Multi field text and keyword fields in elasticsearch - elasticsearch

I'm looking into switching from solr to elasticsearch and have indexed a bunch of documents into it without providing a schema/mapping and a lot of the fields that i would have previously set as indexed strings in solr have been set as both text and keyword fields using multi-fields.
Is there any benifit to having a keyword field also as a text field using multi-fields? in my case most values in fields are single words so i'd imagine it wouldn't matter if they are sent to the analyzer but the es docs seem to imply that keyword fields are not considered when searching or at least treated differently?
Just to expand on that a little further if i search for the term "ipad" would a document score higher if it had "ipad" in a keyword field as well as some other text field vs the same document without the keyword field? and if say "ipad" was only in a keyword field would the document still match?

To answer my own question i created a quick test, pretty much keyword and text fields are equivalent when searching and multi-fields seem to get the same score as their primary type so i guess the second field has no effect on search scoring
Weirdly a multi word value in both keyword and text fields got the same score which i would have expecting the keyword field to score lower or not at all but for my purposes that is fine so i'm not going to investigate it further.
Index Creation
PUT test_index
{
"settings" : {
"number_of_shards" : 1
},
"mappings" : {
"test_type" : {
"properties" : {
"multifield": {
"type": "text",
"fields": {
"keyword": {
"type": "keyword",
"ignore_above": 256
}
}
},
"keywordfield": {
"type": "keyword"
},
"textfield": {
"type": "text"
}
}
}
}
}
Data Insert
POST /_bulk
{ "update": { "_index": "test_index", "_type": "test_type", "_id": 1 }
{ "doc" : { "multifield" : "ipad" }, "doc_as_upsert" : true }
{ "update": { "_index": "test_index", "_type": "test_type", "_id": 2 }
{ "doc" : { "keywordfield" : "ipad" }, "doc_as_upsert" : true }
{ "update": { "_index": "test_index", "_type": "test_type", "_id": 3 }
{ "doc" : { "keywordfield" : "a green ipad" }, "doc_as_upsert" : true }
{ "update": { "_index": "test_index", "_type": "test_type", "_id": 4 }
{ "doc" : { "textfield" : "a yellow ipad" }, "doc_as_upsert" : true }
{ "update": { "_index": "test_index", "_type": "test_type", "_id": 5 }
{ "doc" : { "keywordfield" : "ipad", "textfield" : "ipad" }, "doc_as_upsert" : true }
{ "update": { "_index": "test_index", "_type": "test_type", "_id": 6 }
{ "doc" : { "keywordfield" : "unrelated", "textfield" : "hopefully this wont show up" }, "doc_as_upsert" : true }
{ "update": { "_index": "test_index", "_type": "test_type", "_id": 7 }
{ "doc" : { "textfield" : "ipad" }, "doc_as_upsert" : true }
Results
GET /test_index/_search?q=ipad
{
"took": 1,
"timed_out": false,
"_shards": {
"total": 1,
"successful": 1,
"failed": 0
},
"hits": {
"total": 6,
"max_score": 0.28122374,
"hits": [
{
"_index": "test_index",
"_type": "test_type",
"_id": "5",
"_score": 0.28122374,
"_source": {
"keywordfield": "ipad",
"textfield": "ipad"
}
},
{
"_index": "test_index",
"_type": "test_type",
"_id": "1",
"_score": 0.2734406,
"_source": {
"multifield": "ipad"
}
},
{
"_index": "test_index",
"_type": "test_type",
"_id": "2",
"_score": 0.2734406,
"_source": {
"keywordfield": "ipad"
}
},
{
"_index": "test_index",
"_type": "test_type",
"_id": "7",
"_score": 0.2734406,
"_source": {
"textfield": "ipad"
}
},
{
"_index": "test_index",
"_type": "test_type",
"_id": "3",
"_score": 0.16417998,
"_source": {
"keywordfield": "a green ipad"
}
},
{
"_index": "test_index",
"_type": "test_type",
"_id": "4",
"_score": 0.16417998,
"_source": {
"textfield": "a yellow ipad"
}
}
]
}
}

