How do I express this equation in Autohotkey to keep the zeroes - expression

I am trying figure out how to keep adding 100 to a variable but keep the zeroes in place. Here is what I mean.
A = 0001
msgbox % (a + 100)
The way it is now gives me "101" instead of "0101". Eventually I want to be able to keep adding 100 to get: 0101, 0201...1001...2101...and so forth.

Displays numeric value padded to length 4 by prefixing 0's
a := 1
msgbox % format( "{1:04}", a + 100 )
Message Box Output
0101
Notes
1 refers to the first argument (a+100)
:04 defines format: width 4 padded by 0's
Format Reference

Related

hpack encoding integer significance

After reading this, https://httpwg.org/specs/rfc7541.html#integer.representation
I am confused about quite a few things, although I seem to have the overall gist of the idea.
For one, What are the 'prefixes' exactly/what is their purpose?
For two:
C.1.1. Example 1: Encoding 10 Using a 5-Bit Prefix
The value 10 is to be encoded with a 5-bit prefix.
10 is less than 31 (2^5 - 1) and is represented using the 5-bit prefix.
0 1 2 3 4 5 6 7
+---+---+---+---+---+---+---+---+
| X | X | X | 0 | 1 | 0 | 1 | 0 | 10 stored on 5 bits
+---+---+---+---+---+---+---+---+
What are the leading Xs? What is the starting 0 for?
>>> bin(10)
'0b1010'
>>>
Typing this in the python IDE, you see almost the same output... Why does it differ?
This is when the number fits within the number of prefix bits though, making it seemingly simple.
C.1.2. Example 2: Encoding 1337 Using a 5-Bit Prefix
The value I=1337 is to be encoded with a 5-bit prefix.
1337 is greater than 31 (25 - 1).
The 5-bit prefix is filled with its max value (31).
I = 1337 - (25 - 1) = 1306.
I (1306) is greater than or equal to 128, so the while loop body executes:
I % 128 == 26
26 + 128 == 154
154 is encoded in 8 bits as: 10011010
I is set to 10 (1306 / 128 == 10)
I is no longer greater than or equal to 128, so the while loop terminates.
I, now 10, is encoded in 8 bits as: 00001010.
The process ends.
0 1 2 3 4 5 6 7
+---+---+---+---+---+---+---+---+
| X | X | X | 1 | 1 | 1 | 1 | 1 | Prefix = 31, I = 1306
| 1 | 0 | 0 | 1 | 1 | 0 | 1 | 0 | 1306>=128, encode(154), I=1306/128
| 0 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 10<128, encode(10), done
+---+---+---+---+---+---+---+---+
The octet-like diagram shows three different numbers being produced... Since the numbers are produced throughout the loop, how do you replicate this octet-like diagram within an integer? What is the actual final result? The diagram or "I" being 10, or 00001010.
def f(a, b):
if a < 2**b - 1:
print(a)
else:
c = 2**b - 1
remain = a - c
print(c)
if remain >= 128:
while 1:
e = remain % 128
g = e + 128
remain = remain / 128
if remain >= 128:
continue
else:
print(remain)
c+=int(remain)
print(c)
break
As im trying to figure this out, I wrote a quick python implementation of it, It seems that i am left with a few useless variables, one being g which in the documentation is the 26 + 128 == 154.
Lastly, where does 128 come from? I can't find any relation between the numbers besides the fact 2 raised to the 7th power is 128, but why is that significant? Is this because the first bit is reserved as a continuation flag? and an octet contains 8 bits so 8 - 1 = 7?
For one, What are the 'prefixes' exactly/what is their purpose?
Integers are used in a few places in HPACK messages and often they have leading bits that cannot be used to for the actual integer. Therefore, there will often be a few leading digits that will be unavailable to use for the integer itself. They are represented by the X. For the purposes of this calculation it doesn't make what those Xs are: could be 000, or 111, or 010 or...etc. Also, there will not always be 3 Xs - that is just an example. There could only be one leading X, or two, or four...etc.
For example, to look up a previous HPACK decoded header, we use 6.1. Indexed Header Field Representation which starts with a leading 1, followed by the table index value. Therefore that 1 is the X in the previous example. We have 7-bits (instead of only 5-bits in the original example in your question). If the table index value is 127 or less we can represent it using those 7-bits. If it's >= 127 then we need to do some extra work (we'll come back to this).
If it's a new value we want to add to the table (to reuse in future requests), but we already have that header name in the table (so it's just a new value for that name we want as a new entry) then we use 6.2.1. Literal Header Field with Incremental Indexing. This has 2 bits at the beginning (01 - which are the Xs), and we only have 6-bits this time to represent the index of the name we want to reuse. So in this case there are two Xs.
