I've been trying to render silhouettes on CAD models with webgl. The closest i got to the desired result was with fwidth and a dot between the normal and the eye vector. I found it difficult to control the width though.
I saw another web based viewer and it's capable of doing something like this:
I started digging through the shaders, and the most i could figure out is that this is analytical - an actual line entity is drawn and that the width is achieved by rendering a quad instead of default webgl lines. There is a bunch of logic in the shader and my best guess is that the vertex positions are simply updated on every render.
This is a procedural model, so i guess that for cones and cylinders, two lines can always be allocated, silhouette points computed, and the lines updated.
If that is the case, would it be a good idea to try and do something like this in the shader (maybe it's already happening and i didn't understand it). I can see a cylinder being written to attributes or uniforms and the points computed.
Is there an approach like this already documented somewhere?
edit 8/15/17
I have not found any papers or documented techniques about this. But it got a couple of votes.
Given that i do have information about cylinders and cones, my idea is to sample the normal of that parametric surface from the vertex, push the surface out by some factor that would cover some amount of pixels in screen space, stencil it, and draw a thick line thus clipping it with the actual shape of the surface.
The traditional shader-based method is Gooch shading. The original paper is here:
http://artis.imag.fr/~Cyril.Soler/DEA/NonPhotoRealisticRendering/Papers/p447-gooch.pdf
The old fashing OpenGL technique from Jeff Lander
Related
Hello I'm trying to archive the effect in the image below (that is like shine light but only on top of the raw image)
Unfortunately I can not figure out how to do it, tried some shaders and assets from the asset store, but so far no one has worked, also I dont know much about shaders.
The raw image is an ui element, and renders a render texture that is being captured by a camera.
I'm totally lost here, any kind of help will be appreciated, how to make that effect?
Fresnel shaders use the difference between the surface normal and the view vector to detect which pixels are facing the viewer and which aren't. A UI plane will always face the user, so no luck there.
Solving this with shaders can be done in two ways - either you bake a normal map of the imagined "curvature" of the outer edge (example), or you create a signed distance field (example), or some similar method which maps the distance to the edge. A normal map would probably allow for the most complex effects, and i am sure that some fresnel shaders could work with that too. It does however require you to make a model of the shape and bake the normals from that.
A signed distance field on the other hand can be generated with script from an image, so if you have a lot of images, it might be the fastest approach. Getting the edge distance in real time inside the shader would not really work since you'd have to sample a very large amount of neighboring pixels, which might make the shader 10-20 times slower depending on how thick you need the edge to be.
If you don't need the image to be that dynamic, then maybe just creating an inner glow black/white texture in Photoshop and overlaying it using an additive shader would work better for you. If you don't know how to write shaders, then maybe the two above approaches are a bit of a tall order.
I just started to fiddle around with WebGL and three.js.
I would really like to create a thick line, which has rounded corners and endings. (see example picture)
Unfortunately I see that firstly the LineBasicMaterial's linecap property does not really work.
Three.js LineBasicMaterial
I started to think about using a tube, but then I think I will still not get a round cap...
Does someone have any ideas how I could create a line in the picture above? It does not necessarily have to made with three.js but WebGL would be a requirement. (I also want to animate this line further on...)
Thanks for any hints.
Cheers
There are a couple ways to draw 3d volumetric lines. The first is to do a vertex expansion in the shader. This is what the links in the comments do. Here is another one in case you need more material: http://codeflow.org/entries/2012/aug/05/webgl-rendering-of-solid-trails/.
Unfortunately it have visual artifacts when the line segment is viewed directly heads on. Check out the demo here: http://codeflow.org/webgl/trails/www/. Spin the scene around and you will notice some line segments facing directly towards the camera will spin rapidly. It looks a lot worse with a less noisy texture btw. If this is fine with you this is probably the preferred option.
The 2nd option is to just dynamically generate a capsule mesh for each line segment. Not much to say about it, beyond that this is a simple, abet somewhat inefficient method.