Related

Elasticsearch: Not giving match

I want to perform both exact word match and partial word/sub string match. For example, if I search for "test product" then I should be able to find "test" and "product" related text in the result. I'm searching Elasticsearch with the below match query, which is not giving me the exact match, instead its giving some more irrelevant match.
I'm using Elasticsearch 6.3
My query for GET /_search:
{
"must": {
"query_string": {
"query": "title:*test product*"
}
}
}
Search Result:
"hits": [
{
"_index": "67107104",
"_type": "_doc",
"_id": "1",
"_score": 0.6931471,
"_source": {
"title": "testing"
}
},
{
"_index": "67107104",
"_type": "_doc",
"_id": "2",
"_score": 0.6931471,
"_source": {
"title": "product good"
}
},
{
"_index": "67107104",
"_type": "_doc",
"_id": "3",
"_score": 0.6931471,
"_source": {
"title": "sample"
}
}
]
Expected Search Result:
"hits": [
{
"_index": "67107104",
"_type": "_doc",
"_id": "1",
"_score": 0.6931471,
"_source": {
"title": "testing"
}
},
{
"_index": "67107104",
"_type": "_doc",
"_id": "2",
"_score": 0.6931471,
"_source": {
"title": "product good"
}
}
]
In the search query above, you are searching in the review field, whereas in the search result you are getting data for title field
Adding a working example with index data, search query, and search result
Index Data:
{
"review": "testing"
}
{
"review": "product good"
}
{
"review": "sample"
}
Search Query:
{
"query": {
"match": {
"review": "test product"
}
}
}
Search Result:
"hits": [
{
"_index": "67119314",
"_type": "_doc",
"_id": "2",
"_score": 0.2876821,
"_source": {
"review": "product good"
}
}
]

Search results for term query not in alphabetical sort order

My results for the following term query gets rendered like this. But we would want the search results where "BC" appears after "Bar", since we are trying to perform a alphabetical search. What should be done to get this working
Adam
Buck
BC
Bar
Car
Far
NativeSearchQuery query = new NativeSearchQueryBuilder()
.withSourceFilter(new FetchSourceFilterBuilder().withIncludes().build())
.withQuery(QueryBuilders.termQuery("type", field))
.withSort(new FieldSortBuilder("name").order(SortOrder.ASC))
.withPageable(pageable).build();
To sort the result in alphabetical order you can define a normalizer with a lowercase filter, lowercase filter will ensure that all the letters are changed to lowercase before indexing the document and searching.
Modify your index mapping as
{
"settings": {
"analysis": {
"normalizer": {
"my_normalizer": {
"type": "custom",
"filter": [
"lowercase"
]
}
}
}
},
"mappings": {
"properties": {
"name": {
"type": "keyword",
"normalizer": "my_normalizer"
}
}
}
}
Indexed the same sample documents as given in the question.
Search Query:
{
"sort":{
"name":{
"order":"asc"
}
}
}
Search Result:
"hits": [
{
"_index": "66064809",
"_type": "_doc",
"_id": "1",
"_score": null,
"_source": {
"name": "Adam"
},
"sort": [
"adam"
]
},
{
"_index": "66064809",
"_type": "_doc",
"_id": "4",
"_score": null,
"_source": {
"name": "Bar"
},
"sort": [
"bar"
]
},
{
"_index": "66064809",
"_type": "_doc",
"_id": "3",
"_score": null,
"_source": {
"name": "BC"
},
"sort": [
"bc"
]
},
{
"_index": "66064809",
"_type": "_doc",
"_id": "2",
"_score": null,
"_source": {
"name": "Buck"
},
"sort": [
"buck"
]
},
{
"_index": "66064809",
"_type": "_doc",
"_id": "5",
"_score": null,
"_source": {
"name": "Car"
},
"sort": [
"car"
]
},
{
"_index": "66064809",
"_type": "_doc",
"_id": "6",
"_score": null,
"_source": {
"name": "Far"
},
"sort": [
"far"
]
}
]
}