So don't worry about there being 3 Xs - that's just an example. In the above examples there was one X (as first bit had to be 1), and two Xs (as first two bits had to be 01) respectively. The Integer Representation section is telling you how to handle any prefixed integer, whether prefixed by 1, 2, 3... etc unusable "X" bits.
What are the leading Xs? What is the starting 0 for?
The leading Xs are discussed above. The starting 0 is just because, in this example we have 5-bits to represent the integers and only need 4-bits. So we pad it with 0. If the value to encode was 20 it would be 10100. If the value was 40, we couldn't fit it in 5-bits so need to do something else.
Typing this in the python IDE, you see almost the same output... Why does it differ?
Python uses 0b to show it's a binary number. It doesn't bother showing any leading zeros. So 0b1010 is the same as 0b01010 and also the same as 0b00001010.
This is when the number fits within the number of prefix bits though, making it seemingly simple.
Exactly. If you need more than the number of bits you have, you don't have space for it. You can't just use more bits as HPACK will not know whether you are intending to use more bits (so should look at next byte) or if it's just a straight number (so only look at this one byte). It needs a signal to know that. That signal is using all 1s.
So to encode 40 in 5 bits, we need to use 11111 to say "it's not big enough", overflow to next byte. 11111 in binary is 31, so we know it's bigger than that, so we'll not waste that, and instead use it, and subtract it from the 40 to give 9 left to encode in the next byte. A new additional byte gives us 8 new bits to play with (well actually only 7 as we'll soon discover, as the first bit is used to signal a further overflow). This is enough so we can use 00001001 to encode our 9. So our complex number is represented in two bytes: XXX11111 and 00001001.
If we want to encode a value bigger than can fix in the first prefixed bit, AND the left over is bigger than 127 that would fit into the available 7 bits of the second byte, then we can't use this overflow mechanism using two bytes. Instead we use another "overflow, overflow" mechanism using three bytes:
For this "overflow, overflow" mechanism, we set the first byte bits to 1s as usual for an overflow (XXX11111) and then set the first bit of the second byte to 1. This leaves 7 bits available to encode the value, plus the next 8 bits in the third byte we're going to have to use (actually only 7 bits of the third byte, because again it uses the first bit to indicate another overflow).
There's various ways they could go have gone about this using the second and third bytes. What they decided to do was encode this as two numbers: the 128 mod, and the 128 multiplier.
1337 = 31 + (128 * 10) + 26
So that means the frist byte is set to 31 as per pervious example, the second byte is set to 26 (which is 11010) plus the leading 1 to show we're using the overflow overflow method (so 100011010), and the third byte is set to 10 (or 00001010).
So 1337 is encoded in three bytes: XXX11111 100011010 00001010 (including setting X to whatever those values were).
Using 128 mod and multiplier is quite efficient and means this large number (and in fact any number up to 16,383) can be represented in three bytes which is, not uncoincidentally, also the max integer that can be represented in 7 + 7 = 14 bits). But it does take a bit of getting your head around!
If it's bigger than 16,383 then we need to do another round of overflow in a similar manner.
All this seems horrendously complex but is actually relatively simply, and efficiently, coded up. Computers can do this pretty easily and quickly.
It seems that i am left with a few useless variables, one being g
You are not print this value in the if statement. Only the left over value in the else. You need to print both.
which in the documentation is the 26 + 128 == 154.
Lastly, where does 128 come from? I can't find any relation between the numbers besides the fact 2 raised to the 7th power is 128, but why is that significant? Is this because the first bit is reserved as a continuation flag? and an octet contains 8 bits so 8 - 1 = 7?
Exactly, it's because the first bit (value 128) needs to be set as per explanation above, to show we are continuing/overflowing into needing a third byte.

Why n bitwise and -n always return the right most bit (last bit)

Here is the python code snippet:
1 & -1 # 1
2 & -2 # 2
3 & -3 # 1
...
It seems any n & -n always return right most (last) bit, I don't really know why. Can someone help me to understand this?
It's due to the way that negative numbers are represented in binary, which is called two's complement representation.
To create the two's complement of some number n (in other words, to create the representation of -n):
Invert all the bits
Add 1
So in other words, when you write 1 & -1 it really means 1 & ((~1)+1). The initial ~1 gives the value 1111110 and adding one gives 11111111. (Let's stick with 8 bits for these examples.) ANDing that values with 1 gives just 1.
In the next case, 2 & -2 means 2 & ((~2)+1). Inverting 2 gives 11111101 and adding one gives 11111110. Then AND with 2 (10 in binary) gives 2.
Finally 3 & -3 means 3 & ((~3)+1). Invert 3 gives 11111100, add 1 gives 11111101, and AND with 3 (11 binary) gives 1.
~x = -1 -x
so
-x = ~x + 1
When you take the compliment of x (~x), all the 0-bits turn to 1 and all the 1 bits turn to zero. e.g. 101100 -> 010011.
