A, f(a1)=f(a2) → a1=a2 -- f is injective
∀(b, c) : B × C, ∃ a : A, f(a)=bc -- f is surjective
As you see the above formulae are in Higher Order Logic as I quantified over the relations. What is the first-order logic equivalent of these formulae if it is ever possible?
PS:
This is more general (math) question, rather than being more specific to any theorem prover, but for getting help from these communities --as I think there are mature understanding of mathematics in these communities-- I put the theorem provers tag on this question.
(Update: Someone's unhappy with my answer, and SO gets me fired up in general, so I say what I want here, and will probably delete it later, I suppose.
I understand that SO is not a place for debates and soapboxes. On the other hand, the OP, qartal, whom I assume is the unhappy one, wants to apply the answer from math.stackexchange.com, where ZFC sets dominates, to a question here which is tagged, at this moment, with isabelle and logic.
First, notation is important, and sloppy notation can result in a question that's ambiguous to the point of being meaningless.
Second, having a B.S. in math, I have full appreciation for the logic of ZFC sets, so I have full appreciation for math.stackexchange.com.
I make the argument here that the answer given on math.stackexchange.com, linked to below, is wrong in the context of Isabelle/HOL. (First hmmm, me making claims under ill-defined circumstances can be annoying to people.)
If I'm wrong, and someone teaches me something, the situation here will be redeemed.
The answerer says this:
First of all in logic B x C is just another set.
There's not just one logic. My immediate reaction when I see the symbol x is to think of a type, not a set. Consider this, which kind of looks like your f: A -> BxC:
definition foo :: "nat => int × real" where "foo x = (x,x)"
I guess I should be prolific in going back and forth between sets and types, and reading minds, but I did learn something by entering this term:
term "B × C" (* shows it's of type "('a × 'b) set" *)
Feeling paranoid, I did this to see if had fallen into a major gotcha:
term "f : A -> B × C"
It gives a syntax error. Here I am, getting all pedantic, and our discussion is ill-defined because the notation is ill-defined.
The crux: the formula in the other answer is not first-order in this context
(Another hmmm, after writing what I say below, I'm full circle. Saying things about stuff when the context of the stuff is ill-defined.)
Context is everything. The context of the other site is generally ZFC sets. Here, it's HOL. That answerer says to assume these for his formula, wich I give below:
Ax is true iff x∈A
Bx is true iff x∈B×C
Rxy is true iff f(x)=y
Syntax. No one has defined it here, but the tag here is isabelle, so I take it to mean that I can substitute the left-hand side of the iff for the right-hand side.
Also, the expression x ∈ A is what would be in the formula in a typical set theory textbook, not Rxy. Therefore, for the answerer's formula to have meaning, I can rightfully insert f(x) = y into it.
This then is why I did a lot of hedging in my first answer. The variable f cannot be in the formula. If it's in the formula, then it's a free variable which is implicitly quantified. Here's the formula in Isar syntax:
term "∀x. (Ax --> (∃y. By ∧ Rxy ∧ (∀z. (Bz ∧ Rxz) --> y = z)))"
Here it is with the substitutions:
∀x. (x∈A --> (∃y. y∈B×C ∧ f(x)=y ∧ (∀z. (z∈B×C ∧ f(x)=z) --> y = z)))
In HOL, f(x) = f x, and so f is implicitly, universally quantified. If this is the case, then it's not first-order.
Really, I should dig deep to recall what I was taught, that f(x)=y means:
(x,f(x)) = (x,y) which means we have to have (x,y)∈(A, B×C)
which finally gets me:
∀x. (x∈A -->
(∃y. y∈B×C ∧ (x,y)∈(A,B×C) ∧ (∀z. (z∈B×C ∧ (x,z)∈(A,B×C)) --> y = z)))
Finally, I guess it turns out that in the context of math.stackexchange.com, it's 100% on.
Am I the only one who feels compulsive about questioning what this means in the context of Isabelle/HOL? I don't accept that everything here is defined well enough to show that it's first order.
Really, qartal, your notation should be specific to a particular logic.
First answer
With Isabelle, I answer the question based on my interpretation of your
f: A -> B x C, which I take as a ZFC set, in particular a subset of the
Cartesian product A x (B x C)
You're sort of mixing notation from the two logics, that of ZFC
sets and that of HOL. Consequently, I might be off on what I think you're
asking.
You don't define your relation, so I keep things simple.
I define a simple ZFC function, and prove the first
part of your first condition, that f is a function. The second part would be
proving uniqueness. It can be seen that f satisfies that, so once a
formula for uniqueness is stated correctly, auto might easily prove it.
Please notice that the
theorem is a first-order formula. The characters ! and ? are ASCII
equivalents for \<forall> and \<exists>.
(Clarifications must abound when
working with HOL. It's first-order logic if the variables are atomic. In this
case, the type of variables are numeral. The basic concept is there. That
I'm wrong in some detail is highly likely.)
definition "A = {1,2}"
definition "B = A"
definition "C = A"
definition "f = {(1,(1,1)), (2,(1,1))}"
theorem
"!a. a \<in> A --> (? z. z \<in> (B × C) & (a,z) \<in> f)"
by(auto simp add: A_def B_def C_def f_def)
(To completely give you an example of what you asked for, I would have to redefine my function so its bijective. Little examples can take a ton of work.)
That's the basic idea, and the rest of proving that f is a function will
follow that basic pattern.
If there's a problem, it's that your f is a ZFC set function/relation, and
the logical infrastructure of Isabelle/HOL is set up for functions as a type.
Functions as ordered pairs, ZFC style, can be formalized in Isabelle/HOL, but
it hasn't been done in a reasonably complete way.
Generalizing it all is where the work would be. For a particular relation, as
I defined above, I can limit myself to first-order formulas, if I ignore that
the foundation, Isabelle/HOL, is, of course, higher-order logic.

