Bound for Bottom-up Merge Sort - sorting

The below code from : http://www.geeksforgeeks.org/iterative-merge-sort/
/* Iterative mergesort function to sort arr[0...n-1] */
void mergeSort(int arr[], int n)
{
int curr_size; // For current size of subarrays to be merged
// curr_size varies from 1 to n/2
int left_start; // For picking starting index of left subarray
// to be merged
// Merge subarrays in bottom up manner. First merge subarrays of
// size 1 to create sorted subarrays of size 2, then merge subarrays
// of size 2 to create sorted subarrays of size 4, and so on.
for (curr_size=1; curr_size<=n-1; curr_size = 2*curr_size)
{
// Pick starting point of different subarrays of current size
for (left_start=0; left_start<n-1; left_start += 2*curr_size)
{
// Find ending point of left subarray. mid+1 is starting
// point of right
int mid = left_start + curr_size - 1;
int right_end = min(left_start + 2*curr_size - 1, n-1);
// Merge Subarrays arr[left_start...mid] & arr[mid+1...right_end]
merge(arr, left_start, mid, right_end);
}
}
}
I am not understand why the right_end should take the min of (left_start + 2*curr_size - 1) between (n-1).
I think the right_end should be left_start + 2*curr_size - 1 not n-1.

Related

How to maintain a min sliding window for an unsorted array? [duplicate]

Given an array of size n and k, how do you find the maximum for every contiguous subarray of size k?
For example
arr = 1 5 2 6 3 1 24 7
k = 3
ans = 5 6 6 6 24 24
I was thinking of having an array of size k and each step evict the last element out and add the new element and find maximum among that. It leads to a running time of O(nk). Is there a better way to do this?
You have heard about doing it in O(n) using dequeue.
Well that is a well known algorithm for this question to do in O(n).
The method i am telling is quite simple and has time complexity O(n).
Your Sample Input:
n=10 , W = 3
10 3
1 -2 5 6 0 9 8 -1 2 0
Answer = 5 6 6 9 9 9 8 2
Concept: Dynamic Programming
Algorithm:
N is number of elements in an array and W is window size. So, Window number = N-W+1
Now divide array into blocks of W starting from index 1.
Here divide into blocks of size 'W'=3.
For your sample input:
We have divided into blocks because we will calculate maximum in 2 ways A.) by traversing from left to right B.) by traversing from right to left.
but how ??
Firstly, Traversing from Left to Right. For each element ai in block we will find maximum till that element ai starting from START of Block to END of that block.
So here,
Secondly, Traversing from Right to Left. For each element 'ai' in block we will find maximum till that element 'ai' starting from END of Block to START of that block.
So Here,
Now we have to find maximum for each subarray or window of size 'W'.
So, starting from index = 1 to index = N-W+1 .
max_val[index] = max(RL[index], LR[index+w-1]);
for index=1: max_val[1] = max(RL[1],LR[3]) = max(5,5)= 5
Simliarly, for all index i, (i<=(n-k+1)), value at RL[i] and LR[i+w-1]
are compared and maximum among those two is answer for that subarray.
So Final Answer : 5 6 6 9 9 9 8 2
Time Complexity: O(n)
Implementation code:
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#define LIM 100001
using namespace std;
int arr[LIM]; // Input Array
int LR[LIM]; // maximum from Left to Right
int RL[LIM]; // maximum from Right to left
int max_val[LIM]; // number of subarrays(windows) will be n-k+1
int main(){
int n, w, i, k; // 'n' is number of elements in array
// 'w' is Window's Size
cin >> n >> w;
k = n - w + 1; // 'K' is number of Windows
for(i = 1; i <= n; i++)
cin >> arr[i];
for(i = 1; i <= n; i++){ // for maximum Left to Right
if(i % w == 1) // that means START of a block
LR[i] = arr[i];
else
LR[i] = max(LR[i - 1], arr[i]);
}
for(i = n; i >= 1; i--){ // for maximum Right to Left
if(i == n) // Maybe the last block is not of size 'W'.