When you add 1, the consecutive 1s on the right change to 0 and the first 0 bit gets set to 1: 010011 -> 010100
If you & that with the original, the 0 bits at the top that changed to 1 come out 0. The 1 bits at the bottom you flipped to 0 by adding come out 0. Only the rightmost 1 bit, which turned into the rightmost 0 bit in the complement and got reset to 1 by the addition, is 1 on both sides: 101100 & 010100 -> 000100
The integers are stored in the memory in the binary form. The non-negative integers are stored as it is in as they are in their binary but the negative numbers are stored in the two's complement form. For example take any arbitrary number 158.
158 = 0000000010011110
while its negative ie.
-158 = 1111111101100010
Take for any number and bitwise AND with its negative then you will get rightmost set bit. This is because in the process of conversion of two's complement we start from right and put the bits as it is till we encounter our first set bit. That is the right most set bit is being written as it is. Then We flip the digits in the left starting from here.
However Above procedure is just a shortcut method for calculating 2's complement. For actual process, you have to first take 1's complement of the number(flipping all bits set to unset and unset to set) and then add 1 to the whole result. Now here is insight of why does this shortcut works everytime
Why does this two's complement shortcut work?
This will give you more insight https://www.geeksforgeeks.org/efficient-method-2s-complement-binary-string/
And take some numbers and work on examples and see yourself.
The catch is in calculating the 2's complement not in performing bitwise AND operation, AND always needs same things to be same to give true.
What 2's complement is doing is, it is making the rightmost digit of both numbers taking part in bitwise AND operation, Look below how 2's complement operation is being calculated and you will find that we represent the number(decimal) in binary and then to calculate the 2's complement we start from right and copy all binary digits the same until we see the first 1, and when we see the first 1 then we make all left of it as opposite the the previous.
The catch is:
Say you want 2's complement of 4 i.e (-4) , so what it says is represent the decimal in binary and copy all bits(0) from right till you see the first 1 and after that reverse all 0s and 1s.
Example: we want 2's complement of 6 -> 0 1 1 0 = 0 0 1 0 , From right of 0110 we start and till we see the first 1 we copy exactly what is in first then we reverse all 0s and 1s.
Another operation with 2's complement
0100
1100 ( Bold are just same as above)
Now it is obvious that when you do bitwise AND then the right most
digit will only make through the AND operation as you need both to
be equal to get through AND.

How to convert a fraction to binary?

I don't know how to convert from a fraction to binary. When I search it, there has a solution shows that:
1 1
-- (dec) = ---- (bin)
10 1010
0.000110011...
-------------
1010 | 1.0000000000
1010
------
01100
1010
-----
0010000
1010
-----
01100
1010
-----
0010
I don't know how and why to do it.
Let's take a look at converting the decimal value of 0.625 to binary.
Step 1: Begin with the decimal fraction and multiply by 2. The whole number part of the result is the first binary digit to the right of the point.
Because .625 x 2 = 1.25, the first binary digit to the right of the point is a 1.
So far, we have .625 = .1??? . . . (base 2) .
Step 2: Next we disregard the whole number part of the previous result (the 1 in this case) and multiply by 2 once again. The whole number part of this new result is the second binary digit to the right of the point. We will continue this process until we get a zero as our decimal part or until we recognize an infinite repeating pattern.
Because .25 x 2 = 0.50, the second binary digit to the right of the point is a 0.
So far, we have .625 = .10?? . . . (base 2) .
Step 3: Disregarding the whole number part of the previous result (this result was .50 so there actually is no whole number part to disregard in this case), we multiply by 2 once again. The whole number part of the result is now the next binary digit to the right of the point.
Because .50 x 2 = 1.00, the third binary digit to the right of the point is a 1.
So now we have .625 = .101?? . . . (base 2) .
Step 4: In fact, we do not need a Step 4. We are finished in Step 3, because we had 0 as the fractional part of our result there.
Hence the representation of .625 = .101 (base 2) .
Decimal 1/10 converts to an infinite binary fraction.
In your question you said that 1/10 in decimal equals 1/1010 in binary. .1 (1/10) in decimal actually equals 0.00011001100110011... in binary.
Fractional value to Binary number conversion
The fraction value is multiplied by 2 and
result has a decimal (1 or 0) and a fraction value.
take the faction value for step 1 operation.
The repeat process until the fraction value reached to 0.
collects a decimal value from bottom to up
fraction = .125
= .125 x 2
= 0.250 x 2
= 0.50 x 2
= 1.0
fraction = 0.125 = 100
Results
given fraction value (base 10)= 0.125
into binary bits (base 2) = 0.100
Real number to binary conversion
In a binary weighted fraction each digit to the right of the decimal point is a power of (1/2) (or the negative of power of 2) smaller than the one to the left. The first rightward digit has a weight of 1/2, the second is 1/4, the third 1/8, and so on.