Elasticsearch query starting from a particular value

Is there a way to query starting from a particular value and get the next n records in Elasticsearch?
For example, I want to get 10 records starting from employee id "ABC_123".
The below query gives an error saying
[terms] query does not support [empId]
GET /_search
{
"from": 0, "size": 10,
"query" : {
"terms" : {
"empId" : "ABC_123"
}
}
}
What can I do about this?
You can use the prefix query, Also you can read more about the autocomplete on my blog, which discussed 4 approaches to make it work and their trade-off.
I used prefix query on your sample data and got the expected output and below is the step by step guide.
Index mapping
{
"mappings": {
"properties": {
"empId": {
"type": "keyword" --> field type `keyword`
}
}
}
}
Index sample docs
{
"empId" : "ABC_1231"
}
{
"empId" : "ABC_1232"
}
{
"empId" : "ABC_1233"
}
{
"empId" : "ABC_1234"
}
and so on
Prefix Search query
{
"from": 0,
"size": 10,
"query": {
"prefix": {
"empId": "ABC_123"
}
}
}
Search result
"hits": [
{
"_index": "so_prefix",
"_type": "_doc",
"_id": "1",
"_score": 1.0,
"_source": {
"empId": "ABC_1231"
}
},
{
"_index": "so_prefix",
"_type": "_doc",
"_id": "2",
"_score": 1.0,
"_source": {
"empId": "ABC_1232"
}
},
{
"_index": "so_prefix",
"_type": "_doc",
"_id": "3",
"_score": 1.0,
"_source": {
"empId": "ABC_1233"
}
},
{
"_index": "so_prefix",
"_type": "_doc",
"_id": "4",
"_score": 1.0,
"_source": {
"empId": "ABC_1234"
}
}
]

"match" query along with "should" clause giving more than required match results in Elasticsearch