RL[i] = arr[i];
else if(i % w == 0) // that means END of a block
RL[i] = arr[i];
else
RL[i] = max(RL[i+1], arr[i]);
}
for(i = 1; i <= k; i++) // maximum
max_val[i] = max(RL[i], LR[i + w - 1]);
for(i = 1; i <= k ; i++)
cout << max_val[i] << " ";
cout << endl;
return 0;
}
Running Code Link
I'll try to proof: (by #johnchen902)
If k % w != 1 (k is not the begin of a block)
Let k* = The begin of block containing k
ans[k] = max( arr[k], arr[k + 1], arr[k + 2], ..., arr[k + w - 1])
= max( max( arr[k], arr[k + 1], arr[k + 2], ..., arr[k*]),
max( arr[k*], arr[k* + 1], arr[k* + 2], ..., arr[k + w - 1]) )
= max( RL[k], LR[k+w-1] )
Otherwise (k is the begin of a block)
ans[k] = max( arr[k], arr[k + 1], arr[k + 2], ..., arr[k + w - 1])
= RL[k] = LR[k+w-1]
= max( RL[k], LR[k+w-1] )
Dynamic programming approach is very neatly explained by Shashank Jain. I would like to explain how to do the same using dequeue.
The key is to maintain the max element at the top of the queue(for a window ) and discarding the useless elements and we also need to discard the elements that are out of index of current window.
useless elements = If Current element is greater than the last element of queue than the last element of queue is useless .
Note : We are storing the index in queue not the element itself. It will be more clear from the code itself.
1. If Current element is greater than the last element of queue than the last element of queue is useless . We need to delete that last element.
(and keep deleting until the last element of queue is smaller than current element).
2. If if current_index - k >= q.front() that means we are going out of window so we need to delete the element from front of queue.
vector<int> max_sub_deque(vector<int> &A,int k)
{
deque<int> q;
for(int i=0;i<k;i++)
{
while(!q.empty() && A[i] >= A[q.back()])
q.pop_back();
q.push_back(i);
}
vector<int> res;
for(int i=k;i<A.size();i++)
{
res.push_back(A[q.front()]);
while(!q.empty() && A[i] >= A[q.back()] )
q.pop_back();
while(!q.empty() && q.front() <= i-k)
q.pop_front();
q.push_back(i);
}
res.push_back(A[q.front()]);
return res;
}
Since each element is enqueued and dequeued atmost 1 time to time complexity is O(n+n) = O(2n) = O(n).
And the size of queue can not exceed the limit k . so space complexity = O(k).
An O(n) time solution is possible by combining the two classic interview questions:
Make a stack data-structure (called MaxStack) which supports push, pop and max in O(1) time.
This can be done using two stacks, the second one contains the minimum seen so far.
Model a queue with a stack.
This can done using two stacks. Enqueues go into one stack, and dequeues come from the other.
For this problem, we basically need a queue, which supports enqueue, dequeue and max in O(1) (amortized) time.
We combine the above two, by modelling a queue with two MaxStacks.
To solve the question, we queue k elements, query the max, dequeue, enqueue k+1 th element, query the max etc. This will give you the max for every k sized sub-array.
I believe there are other solutions too.
1)
I believe the queue idea can be simplified. We maintain a queue and a max for every k. We enqueue a new element, and dequeu all elements which are not greater than the new element.
2) Maintain two new arrays which maintain the running max for each block of k, one array for one direction (left to right/right to left).
3) Use a hammer: Preprocess in O(n) time for range maximum queries.
The 1) solution above might be the most optimal.
You need a fast data structure that can add, remove and query for the max element in less than O(n) time (you can just use an array if O(n) or O(nlogn) is acceptable). You can use a heap, a balanced binary search tree, a skip list, or any other sorted data structure that performs these operations in O(log(n)).
The good news is that most popular languages have a sorted data structure implemented that supports these operations for you. C++ has std::set and std::multiset (you probably need the latter) and Java has PriorityQueue and TreeSet.