Algorithm for 2-Satisfiability problem

Can anyone explain the algorithm for 2-satisfiability problem or provide me the links for the same? I could not find good links to understand it.
If you have n variables and m clauses:
Create a graph with 2n vertices: intuitively, each vertex resembles a true or not true literal for each variable. For each clause (a v b), where a and b are literals, create an edge from !a to b and from !b to a. These edges mean that if a is not true, then b must be true and vica-versa.
Once this digraph is created, go through the graph and see if there is a cycle that contains both a and !a for some variable a. If there is, then the 2SAT is not satisfiable (because a implies !a and vica-versa). Otherwise, it is satisfiable, and this can even give you a satisfying assumption (pick some literal a so that a doesn't imply !a, force all implications from there, repeat). You can do this part with any of your standard graph algorithms, ala Breadth-First Search , Floyd-Warshall, or any algorithm like these, depending on how sensitive you are to the time complexity of your algorithm.
You can solve it with greedy approach.
Or using Graph theory, here is link which explains the solution using graph theory.
http://www.cs.tau.ac.il/~safra/Complexity/2SAT.ppt
Here is the Wikipedia page on the subject, which describes a polynomial time algorithm. (The brute force algorithm of just trying all the different truth assignments is exponential time.) Maybe a bit of further explanation will help.
The expression "if P then Q" is only false when P is true and Q is false. So the expression has the same truth table values as "Q or not P". It is also equivalent to its contrapositive, "if not Q then not P", and that in turn is equivalent to "not P or Q" (the same as the other one).
So the algorithm involves replacing every expression of the form "A or B", with the two expressions, "if not A then B" and "if not B then A". (Putting it another way, A and B can't both be false.)
Next, construct a graph representing these implications. Create nodes for each "A" and "not A", and add links for each of the implications obtained above.
The last step is to make sure that none of the variables is equivalent to its own negation. That is, for each variable A (or not A), follow the links to discover all the nodes that can be reached from it, taking care to detect loops.
If one of the variables, A, can reach "not A", and "not A" can also reach A, then the original expression is not satisfiable. (It is a paradox.) If none of the variables do this, then it is satisfiable.
(It's okay if A implies "not A", but not the other way around. That just means that A must be negated to satisfy the expression.)
2 satisfiabilty:
if x & !x is strongly connected
then from !x we can reach to x
from x we can reach to !x
so in our operation,
in case of x,
we have 2 options only,
1.taking x (x) that leads to !x
2.rejecting x (!x) that leads to x
and both the choices are leading to the paradox of taking and rejecting a choice at the same time
so the satisfiability is impossible :D

Resources