I have written the following lucene query in elasticsearch for getting documents with Id field as mentioned:
GET requirements_v3/_search
{
"from": 0,
"size": 10,
"query": {
"bool": {
"filter": {
"bool": {
"should": [
{"match": {
"Id": "b8bf49a4-960b-4fa8-8c5f-a3fce4b4d07b"
}},
{
"match": {
"Id": "048b7907-2b5a-438a-ace9-f1e1fd67ca69"
}
},
{
"match": {
"Id": "3b385896-1207-4f6d-8ae9-f3ced84cf1fa"
}
},
{
"match": {
"Id": "0aa1db52-c0fb-4bf6-9223-00edccc32703"
}
},
{
"match": {
"Id": "8c399993-f273-4ee0-a1ab-3a85c6848113"
}
},
{
"match": {
"Id": "4461eb37-487e-4899-a7be-914640fab0e0"
}
},
{
"match": {
"Id": "07052261-b904-4bfc-a6fd-3acd28114c6a"
}
},
{
"match": {
"Id": "95816ff0-9eae-4196-99fc-86c6f43395fd"
}
},
{
"match": {
"Id": "ea8a59a6-2b2f-467a-9beb-e281b1581a0a"
}
},
{
"match": {
"Id": "33f87d98-024f-4893-aa1c-8d438a98cd1f"
}
}
]
}
}
}
}
The response for the above query is:
{
"took": 14,
"timed_out": false,
"_shards": {
"total": 5,
"successful": 5,
"skipped": 0,
"failed": 0
},
"hits": {
"total": 18,
"max_score": 0,
"hits": [
{
"_index": "requirements_v3",
"_type": "_doc",
"_id": "9d8060da-c3e2-4f6d-b4e2-17e65b266c76",
"_score": 0,
"_source": {
"Id": "9d8060da-c3e2-4f6d-b4e2-17e65b266c76",
"Name": "Create Extended/Limited Warranty Configuration"
}
},
{
"_index": "requirements_v3",
"_type": "_doc",
"_id": "4461eb37-487e-4899-a7be-914640fab0e0",
"_score": 0,
"_source": {
"Id": "4461eb37-487e-4899-a7be-914640fab0e0",
"Name": "Create Extended/Limited Warranty Configuration"
}
},
{
"_index": "requirements_v3",
"_type": "_doc",
"_id": "33f87d98-024f-4893-aa1c-8d438a98cd1f",
"_score": 0,
"_source": {
"Id": "33f87d98-024f-4893-aa1c-8d438a98cd1f",
"Name": "Create Configurator"
}
},
{
"_index": "requirements_v3",
"_type": "_doc",
"_id": "d75d9a7c-e145-487e-922f-102c16d0026f",
"_score": 0,
"_source": {
"Id": "d75d9a7c-e145-487e-922f-102c16d0026f",
"Name": "Create Configurator"
}
},
{
"_index": "requirements_v3",
"_type": "_doc",
"_id": "007eadb7-adda-487e-b7fe-6f6b5648de2e",
"_score": 0,
"_source": {
"Id": "007eadb7-adda-487e-b7fe-6f6b5648de2e",
"Name": "Detail Page - Build"
}
},
{
"_index": "requirements_v3",
"_type": "_doc",
"_id": "95816ff0-9eae-4196-99fc-86c6f43395fd",
"_score": 0,
"_source": {
"Id": "95816ff0-9eae-4196-99fc-86c6f43395fd",
"Name": "Create Extended/Limited Warranty Configuration"
}
},
{
"_index": "requirements_v3",
"_type": "_doc",
"_id": "07052261-b904-4bfc-a6fd-3acd28114c6a",
"_score": 0,
"_source": {
"Id": "07052261-b904-4bfc-a6fd-3acd28114c6a",
"Name": "HUC"
}
},
{
"_index": "requirements_v3",
"_type": "_doc",
"_id": "d60daf3a-4681-4bfc-a3a9-b04b5b005f73",
"_score": 0,
"_source": {
"Id": "d60daf3a-4681-4bfc-a3a9-b04b5b005f73",
"Name": "DAMS UpsertUnenrollPrice" }
},
{
"_index": "requirements_v3",
"_type": "_doc",
"_id": "c1b367f2-a57a-487e-994c-84470e0f9db4",
"_score": 0,
"_source": {
"Id": "c1b367f2-a57a-487e-994c-84470e0f9db4",
"Name": "Item Setup"
}
},
{
"_index": "requirements_v3",
"_type": "_doc",
"_id": "b8bf49a4-960b-4fa8-8c5f-a3fce4b4d07b",
"_score": 0,
"_source": {
"Id": "b8bf49a4-960b-4fa8-8c5f-a3fce4b4d07b",
"Name": "Installments"
}
}
]
}
}
This mentions totalHits as '18'. Why is it returning more items than 10? I believe match query should be used for 'exact' matches, so why more documents are returned here?
P.S.: I know I can use the Ids query for this, but I want to know why is this not returning the correct response
Update: Setting the size to 20 returns the following response:
{
"took": 195,
"timed_out": false,
"_shards": {
"total": 5,
"successful": 5,
"skipped": 0,
"failed": 0
},
"hits": {
"total": 18,
"max_score": 0,
"hits": [
{
"_index": "requirements_v3",
"_type": "_doc",
"_id": "9d8060da-c3e2-4f6d-b4e2-17e65b266c76",
"_score": 0,
"_source": {
"Id": "9d8060da-c3e2-4f6d-b4e2-17e65b266c76",
"Name": "Create Extended/Limited Warranty Configuration"
}
},
{
"_index": "requirements_v3",
"_type": "_doc",
"_id": "4461eb37-487e-4899-a7be-914640fab0e0",
"_score": 0,
"_source": {
"Id": "4461eb37-487e-4899-a7be-914640fab0e0",
"Name": "Create Extended/Limited Warranty Configuration"
}
},
{
"_index": "requirements_v3",
"_type": "_doc",
"_id": "33f87d98-024f-4893-aa1c-8d438a98cd1f",
"_score": 0,
"_source": {
"Id": "33f87d98-024f-4893-aa1c-8d438a98cd1f",
"Name": "Create Configurator"
}
},
{
"_index": "requirements_v3",
"_type": "_doc",
"_id": "d75d9a7c-e145-487e-922f-102c16d0026f",
"_score": 0,
"_source": {
"Id": "d75d9a7c-e145-487e-922f-102c16d0026f",
"Name": "Create Configurator"
}
},
{
"_index": "requirements_v3",
"_type": "_doc",
"_id": "007eadb7-adda-487e-b7fe-6f6b5648de2e",
"_score": 0,
"_source": {
"Id": "007eadb7-adda-487e-b7fe-6f6b5648de2e",
"Name": "Detail Page - Build"
}
},
{
"_index": "requirements_v3",
"_type": "_doc",
"_id": "95816ff0-9eae-4196-99fc-86c6f43395fd",
"_score": 0,
"_source": {
"Id": "95816ff0-9eae-4196-99fc-86c6f43395fd",
"Name": "Create Extended/Limited Warranty Configuration"
}
},
{
"_index": "requirements_v3",
"_type": "_doc",