The 3rd option is to do a limited kind of ray tracing in the shader. Calculate the distance between the line segment and the fragment being shaded and we can use that to determine the appropriate color. Here is a link for that. Geometry shader is not currently supported in the webgl but there is nothing stopping you from generating the bounding line cuboid via javascript. Oh and if you need soft lines you probably need the blend_minmax extension. Probably the hardest method to setup but can be viewed at any angle and very customize-able compared to the other 2 methods.
I'm new to three.js and WebGL in general.
The sample at http://css.dzone.com/articles/threejs-render-real-world shows how to use raster GIS terrain data in three.js
Is it possible to use vector GIS data in a scene? For example, I have a series of points representing locations (including height) stored in real-world coordinates (meters). How would I go about displaying those in three.js?
The basic sample at http://threejs.org/docs/59/#Manual/Introduction/Creating_a_scene shows how to create a geometry using coordinates - could I use a similar approach with real-world coordinates such as
"x" : 339494.5,
"y" : 1294953.7,
"z": 0.75
or do I need to convert these into page units? Could I use my points to create a surface on which to drape an aerial image?
I tried modifying the simple sample but I'm not seeing anything (or any error messages): http://jsfiddle.net/slead/KpCfW/
Thanks for any suggestions on what I'm doing wrong, or whether this is indeed possible.
I did a number of things to get the JSFiddle show something.. here: http://jsfiddle.net/HxnnA/
You did not specify any faces in your geometry. In this case I just hard-coded a face with all three of your data points acting as corner. Alternatively you can look into using particles to display your data as points instead of faces.
Set material to THREE.DoubleSide. This is not usually needed or recommended, but helps debugging in early phases, when you can see both sides of a face.
Your camera was probably looking in a wrong direction. Added a lookAt() to point it to the center and made the field of view wider (this just makes it easier to find things while coding).
Your camera near and far planes were likely off-range for the camera position and terrain dimensions. So I increased the far plane distance.
Your coordinate values were quite huge, so I just modified them by hand a bit to make sense in relation to the camera, and to make sure they form a big enough triangle for it to be seen in camera. You could consider dividing your coordinates with something like 100 to make the units smaller. But adjusting the camera to account for the huge scale should be enough too.
Nothing wrong with your approach, just make sure you feed the data so that it makes sense considering the camera location, direction and near + far planes. Pay attention to how you make the faces. The parameters to Face3 is the index of each point in your vertices array. Later on you might need to take winding order, normals and uvs into account. You can study the geometry classes included in Three.js for reference.
Three.js does not specify any meaning to units. Its just floating point numbers, and you can decide yourself what a unit (1.0) represents. Whether it's 1mm, 1 inch or 1km, depends on what makes the most sense considering the application and the scale of it. Floating point numbers can bring precision problems when the actual numbers are extremely small or extremely big. My own applications typically deal with stuff in the range from a couple of centimeters to couple hundred meters, and use units in such a way that 1.0 = 1 meter, that has been working fine.
I'm trying and failing to work out how to achieve a quad-tree of materials (images) on a single plane, much like a Google Maps-style zoomable tile that gets more accurate the closer you get.
In short, I want to be able to have a 1x1 image texture (covering a plane that is 256 units wide and tall) that can then be replaced with a 2x2 texture, that can then be replaced with a 4x4 texture, and so on.
Like the image example below…
Ideally, I want to avoid having to create a different plane for each zoom level / number of segments. A perfect solution would allow me to break a single plane into 8x8 segments (highest zoom) and update the number of textures on the fly. So it would start with a 1x1 texture across all 64 (8x8) segments, then change into a 2x2 texture with each texture covering 4x4 segments, and so on.
Unfortunately, I can't work out how to do this. I explored setting the materialIndex for each face but you aren't able to update those after the first render so that wouldn't work. I've tried looking into UV coordinates but I don't understand how it would work in this situation, nor how to actually implement that in Three.js – there is little in the way of documentation / examples for this specific case.