So a 0.111 (base-2) is:
1*(0.5) + 1*(0.25) + 1*(0.125) = 0.875
And a 0.0101 (base-2) is:
0*(0.5) + 1*(0.25) + 0*(0.125) + 1*(0.0625) = 0.3125
It's no different from binary integers, except we're just extending it to negative powers of 2 as we move right of the decimal point.
I hope that addresses at least part of your question.

Consolidate 10 bit Value into a Unique Byte

As part of an algorithm I'm writing, I need to find a way to convert a 10-bit word into a unique 8-bit word. The 10-bit word is made up of 5 pairs, where each pair can only ever equal 0, 1 or 2 (never 3). For example:
|00|10|00|01|10|
This value needs to somehow be consolidated into a single, unique byte.
As each pair can never equal 3, there are a wide range of values that this 10-bit word will never represent, which makes me think that it is possible to create an algorithm to perform this conversion. The simplest way to do this would be to use a lookup table, but it seems like a waste of resources to store ~680 values which will only be used once in my program. I've already tried to incorporate one of the pairs into the others somehow, but every attempt I've made has resulted in a non-unique value, and I'm now very quickly running out of ideas!
Any help?
The number you have is essentially base 3. You just need to convert this to base 2.
There are 5 pairs, so 3^5 = 243 numbers. And 8 bits is 2^8 = 256 numbers, so it's possible.
The simplest way to convert between bases is to go to base 10 first.
So, for your example:
00|10|00|01|10
Base 3: 02012
Base 10: 2*3^3 + 1*3^1 + 2*3^0
= 54 + 3 + 2
= 59
Base 2:
59 % 2 = 1
/2 29 % 2 = 1
/2 14 % 2 = 0
/2 7 % 2 = 1
/2 3 % 2 = 1
/2 1 % 2 = 1
So 111011 is your number in binary
This explains the above process in a bit more detail.
Note that once you have 59 above stored in a 1-byte integer, you'll probably already have what you want, thus explicitly converting to base 2 might not be necessary.
What you basically have is a base 3 number and you want to convert this to a single number 0 - 255, luckily 5 digits in ternary (base 3) gives 243 combinations.
What you'll need to do is:
Digit Action
( 1st x 3^4)
+ (2nd x 3^3)
+ (3rd x 3^2)
+ (4th x 3)
+ (5th)
This will give you a number 0 to 242.
You are considering to store some information in a byte. A byte can contain at most 2 ^ 8 = 256 status.
Your status is totally 3 ^ 5 = 243 < 256. That make the transfer possible.
Consider your pairs are ABCDE (each character can be 0, 1 or 2)
You can just calculate A*3^4 + B*3^3 + C*3^2 + D*3 + E as your result. I guarantee the result will be in range 0 -- 255.

How to count each digit in a range of integers?

Imagine you sell those metallic digits used to number houses, locker doors, hotel rooms, etc. You need to find how many of each digit to ship when your customer needs to number doors/houses:
1 to 100
51 to 300
1 to 2,000 with zeros to the left
The obvious solution is to do a loop from the first to the last number, convert the counter to a string with or without zeros to the left, extract each digit and use it as an index to increment an array of 10 integers.
I wonder if there is a better way to solve this, without having to loop through the entire integers range.
Solutions in any language or pseudocode are welcome.
Edit:
Answers review
John at CashCommons and Wayne Conrad comment that my current approach is good and fast enough. Let me use a silly analogy: If you were given the task of counting the squares in a chess board in less than 1 minute, you could finish the task by counting the squares one by one, but a better solution is to count the sides and do a multiplication, because you later may be asked to count the tiles in a building.
Alex Reisner points to a very interesting mathematical law that, unfortunately, doesn’t seem to be relevant to this problem.
Andres suggests the same algorithm I’m using, but extracting digits with %10 operations instead of substrings.
John at CashCommons and phord propose pre-calculating the digits required and storing them in a lookup table or, for raw speed, an array. This could be a good solution if we had an absolute, unmovable, set in stone, maximum integer value. I’ve never seen one of those.
High-Performance Mark and strainer computed the needed digits for various ranges. The result for one millon seems to indicate there is a proportion, but the results for other number show different proportions.
strainer found some formulas that may be used to count digit for number which are a power of ten.
Robert Harvey had a very interesting experience posting the question at MathOverflow. One of the math guys wrote a solution using mathematical notation.
Aaronaught developed and tested a solution using mathematics. After posting it he reviewed the formulas originated from Math Overflow and found a flaw in it (point to Stackoverflow :).
noahlavine developed an algorithm and presented it in pseudocode.