"_id": "07052261-b904-4bfc-a6fd-3acd28114c6a",
"_score": 0,
"_source": {
"Id": "07052261-b904-4bfc-a6fd-3acd28114c6a",
"Name": "HUC"
}
},
{
"_index": "requirements_v3",
"_type": "_doc",
"_id": "d60daf3a-4681-4bfc-a3a9-b04b5b005f73",
"_score": 0,
"_source": {
"Id": "d60daf3a-4681-4bfc-a3a9-b04b5b005f73",
"Name": "DAMS UpsertUnenrollPrice"
}
},
{
"_index": "requirements_v3",
"_type": "_doc",
"_id": "c1b367f2-a57a-487e-994c-84470e0f9db4",
"_score": 0,
"_source": {
"Id": "c1b367f2-a57a-487e-994c-84470e0f9db4",
"Name": "Item Setup"
}
},
{
"_index": "requirements_v3",
"_type": "_doc",
"_id": "b8bf49a4-960b-4fa8-8c5f-a3fce4b4d07b",
"_score": 0,
"_source": {
"Id": "b8bf49a4-960b-4fa8-8c5f-a3fce4b4d07b",
"Name": "Installments"
}
},
{
"_index": "requirements_v3",
"_type": "_doc",
"_id": "b9437079-47c4-487e-abf0-1ff076f69e0f",
"_score": 0,
"_source": {
"Id": "b9437079-47c4-487e-abf0-1ff076f69e0f",
"Name": "Detail Page - Strings "
}
},
{
"_index": "requirements_v3",
"_type": "_doc",
"_id": "0aa1db52-c0fb-4bf6-9223-00edccc32703",
"_score": 0,
"_source": {
"Id": "0aa1db52-c0fb-4bf6-9223-00edccc32703",
"Name": "Create Extended/Limited Warranty Configuration"
}
},
{
"_index": "requirements_v3",
"_type": "_doc",
"_id": "ea8a59a6-2b2f-467a-9beb-e281b1581a0a",
"_score": 0,
"_source": {
"Id": "ea8a59a6-2b2f-467a-9beb-e281b1581a0a",
"Name": "Create Configurator"
}
},
{
"_index": "requirements_v3",
"_type": "_doc",
"_id": "fd259359-4f6d-4530-ac29-fcebe00d66a6",
"_score": 0,
"_source": {
"Id": "fd259359-4f6d-4530-ac29-fcebe00d66a6",
"Name": "Invite Platform"
}
},
{
"_index": "requirements_v3",
"_type": "_doc",
"_id": "1b2ba0bb-3e7f-46fb-b904-07460b84848b",
"_score": 0,
"_source": {
"Id": "1b2ba0bb-3e7f-46fb-b904-07460b84848b",
"Name": "Training"
}
},
{
"_index": "requirements_v3",
"_type": "_doc",
"_id": "8c399993-f273-4ee0-a1ab-3a85c6848113",
"_score": 0,
"_source": {
"Id": "8c399993-f273-4ee0-a1ab-3a85c6848113",
"Name": "Configure ASIN for Reporting"
}
},
{
"_index": "requirements_v3",
"_type": "_doc",
"_id": "3b385896-1207-4f6d-8ae9-f3ced84cf1fa",
"_score": 0,
"_source": {
"Id": "3b385896-1207-4f6d-8ae9-f3ced84cf1fa",
"Name": "Create Extended/Limited Warranty Configuration"
}
},
{
"_index": "requirements_v3",
"_type": "_doc",
"_id": "048b7907-2b5a-438a-ace9-f1e1fd67ca69",
"_score": 0,
"_source": {
"Id": "048b7907-2b5a-438a-ace9-f1e1fd67ca69",
"Name": "Invite Platform"
}
}
]
}
}
Lets understand this by the following mapping e.g:
{
"_doc": {
"properties": {
"Id": {
"type": "text",
"fields": {
"keyword": {
"type": "keyword",
"ignore_above": 256
}
}
},
"Name": {
"type": "text",
"fields": {
"keyword": {
"type": "keyword",
"ignore_above": 256
}
}
}
}
}
}
The above mapping is created dynamically by elasticsearch. Lets us now focus on Id field. Its type is text. By default the analyzer for text datatype is standard analyzer. When this analyzer is applied on the input for this field it get tokenized into terms. So for example if you input value for Id is 33f87d98-024f-4893-aa1c-8d438a98cd1f following tokens get generated:
33f87d98
024f
4893
aa1c
8d438a98cd1f
As you can see the input value is splitted by - being used as delimiter. This is because standard analyzer is applied on it.
There is another sub-field under Id which is keyword and its type is keyword. For type keyword the input is indexed as it is without applying any modification.
Now lets understand why more documents get matched and result count is more than expected. In your query you used match query on Id field as below:
{
"match": {
"Id": "b8bf49a4-960b-4fa8-8c5f-a3fce4b4d07b"
}
}
By default match query uses the same analyzer that is applied on the field in mapping. So on the Id value in the query again the same analyzer is applied and the input is splitted into tokens in a similar way as above. The default operator that is applied between tokens of match query input string is OR and hence your query actually becomes:
b8bf49a4 OR 960b OR 4fa8 OR 8c5f OR a3fce4b4d07b
There if any of the above tokens match to any of the indexed terms stored in Id field, the document is considered a match.
Solution for the above based on above mapping:
Use the keyword field instead. So the query becomes:
{
"match": {
"Id.keyword": "b8bf49a4-960b-4fa8-8c5f-a3fce4b4d07b"
}
}
More on how match works see here.
Also as mention by #Curious_MInd in his answer its better to use terms than using multiple match in should.
As you said that your Id is text as well as keyword so you should use Id.keyword for matching exact values like
GET requirements_v3/_search
{
"from": 0,
"size": 10,
"query": {
"bool": {
"filter": {
"bool": {
"should": [
{"match": {
"Id.keyword": "b8bf49a4-960b-4fa8-8c5f-a3fce4b4d07b"
}},
{
"match": {
"Id.keyword": "048b7907-2b5a-438a-ace9-f1e1fd67ca69"
}
}
]
}
}
}
}
But I guess you should use terms if you wants to match multiple exact values. Have a look here. For an example:
{
"terms" : {
"Id" : ["b8bf49a4-960b-4fa8-8c5f-a3fce4b4d07b", "048b7907-2b5a-438a-ace9-f1e1fd67ca69"]
}
}