Here is the java implementation
public static Integer[] maxsInEveryWindows(int[] arr, int k) {
Deque<Integer> deque = new ArrayDeque<Integer>();
/* Process first k (or first window) elements of array */
for (int i = 0; i < k; i++) {
// For very element, the previous smaller elements are useless so
// remove them from deque
while (!deque.isEmpty() && arr[i] >= arr[deque.peekLast()]) {
deque.removeLast(); // Remove from rear
}
// Add new element at rear of queue
deque.addLast(i);
}
List<Integer> result = new ArrayList<Integer>();
// Process rest of the elements, i.e., from arr[k] to arr[n-1]
for (int i = k; i < arr.length; i++) {
// The element at the front of the queue is the largest element of
// previous window, so add to result.
result.add(arr[deque.getFirst()]);
// Remove all elements smaller than the currently
// being added element (remove useless elements)
while (!deque.isEmpty() && arr[i] >= arr[deque.peekLast()]) {
deque.removeLast();
}
// Remove the elements which are out of this window
while (!deque.isEmpty() && deque.getFirst() <= i - k) {
deque.removeFirst();
}
// Add current element at the rear of deque
deque.addLast(i);
}
// Print the maximum element of last window
result.add(arr[deque.getFirst()]);
return result.toArray(new Integer[0]);
}
Here is the corresponding test case
#Test
public void maxsInWindowsOfSizeKTest() {
Integer[] result = ArrayUtils.maxsInEveryWindows(new int[]{1, 2, 3, 1, 4, 5, 2, 3, 6}, 3);
assertThat(result, equalTo(new Integer[]{3, 3, 4, 5, 5, 5, 6}));
result = ArrayUtils.maxsInEveryWindows(new int[]{8, 5, 10, 7, 9, 4, 15, 12, 90, 13}, 4);
assertThat(result, equalTo(new Integer[]{10, 10, 10, 15, 15, 90, 90}));
}
Using a heap (or tree), you should be able to do it in O(n * log(k)). I'm not sure if this would be indeed better.
here is the Python implementation in O(1)...Thanks to #Shahshank Jain in advance..
from sys import stdin,stdout
from operator import *
n,w=map(int , stdin.readline().strip().split())
Arr=list(map(int , stdin.readline().strip().split()))
k=n-w+1 # window size = k
leftA=[0]*n
rightA=[0]*n
result=[0]*k
for i in range(n):
if i%w==0:
leftA[i]=Arr[i]
else:
leftA[i]=max(Arr[i],leftA[i-1])
for i in range(n-1,-1,-1):
if i%w==(w-1) or i==n-1:
rightA[i]=Arr[i]
else:
rightA[i]=max(Arr[i],rightA[i+1])
for i in range(k):
result[i]=max(rightA[i],leftA[i+w-1])
print(*result,sep=' ')
Method 1: O(n) time, O(k) space
We use a deque (it is like a list but with constant-time insertion and deletion from both ends) to store the index of useful elements.
The index of the current max is kept at the leftmost element of deque. The rightmost element of deque is the smallest.
In the following, for easier explanation we say an element from the array is in the deque, while in fact the index of that element is in the deque.
Let's say {5, 3, 2} are already in the deque (again, if fact their indexes are).
If the next element we read from the array is bigger than 5 (remember, the leftmost element of deque holds the max), say 7: We delete the deque and create a new one with only 7 in it (we do this because the current elements are useless, we have found a new max).
If the next element is less than 2 (which is the smallest element of deque), say 1: We add it to the right ({5, 3, 2, 1})
If the next element is bigger than 2 but less than 5, say 4: We remove elements from right that are smaller than the element and then add the element from right ({5, 4}).
Also we keep elements of the current window only (we can do this in constant time because we are storing the indexes instead of elements).
from collections import deque
def max_subarray(array, k):
deq = deque()
for index, item in enumerate(array):
if len(deq) == 0:
deq.append(index)
elif index - deq[0] >= k: # the max element is out of the window
deq.popleft()
elif item > array[deq[0]]: # found a new max
deq = deque()
deq.append(index)
elif item < array[deq[-1]]: # the array item is smaller than all the deque elements
deq.append(index)
elif item > array[deq[-1]] and item < array[deq[0]]:
while item > array[deq[-1]]:
deq.pop()
deq.append(index)
if index >= k - 1: # start printing when the first window is filled
print(array[deq[0]])
Proof of O(n) time: The only part we need to check is the while loop. In the whole runtime of the code, the while loop can perform at most O(n) operations in total. The reason is that the while loop pops elements from the deque, and since in other parts of the code, we do at most O(n) insertions into the deque, the while loop cannot exceed O(n) operations in total. So the total runtime is O(n) + O(n) = O(n)
Method 2: O(n) time, O(n) space
This is the explanation of the method suggested by S Jain (as mentioned in the comments of his post, this method doesn't work with data streams, which most sliding window questions are designed for).