A new solution
After reading all the answers, and doing some experiments, I found that for a range of integer from 1 to 10n-1:
For digits 1 to 9, n*10(n-1) pieces are needed
For digit 0, if not using leading zeros, n*10n-1 - ((10n-1) / 9) are needed
For digit 0, if using leading zeros, n*10n-1 - n are needed
The first formula was found by strainer (and probably by others), and I found the other two by trial and error (but they may be included in other answers).
For example, if n = 6, range is 1 to 999,999:
For digits 1 to 9 we need 6*105 = 600,000 of each one
For digit 0, without leading zeros, we need 6*105 – (106-1)/9 = 600,000 - 111,111 = 488,889
For digit 0, with leading zeros, we need 6*105 – 6 = 599,994
These numbers can be checked using High-Performance Mark results.
Using these formulas, I improved the original algorithm. It still loops from the first to the last number in the range of integers, but, if it finds a number which is a power of ten, it uses the formulas to add to the digits count the quantity for a full range of 1 to 9 or 1 to 99 or 1 to 999 etc. Here's the algorithm in pseudocode:
integer First,Last //First and last number in the range
integer Number //Current number in the loop
integer Power //Power is the n in 10^n in the formulas
integer Nines //Nines is the resut of 10^n - 1, 10^5 - 1 = 99999
integer Prefix //First digits in a number. For 14,200, prefix is 142
array 0..9 Digits //Will hold the count for all the digits
FOR Number = First TO Last
CALL TallyDigitsForOneNumber WITH Number,1 //Tally the count of each digit
//in the number, increment by 1
//Start of optimization. Comments are for Number = 1,000 and Last = 8,000.
Power = Zeros at the end of number //For 1,000, Power = 3
IF Power > 0 //The number ends in 0 00 000 etc
Nines = 10^Power-1 //Nines = 10^3 - 1 = 1000 - 1 = 999
IF Number+Nines <= Last //If 1,000+999 < 8,000, add a full set
Digits[0-9] += Power*10^(Power-1) //Add 3*10^(3-1) = 300 to digits 0 to 9
Digits[0] -= -Power //Adjust digit 0 (leading zeros formula)
Prefix = First digits of Number //For 1000, prefix is 1
CALL TallyDigitsForOneNumber WITH Prefix,Nines //Tally the count of each
//digit in prefix,
//increment by 999
Number += Nines //Increment the loop counter 999 cycles
ENDIF
ENDIF
//End of optimization
ENDFOR
SUBROUTINE TallyDigitsForOneNumber PARAMS Number,Count
REPEAT
Digits [ Number % 10 ] += Count
Number = Number / 10
UNTIL Number = 0
For example, for range 786 to 3,021, the counter will be incremented:
By 1 from 786 to 790 (5 cycles)
By 9 from 790 to 799 (1 cycle)
By 1 from 799 to 800
By 99 from 800 to 899
By 1 from 899 to 900
By 99 from 900 to 999
By 1 from 999 to 1000
By 999 from 1000 to 1999
By 1 from 1999 to 2000
By 999 from 2000 to 2999
By 1 from 2999 to 3000
By 1 from 3000 to 3010 (10 cycles)
By 9 from 3010 to 3019 (1 cycle)
By 1 from 3019 to 3021 (2 cycles)
Total: 28 cycles
Without optimization: 2,235 cycles
Note that this algorithm solves the problem without leading zeros. To use it with leading zeros, I used a hack:
If range 700 to 1,000 with leading zeros is needed, use the algorithm for 10,700 to 11,000 and then substract 1,000 - 700 = 300 from the count of digit 1.
Benchmark and Source code
I tested the original approach, the same approach using %10 and the new solution for some large ranges, with these results:
Original 104.78 seconds
With %10 83.66
With Powers of Ten 0.07
A screenshot of the benchmark application:
(source: clarion.sca.mx)
If you would like to see the full source code or run the benchmark, use these links:
Complete Source code (in Clarion): http://sca.mx/ftp/countdigits.txt
Compilable project and win32 exe: http://sca.mx/ftp/countdigits.zip
Accepted answer
noahlavine solution may be correct, but l just couldn’t follow the pseudo code, I think there are some details missing or not completely explained.
Aaronaught solution seems to be correct, but the code is just too complex for my taste.
I accepted strainer’s answer, because his line of thought guided me to develop this new solution.
There's a clear mathematical solution to a problem like this. Let's assume the value is zero-padded to the maximum number of digits (it's not, but we'll compensate for that later), and reason through it:
From 0-9, each digit occurs once
From 0-99, each digit occurs 20 times (10x in position 1 and 10x in position 2)
From 0-999, each digit occurs 300 times (100x in P1, 100x in P2, 100x in P3)
The obvious pattern for any given digit, if the range is from 0 to a power of 10, is N * 10N-1, where N is the power of 10.