A vertex shader is another option that came up in research, but again I don't know enough to understand how to construct that.
I'd appreciate any and all help with this, it will be a technique that proves valuable for other Three.js users I'm sure.
Not 100% sure what you are trying to do, whether you are talking about texture atlasing (looking up and different textures based on current setting/zooms) but if you are looking for quad-tree based texturing that increases in detail as you zoom in then this is essentially what mipmaping is and does.
(It can be also be used to do all sorts of weird things because of that, but that's another adventure entirely)
Generally mipmapping is automatic based on the filtering you use - however it sounds like you need more control over it.
I created an example hidden away in the three.js source tree which may help:
http://mrdoob.github.com/three.js/examples/webgl_materials_texture_manualmipmap.html
Which shows you how to load each mipmap level in manually, rather than have it just be automatically generated.
HTH
I need the fastest sphere mapping algorithm. Something like Bresenham's line drawing one.
Something like the implementation that I saw in Star Control 2 (rotating planets).
Are there any already invented and/or implemented techniques for this?
I really don't want to reinvent the bicycle. Please, help...
Description of the problem.
I have a place on the 2D surface where the sphere has to appear. Sphere (let it be an Earth) has to be textured with fine map and has to have an ability to scale and rotate freely. I want to implement it with a map or some simple transformation function of coordinates: each pixel on the 2D image of the sphere is defined as a number of pixels from the cylindrical map of the sphere. This gives me an ability to implement the antialiasing of the resulting image. Also I think about using mipmaps to implement mapping if one pixel on resulting picture is corresponding to more than one pixel on the original map (for example, close to poles of the sphere). Deeply inside I feel that this can be implemented with some trivial math. But all these thoughts are just my thoughts.
This question is a little bit related to this one: Textured spheres without strong distortion, but there were no answers available on my question.
UPD: I suppose that I have no hardware support. I want to have an cross-platform solution.
The standard way to do this kind of mapping is a cube map: the sphere is projected onto the 6 sides of a cube. Modern graphics cards support this kind of texture at the hardware level, including full texture filtering; I believe mipmapping is also supported.
An alternative method (which is not explicitly supported by hardware, but which can be implemented with reasonable performance by procedural shaders) is parabolic mapping, which projects the sphere onto two opposing parabolas (each of which is mapped to a circle in the middle of a square texture). The parabolic projection is not a projective transformation, so you'll need to handle the math "by hand".
In both cases, the distortion is strictly limited. Due to the hardware support, I recommend the cube map.
There is a nice new way to do this: HEALPix.
Advantages over any other mapping:
The bitmap can be divided into equal parts (very little distortion)
Very simple, recursive geometry of the sphere with arbitrary precision.
Example image.
Did you take a look at Jim Blinn's articles "How to draw a sphere" ? I do not have access to the full articles, but it looks like what you need.
I'm a big fan of StarconII, but unfortunately I don't remember the details of what the planet drawing looked like...
The first option is triangulating the sphere and drawing it with standard 3D polygons. This has definite weaknesses as far as versimilitude is concerned, but it uses the available hardware acceleration and can be made to look reasonably good.
If you want to roll your own, you can rasterize it yourself. Foley, van Dam et al's Computer Graphics -- Principles and Practice has a chapter on Bresenham-style algorithms; you want the section on "Scan Converting Ellipses".
For the point cloud idea I suggested in earlier comments: you could avoid runtime parameterization questions by preselecting and storing the (x,y,z) coordinates of surface points instead of a 2D map. I was thinking of partially randomizing the point locations on the sphere, so that they wouldn't cause structured aliasing when transformed (forwards, backwards, whatever 8^) onto the screen. On the downside, you'd have to deal with the "fill" factor -- summing up the colors as you draw them, and dividing by the number of points. Er, also, you'd have the problem of what to do if there are no points; e.g., if you want to zoom in with extreme magnification, you'll need to do something like look for the nearest point in that case.