The reason that method works is explained using the following example:
array = [5, 6, 2, 3, 1, 4, 2, 3]
k = 4
[5, 6, 2, 3 1, 4, 2, 3 ]
LR: 5 6 6 6 1 4 4 4
RL: 6 6 3 3 4 4 3 3
6 6 4 4 4
To get the max for the window [2, 3, 1, 4],
we can get the max of [2, 3] and max of [1, 4], and return the bigger of the two.
Max of [2, 3] is calculated in the RL pass and max of [1, 4] is calculated in LR pass.
Using Fibonacci heap, you can do it in O(n + (n-k) log k), which is equal to O(n log k) for small k, for k close to n this becomes O(n).
The algorithm: in fact, you need:
n inserts to the heap
n-k deletions
n-k findmax's
How much these operations cost in Fibonacci heaps? Insert and findmax is O(1) amortized, deletion is O(log n) amortized. So, we have
O(n + (n-k) log k + (n-k)) = O(n + (n-k) log k)
Sorry, this should have been a comment but I am not allowed to comment for now.
#leo and #Clay Goddard
You can save yourselves from re-computing the maximum by storing both maximum and 2nd maximum of the window in the beginning
(2nd maximum will be the maximum only if there are two maximums in the initial window). If the maximum slides out of the window you still have the next best candidate to compare with the new entry. So you get O(n) , otherwise if you allowed the whole re-computation again the worst case order would be O(nk), k is the window size.
class MaxFinder
{
// finds the max and its index
static int[] findMaxByIteration(int arr[], int start, int end)
{
int max, max_ndx;
max = arr[start];
max_ndx = start;
for (int i=start; i<end; i++)
{
if (arr[i] > max)
{
max = arr[i];
max_ndx = i;
}
}
int result[] = {max, max_ndx};
return result;
}
// optimized to skip iteration, when previous windows max element
// is present in current window
static void optimizedPrintKMax(int arr[], int n, int k)
{
int i, j, max, max_ndx;
// for first window - find by iteration.
int result[] = findMaxByIteration(arr, 0, k);
System.out.printf("%d ", result[0]);
max = result[0];
max_ndx = result[1];
for (j=1; j <= (n-k); j++)
{
// if previous max has fallen out of current window, iterate and find
if (max_ndx < j)
{
result = findMaxByIteration(arr, j, j+k);
max = result[0];
max_ndx = result[1];
}
// optimized path, just compare max with new_elem that has come into the window
else
{
int new_elem_ndx = j + (k-1);
if (arr[new_elem_ndx] > max)
{
max = arr[new_elem_ndx];
max_ndx = new_elem_ndx;
}
}
System.out.printf("%d ", max);
}
}
public static void main(String[] args)
{
int arr[] = {10, 9, 8, 7, 6, 5, 4, 3, 2, 1};
//int arr[] = {1,5,2,6,3,1,24,7};
int n = arr.length;
int k = 3;
optimizedPrintKMax(arr, n, k);
}
}
package com;
public class SlidingWindow {
public static void main(String[] args) {
int[] array = { 1, 5, 2, 6, 3, 1, 24, 7 };
int slide = 3;//say
List<Integer> result = new ArrayList<Integer>();
for (int i = 0; i < array.length - (slide-1); i++) {
result.add(getMax(array, i, slide));
}
System.out.println("MaxList->>>>" + result.toString());
}
private static Integer getMax(int[] array, int i, int slide) {
List<Integer> intermediate = new ArrayList<Integer>();
System.out.println("Initial::" + intermediate.size());
while (intermediate.size() < slide) {
intermediate.add(array[i]);
i++;
}
Collections.sort(intermediate);
return intermediate.get(slide - 1);
}
}
Here is the solution in O(n) time complexity with auxiliary deque
public class TestSlidingWindow {
public static void main(String[] args) {
int[] arr = { 1, 5, 7, 2, 1, 3, 4 };
int k = 3;
printMaxInSlidingWindow(arr, k);
}
public static void printMaxInSlidingWindow(int[] arr, int k) {
Deque<Integer> queue = new ArrayDeque<Integer>();
Deque<Integer> auxQueue = new ArrayDeque<Integer>();
int[] resultArr = new int[(arr.length - k) + 1];
int maxElement = 0;
int j = 0;
for (int i = 0; i < arr.length; i++) {
queue.add(arr[i]);
if (arr[i] > maxElement) {
maxElement = arr[i];
}
/** we need to maintain the auxiliary deque to maintain max element in case max element is removed.