What if the range is not a power of 10? Start with the lowest power of 10, then work up. The easiest case to deal with is a maximum like 399. We know that for each multiple of 100, each digit occurs at least 20 times, but we have to compensate for the number of times it appears in the most-significant-digit position, which is going to be exactly 100 for digits 0-3, and exactly zero for all other digits. Specifically, the extra amount to add is 10N for the relevant digits.
Putting this into a formula, for upper bounds that are 1 less than some multiple of a power of 10 (i.e. 399, 6999, etc.) it becomes: M * N * 10N-1 + iif(d <= M, 10N, 0)
Now you just have to deal with the remainder (which we'll call R). Take 445 as an example. This is whatever the result is for 399, plus the range 400-445. In this range, the MSD occurs R more times, and all digits (including the MSD) also occur at the same frequencies they would from range [0 - R].
Now we just have to compensate for the leading zeros. This pattern is easy - it's just:
10N + 10N-1 + 10N-2 + ... + **100
Update: This version correctly takes into account "padding zeros", i.e. the zeros in middle positions when dealing with the remainder ([400, 401, 402, ...]). Figuring out the padding zeros is a bit ugly, but the revised code (C-style pseudocode) handles it:
function countdigits(int d, int low, int high) {
return countdigits(d, low, high, false);
}
function countdigits(int d, int low, int high, bool inner) {
if (high == 0)
return (d == 0) ? 1 : 0;
if (low > 0)
return countdigits(d, 0, high) - countdigits(d, 0, low);
int n = floor(log10(high));
int m = floor((high + 1) / pow(10, n));
int r = high - m * pow(10, n);
return
(max(m, 1) * n * pow(10, n-1)) + // (1)
((d < m) ? pow(10, n) : 0) + // (2)
(((r >= 0) && (n > 0)) ? countdigits(d, 0, r, true) : 0) + // (3)
(((r >= 0) && (d == m)) ? (r + 1) : 0) + // (4)
(((r >= 0) && (d == 0)) ? countpaddingzeros(n, r) : 0) - // (5)
(((d == 0) && !inner) ? countleadingzeros(n) : 0); // (6)
}
function countleadingzeros(int n) {
int tmp= 0;
do{
tmp= pow(10, n)+tmp;
--n;
}while(n>0);
return tmp;
}
function countpaddingzeros(int n, int r) {
return (r + 1) * max(0, n - max(0, floor(log10(r))) - 1);
}
As you can see, it's gotten a bit uglier but it still runs in O(log n) time, so if you need to handle numbers in the billions, this will still give you instant results. :-) And if you run it on the range [0 - 1000000], you get the exact same distribution as the one posted by High-Performance Mark, so I'm almost positive that it's correct.
FYI, the reason for the inner variable is that the leading-zero function is already recursive, so it can only be counted in the first execution of countdigits.
Update 2: In case the code is hard to read, here's a reference for what each line of the countdigits return statement means (I tried inline comments but they made the code even harder to read):
Frequency of any digit up to highest power of 10 (0-99, etc.)
Frequency of MSD above any multiple of highest power of 10 (100-399)
Frequency of any digits in remainder (400-445, R = 45)
Additional frequency of MSD in remainder
Count zeros in middle position for remainder range (404, 405...)
Subtract leading zeros only once (on outermost loop)
I'm assuming you want a solution where the numbers are in a range, and you have the starting and ending number. Imagine starting with the start number and counting up until you reach the end number - it would work, but it would be slow. I think the trick to a fast algorithm is to realize that in order to go up one digit in the 10^x place and keep everything else the same, you need to use all of the digits before it 10^x times plus all digits 0-9 10^(x-1) times. (Except that your counting may have involved a carry past the x-th digit - I correct for this below.)
Here's an example. Say you're counting from 523 to 1004.
First, you count from 523 to 524. This uses the digits 5, 2, and 4 once each.
Second, count from 524 to 604. The rightmost digit does 6 cycles through all of the digits, so you need 6 copies of each digit. The second digit goes through digits 2 through 0, 10 times each. The third digit is 6 5 times and 5 100-24 times.
Third, count from 604 to 1004. The rightmost digit does 40 cycles, so add 40 copies of each digit. The second from right digit doers 4 cycles, so add 4 copies of each digit. The leftmost digit does 100 each of 7, 8, and 9, plus 5 of 0 and 100 - 5 of 6. The last digit is 1 5 times.
To speed up the last bit, look at the part about the rightmost two places. It uses each digit 10 + 1 times. In general, 1 + 10 + ... + 10^n = (10^(n+1) - 1)/9, which we can use to speed up counting even more.
My algorithm is to count up from the start number to the end number (using base-10 counting), but use the fact above to do it quickly. You iterate through the digits of the starting number from least to most significant, and at each place you count up so that that digit is the same as the one in the ending number. At each point, n is the number of up-counts you need to do before you get to a carry, and m the number you need to do afterwards.