elastic search 5.1 why stored_fields does not return asked field?

In Elastic Search 5.1 I am making basic request with stored_fields body argument (new name for old fields argument) for retrieving the value of a specific field.
But my request give no field value in answer except _index, _type, _id and _score
I Give you sample for context:
I create index and mapping with:
PUT /base_well
{
"mappings": {
"person": {
"properties": {
"first_name":{
"type": "string"
},
"last_name":{
"type": "string"
},
"age":{
"type": "long"
}
}
}
}
}
I populate :
POST /base_well/person
{
"first_name":"James",
"last_name" : "Mopo",
"Age" : 21
}
POST /base_well/person
{
"first_name":"Polo",
"last_name" : "Rodriguez",
"Age" : 36
}
POST /base_well/person
{
"first_name":"Marc Aurelien",
"last_name" : "Poisson",
"Age" : 26
}
POST /base_well/person
{
"first_name":"Mustapha",
"last_name" : "Bulutu M'Bo",
"Age" : 47
}
I do my request with:
POST /base_well/person/_search
{
"stored_fields": ["first_name"]
}
And it give me an answere without the requested field fiest_person:
{
"took": 4,
"timed_out": false,
"_shards": {
"total": 5,
"successful": 5,
"failed": 0
},
"hits": {
"total": 8,
"max_score": 1,
"hits": [
{
"_index": "base_well",
"_type": "person",
"_id": "AVlFYzihcR_Z5VPUXUCL",
"_score": 1
},
{
"_index": "base_well",
"_type": "person",
"_id": "AVlFiv3acR_Z5VPUXUCa",
"_score": 1
},
{
"_index": "base_well",
"_type": "person",
"_id": "AVlFiwUKcR_Z5VPUXUCb",
"_score": 1
},
{
"_index": "base_well",
"_type": "person",
"_id": "AVlFYx2LcR_Z5VPUXUCI",
"_score": 1
},
{
"_index": "base_well",
"_type": "person",
"_id": "AVlFYyhScR_Z5VPUXUCJ",
"_score": 1
},
{
"_index": "base_well",
"_type": "person",
"_id": "AVlFYzIJcR_Z5VPUXUCK",
"_score": 1
},
{
"_index": "base_well",
"_type": "person",
"_id": "AVlFivgzcR_Z5VPUXUCZ",
"_score": 1
},
{
"_index": "base_well",
"_type": "person",
"_id": "AVlFiw2qcR_Z5VPUXUCc",
"_score": 1
}
]
}
}
Anybody could explain me to do it and how it works please?
By default, the document fields are not stored, i.e. in your mapping you don't specify store: true for each of them.
Hence, "stored_fields": ["first_name"] will not be able to return the first_name field since it's not stored.
You can use source filtering instead and specify "_source": ["first_name"] in your query, that will work.

Resources