We add the element to deque straight away if subsequent element is less than the last element
(as there is a probability if last element is removed this element can be max element) otherwise
remove all lesser element then insert current element **/
if (auxQueue.size() > 0) {
if (arr[i] < auxQueue.peek()) {
auxQueue.push(arr[i]);
} else {
while (auxQueue.size() > 0 && (arr[i] > auxQueue.peek())) {
auxQueue.pollLast();
}
auxQueue.push(arr[i]);
}
}else {
auxQueue.push(arr[i]);
}
if (queue.size() > 3) {
int removedEl = queue.removeFirst();
if (maxElement == removedEl) {
maxElement = auxQueue.pollFirst();
}
}
if (queue.size() == 3) {
resultArr[j++] = maxElement;
}
}
for (int i = 0; i < resultArr.length; i++) {
System.out.println(resultArr[i]);
}
}
}
static void countDistinct(int arr[], int n, int k)
{
System.out.print("\nMaximum integer in the window : ");
// Traverse through every window
for (int i = 0; i <= n - k; i++) {
System.out.print(findMaximuminAllWindow(Arrays.copyOfRange(arr, i, arr.length), k)+ " ");
}
}
private static int findMaximuminAllWindow(int[] win, int k) {
// TODO Auto-generated method stub
int max= Integer.MIN_VALUE;
for(int i=0; i<k;i++) {
if(win[i]>max)
max=win[i];
}
return max;
}
arr = 1 5 2 6 3 1 24 7
We have to find the maximum of subarray, Right?
So, What is meant by subarray?
SubArray = Partial set and it should be in order and contiguous.
From the above array
{1,5,2} {6,3,1} {1,24,7} all are the subarray examples
n = 8 // Array length
k = 3 // window size
For finding the maximum, we have to iterate through the array, and find the maximum.
From the window size k,
{1,5,2} = 5 is the maximum
{5,2,6} = 6 is the maximum
{2,6,3} = 6 is the maximum
and so on..
ans = 5 6 6 6 24 24
It can be evaluated as the n-k+1
Hence, 8-3+1 = 6
And the length of an answer is 6 as we seen.
How can we solve this now?
When the data is moving from the pipe, the first thought for the data structure came in mind is the Queue
But, rather we are not discussing much here, we directly jump on the deque
Thinking Would be:
Window is fixed and data is in and out
Data is fixed and window is sliding
EX: Time series database
While (Queue is not empty and arr[Queue.back() < arr[i]] {
Queue.pop_back();
Queue.push_back();
For the rest:
Print the front of queue
// purged expired element
While (queue not empty and queue.front() <= I-k) {
Queue.pop_front();
While (Queue is not empty and arr[Queue.back() < arr[i]] {
Queue.pop_back();
Queue.push_back();
}
}
arr = [1, 2, 3, 1, 4, 5, 2, 3, 6]
k = 3
for i in range(len(arr)-k):
k=k+1
print (max(arr[i:k]),end=' ') #3 3 4 5 5 5 6
Two approaches.
Segment Tree O(nlog(n-k))
Build a maximum segment-tree.
Query between [i, i+k)
Something like..
public static void printMaximums(int[] a, int k) {
int n = a.length;
SegmentTree tree = new SegmentTree(a);
for (int i=0; i<=n-k; i++) System.out.print(tree.query(i, i+k));
}
Deque O(n)
If the next element is greater than the rear element, remove the rear element.
If the element in the front of the deque is out of the window, remove the front element.
public static void printMaximums(int[] a, int k) {
int n = a.length;
Deque<int[]> deck = new ArrayDeque<>();
List<Integer> result = new ArrayList<>();
for (int i=0; i<n; i++) {
while (!deck.isEmpty() && a[i] >= deck.peekLast()[0]) deck.pollLast();
deck.offer(new int[] {a[i], i});
while (!deck.isEmpty() && deck.peekFirst()[1] <= i - k) deck.pollFirst();
if (i >= k - 1) result.add(deck.peekFirst()[0]);
}
System.out.println(result);
}
Here is an optimized version of the naive (conditional) nested loop approach I came up with which is much faster and doesn't require any auxiliary storage or data structure.