Now let's assume pseudocode counts as a language. Here, then, is what I would do:
convert start and end numbers to digit arrays start[] and end[]
create an array counts[] with 10 elements which stores the number of copies of
each digit that you need
iterate through start number from right to left. at the i-th digit,
let d be the number of digits you must count up to get from this digit
to the i-th digit in the ending number. (i.e. subtract the equivalent
digits mod 10)
add d * (10^i - 1)/9 to each entry in count.
let m be the numerical value of all the digits to the right of this digit,
n be 10^i - m.
for each digit e from the left of the starting number up to and including the
i-th digit, add n to the count for that digit.
for j in 1 to d
increment the i-th digit by one, including doing any carries
for each digit e from the left of the starting number up to and including
the i-th digit, add 10^i to the count for that digit
for each digit e from the left of the starting number up to and including the
i-th digit, add m to the count for that digit.
set the i-th digit of the starting number to be the i-th digit of the ending
number.
Oh, and since the value of i increases by one each time, keep track of your old 10^i and just multiply it by 10 to get the new one, instead of exponentiating each time.
To reel of the digits from a number, we'd only ever need to do a costly string conversion if we couldnt do a mod, digits can most quickly be pushed of a number like this:
feed=number;
do
{ digit=feed%10;
feed/=10;
//use digit... eg. digitTally[digit]++;
}
while(feed>0)
that loop should be very fast and can just be placed inside a loop of the start to end numbers for the simplest way to tally the digits.
To go faster, for larger range of numbers, im looking for an optimised method of tallying all digits from 0 to number*10^significance
(from a start to end bazzogles me)
here is a table showing digit tallies of some single significant digits..
these are inclusive of 0, but not the top value itself, -that was an oversight
but its maybe a bit easier to see patterns (having the top values digits absent here)
These tallies dont include trailing zeros,
1 10 100 1000 10000 2 20 30 40 60 90 200 600 2000 6000
0 1 1 10 190 2890 1 2 3 4 6 9 30 110 490 1690
1 0 1 20 300 4000 1 12 13 14 16 19 140 220 1600 2800
2 0 1 20 300 4000 0 2 13 14 16 19 40 220 600 2800
3 0 1 20 300 4000 0 2 3 14 16 19 40 220 600 2800
4 0 1 20 300 4000 0 2 3 4 16 19 40 220 600 2800
5 0 1 20 300 4000 0 2 3 4 16 19 40 220 600 2800
6 0 1 20 300 4000 0 2 3 4 6 19 40 120 600 1800
7 0 1 20 300 4000 0 2 3 4 6 19 40 120 600 1800
8 0 1 20 300 4000 0 2 3 4 6 19 40 120 600 1800
9 0 1 20 300 4000 0 2 3 4 6 9 40 120 600 1800
edit: clearing up my origonal
thoughts:
from the brute force table showing
tallies from 0 (included) to
poweroTen(notinc) it is visible that
a majordigit of tenpower:
increments tally[0 to 9] by md*tp*10^(tp-1)
increments tally[1 to md-1] by 10^tp
decrements tally[0] by (10^tp - 10)
(to remove leading 0s if tp>leadingzeros)
can increment tally[moresignificantdigits] by self(md*10^tp)
(to complete an effect)
if these tally adjustments were applied for each significant digit,
the tally should be modified as though counted from 0 to end-1
the adjustments can be inverted to remove preceeding range (start number)
Thanks Aaronaught for your complete and tested answer.
Here's a very bad answer, I'm ashamed to post it. I asked Mathematica to tally the digits used in all numbers from 1 to 1,000,000, no leading 0s. Here's what I got:
0 488895
1 600001
2 600000
3 600000
4 600000
5 600000
6 600000
7 600000
8 600000
9 600000
Next time you're ordering sticky digits for selling in your hardware store, order in these proportions, you won't be far wrong.
I asked this question on Math Overflow, and got spanked for asking such a simple question. One of the users took pity on me and said if I posted it to The Art of Problem Solving, he would answer it; so I did.
Here is the answer he posted:
http://www.artofproblemsolving.com/Forum/viewtopic.php?p=1741600#1741600
Embarrassingly, my math-fu is inadequate to understand what he posted (the guy is 19 years old...that is so depressing). I really need to take some math classes.
On the bright side, the equation is recursive, so it should be a simple matter to turn it into a recursive function with a few lines of code, by someone who understands the math.
I know this question has an accepted answer but I was tasked with writing this code for a job interview and I think I came up with an alternative solution that is fast, requires no loops and can use or discard leading zeroes as required.
It is in fact quite simple but not easy to explain.
If you list out the first n numbers
1
2
3
.
.
.
9
10
11
It is usual to start counting the digits required from the start room number to the end room number in a left to right fashion, so for the above we have one 1, one 2, one 3 ... one 9, two 1's one zero, four 1's etc. Most solutions I have seen used this approach with some optimisation to speed it up.