As the program moves from window to window, the start index and end index moves forward by 1. In other words, two consecutive windows have adjacent start and end indices.
For the first window of size W , the inner loop finds the maximum of elements with index (0 to W-1). (Hence i == 0 in the if in 4th line of the code).
Now instead of computing for the second window which only has one new element, since we have already computed the maximum for elements of indices 0 to W-1, we only need to compare this maximum to the only new element in the new window with the index W.
But if the element at 0 was the maximum which is the only element not part of the new window, we need to compute the maximum using the inner loop from 1 to W again using the inner loop (hence the second condition maxm == arr[i-1] in the if in line 4), otherwise just compare the maximum of the previous window and the only new element in the new window.
void print_max_for_each_subarray(int arr[], int n, int k)
{
int maxm;
for(int i = 0; i < n - k + 1 ; i++)
{
if(i == 0 || maxm == arr[i-1]) {
maxm = arr[i];
for(int j = i+1; j < i+k; j++)
if(maxm < arr[j]) maxm = arr[j];
}
else {
maxm = maxm < arr[i+k-1] ? arr[i+k-1] : maxm;
}
cout << maxm << ' ';
}
cout << '\n';
}
You can use Deque data structure to implement this. Deque has an unique facility that you can insert and remove elements from both the ends of the queue unlike the traditional queue where you can only insert from one end and remove from other.
Following is the code for the above problem.
public int[] maxSlidingWindow(int[] nums, int k) {
int n = nums.length;
int[] maxInWindow = new int[n - k + 1];
Deque<Integer> dq = new LinkedList<Integer>();
int i = 0;
for(; i<k; i++){
while(!dq.isEmpty() && nums[dq.peekLast()] <= nums[i]){
dq.removeLast();
}
dq.addLast(i);
}
for(; i <n; i++){
maxInWindow[i - k] = nums[dq.peekFirst()];
while(!dq.isEmpty() && dq.peekFirst() <= i - k){
dq.removeFirst();
}
while(!dq.isEmpty() && nums[dq.peekLast()] <= nums[i]){
dq.removeLast();
}
dq.addLast(i);
}
maxInWindow[i - k] = nums[dq.peekFirst()];
return maxInWindow;
}
the resultant array will have n - k + 1 elements where n is length of the given array, k is the given window size.
We can solve it using the Python , applying the slicing.
def sliding_window(a,k,n):
max_val =[]
val =[]
val1=[]
for i in range(n-k-1):
if i==0:
val = a[0:k+1]
print("The value in val variable",val)
val1 = max(val)
max_val.append(val1)
else:
val = a[i:i*k+1]
val1 =max(val)
max_val.append(val1)
return max_val
Driver Code
a = [15,2,3,4,5,6,2,4,9,1,5]
n = len(a)
k = 3
sl=s liding_window(a,k,n)
print(sl)
Create a TreeMap of size k. Put first k elements as keys in it and assign any value like 1(doesn't matter). TreeMap has the property to sort the elements based on key so now, first element in map will be min and last element will be max element. Then remove 1 element from the map whose index in the arr is i-k. Here, I have considered that Input elements are taken in array arr and from that array we are filling the map of size k. Since, we can't do anything with sorting happening inside TreeMap, therefore this approach will also take O(n) time.
100% working Tested (Swift)
func maxOfSubArray(arr:[Int],n:Int,k:Int)->[Int]{
var lenght = arr.count
var resultArray = [Int]()
for i in 0..<arr.count{
if lenght+1 > k{
let tempArray = Array(arr[i..<k+i])
resultArray.append(tempArray.max()!)
}
lenght = lenght - 1
}
print(resultArray)
return resultArray
}
This way we can use:
maxOfSubArray(arr: [1,2,3,1,4,5,2,3,6], n: 9, k: 3)
Result:
[3, 3, 4, 5, 5, 5, 6]
Just notice that you only have to find in the new window if:
* The new element in the window is smaller than the previous one (if it's bigger, it's for sure this one).