What I did was to count vertically in columns, as in hundreds, tens, and units. You know the highest room number so we can calculate how many of each digit there are in the hundreds column via a single division, then recurse and calculate how many in the tens column etc. Then we can subtract the leading zeros if we like.
Easier to visualize if you use Excel to write out the numbers but use a separate column for each digit of the number
A B C
- - -
0 0 1 (assuming room numbers do not start at zero)
0 0 2
0 0 3
.
.
.
3 6 4
3 6 5
.
.
.
6 6 9
6 7 0
6 7 1
^
sum in columns not rows
So if the highest room number is 671 the hundreds column will have 100 zeroes vertically, followed by 100 ones and so on up to 71 sixes, ignore 100 of the zeroes if required as we know these are all leading.
Then recurse down to the tens and perform the same operation, we know there will be 10 zeroes followed by 10 ones etc, repeated six times, then the final time down to 2 sevens. Again can ignore the first 10 zeroes as we know they are leading. Finally of course do the units, ignoring the first zero as required.
So there are no loops everything is calculated with division. I use recursion for travelling "up" the columns until the max one is reached (in this case hundreds) and then back down totalling as it goes.
I wrote this in C# and can post code if anyone interested, haven't done any benchmark timings but it is essentially instant for values up to 10^18 rooms.
Could not find this approach mentioned here or elsewhere so thought it might be useful for someone.
Your approach is fine. I'm not sure why you would ever need anything faster than what you've described.
Or, this would give you an instantaneous solution: Before you actually need it, calculate what you would need from 1 to some maximum number. You can store the numbers needed at each step. If you have a range like your second example, it would be what's needed for 1 to 300, minus what's needed for 1 to 50.
Now you have a lookup table that can be called at will. Doing up to 10,000 would only take a few MB and, what, a few minutes to compute, once?
This doesn't answer your exact question, but it's interesting to note the distribution of first digits according to Benford's Law. For example, if you choose a set of numbers at random, 30% of them will start with "1", which is somewhat counter-intuitive.
I don't know of any distributions describing subsequent digits, but you might be able to determine this empirically and come up with a simple formula for computing an approximate number of digits required for any range of numbers.
If "better" means "clearer," then I doubt it. If it means "faster," then yes, but I wouldn't use a faster algorithm in place of a clearer one without a compelling need.
#!/usr/bin/ruby1.8
def digits_for_range(min, max, leading_zeros)
bins = [0] * 10
format = [
'%',
('0' if leading_zeros),
max.to_s.size,
'd',
].compact.join
(min..max).each do |i|
s = format % i
for digit in s.scan(/./)
bins[digit.to_i] +=1 unless digit == ' '
end
end
bins
end
p digits_for_range(1, 49, false)
# => [4, 15, 15, 15, 15, 5, 5, 5, 5, 5]
p digits_for_range(1, 49, true)
# => [13, 15, 15, 15, 15, 5, 5, 5, 5, 5]
p digits_for_range(1, 10000, false)
# => [2893, 4001, 4000, 4000, 4000, 4000, 4000, 4000, 4000, 4000]
Ruby 1.8, a language known to be "dog slow," runs the above code in 0.135 seconds. That includes loading the interpreter. Don't give up an obvious algorithm unless you need more speed.
If you need raw speed over many iterations, try a lookup table:
Build an array with 2 dimensions: 10 x max-house-number
int nDigits[10000][10] ; // Don't try this on the stack, kids!
Fill each row with the count of digits required to get to that number from zero.
Hint: Use the previous row as a start:
n=0..9999:
if (n>0) nDigits[n] = nDigits[n-1]
d=0..9:
nDigits[n][d] += countOccurrencesOf(n,d) //
Number of digits "between" two numbers becomes simple subtraction.
For range=51 to 300, take the counts for 300 and subtract the counts for 50.
0's = nDigits[300][0] - nDigits[50][0]
1's = nDigits[300][1] - nDigits[50][1]
2's = nDigits[300][2] - nDigits[50][2]
3's = nDigits[300][3] - nDigits[50][3]
etc.
You can separate each digit (look here for a example), create a histogram with entries from 0..9 (which will count how many digits appeared in a number) and multiply by the number of 'numbers' asked.
But if isn't what you are looking for, can you give a better example?
Edited:
Now I think I got the problem. I think you can reckon this (pseudo C):
int histogram[10];
memset(histogram, 0, sizeof(histogram));
for(i = startNumber; i <= endNumber; ++i)
{
array = separateDigits(i);
for(j = 0; k < array.length; ++j)
{
histogram[k]++;
}
}
Separate digits implements the function in the link.
Each position of the histogram will have the amount of each digit. For example
histogram[0] == total of zeros
histogram[1] == total of ones
...
Regards

Resources