OR
* The element that just popped out of the window was the current bigger.
In this case, re-scan the window.
for how big k? for reasonable-sized k. you can create k k-sized buffers and just iterate over the array keeping track of max element pointers in the buffers - needs no data structures and is O(n) k^2 pre-allocation.
A complete working solution in Amortised Constant O(1) Complexity.
https://github.com/varoonverma/code-challenge.git
Compare the first k elements and find the max, this is your first number
then compare the next element to the previous max. If the next element is bigger, that is your max of the next subarray, if its equal or smaller, the max for that sub array is the same
then move on to the next number
max(1 5 2) = 5
max(5 6) = 6
max(6 6) = 6
... and so on
max(3 24) = 24
max(24 7) = 24
It's only slightly better than your answer

Efficient way to count subsets with given sum

Given N numbers I need to count subsets whose sum is S.
Note : Numbers in array need not to be distinct.
My current code is :
int countSubsets(vector<int> numbers,int sum)
{
vector<int> DP(sum+1);
DP[0]=1;
int currentSum=0;
for(int i=0;i<numbers.size();i++)
{
currentSum+=numbers[i];
for (int j=min(sum,currentSum);j>=numbers[i];j--)
DP[j]+=DP[j - numbers[i]];
}
return DP[sum];
}
Can their be any efficient way than this ?
Constraints are :
1 ≤ N ≤ 14
1 ≤ S ≤ 100000
1 ≤ A[i] ≤ 10000
Also their are 100 test cases in a single file. So please help if their exist better solution than this one
N is small (2^20 - is about 1 milion - 2^14 is really small value) - just iterate over all subsets, below I wrote pretty fast way to do that (bithacking). Treat integers as sets (that's enumerating subsets in Lexicographical order)
int length = array.Length;
int subsetCount = 0;
for (int i=0; i<(1<<length); ++i)
{
int currentSet = i;
int tempIndex = length-1;
int currentSum = 0;
while (currentSet > 0) // iterate over bits "from the right side"
{
if (currentSet & 1 == 1) // if current bit is "1"
currentSum += array[tempIndex];
currentSet >>= 1;
tempIndex--;
}
subsetCount += (currentSum == targetSum) ? 1 : 0;
}
You can use the fact that N is small: it is possible to generate all possible subsets of the given array and check if its sum is S for each of them. The time complexity is O(N * 2 ** N) or O(2 ** N)(it depends on the way of the generation). This solution should be fast enough for the given constraints.
Here is a pseudo code of an O(2 ** N) solution:
result = 0
void generate(int curPos, int curSum):
if curPos == N:
if curSum == S:
result++
return
// Do not take the current element.
generate(curPos + 1, curSum)
// Take it.
generate(curPos + 1, curSum + numbers[curPos])
generate(0, 0)
A faster solution based on the meet in the middle technique:
Let's generate all subsets for the first half of the array using the algorithm described above and put their sums into a map(which maps a sum to the number of subsets that have it. It can be either a hash table or just an array because S is relatively small). This step takes O(2 ** (N / 2)) time.
Now let's generate all subsets for the second half and for each of them add the number of subset that sum up to S - currentSum e in the first half(using the map constructed in 1.), where the currentSum is the sum of all elements in the current subseta. Again, we have O(2 ** (N / 2)) subsets and each of them is processed in O(1).
The total time complexity is O(2 ** (N / 2)).
A pseudo code for this solution:
Map<int, int> count = new HashMap<int, int>() // or an array of size S + 1.
result = 0
void generate1(int[] numbers, int pos, int currentSum):
if pos == numbers.length:
count[currentSum]++
return
generate1(numbers, pos + 1, currentSum)
generate1(numbers, pos + 1, currentSum + numbers[pos])
void generate2(int[] numbers, int pos, int currentSum):
if pos == numbers.length:
result += count[S - currentSum]
return
generate2(numbers, pos + 1, currentSum)
generate2(numbers, pos + 1, currentSum + numbers[pos])
generate1(the first half of numbers, 0, 0)
generate2(the second half of numbers, 0, 0)
If N is odd, the middle element can go to either the first half or to the second one. It doesn't matter where it goes as long as it goes to exactly one of them.

Convert array to a sorted one using only two operations

I found this question on an online forum: Really interested on how it can be solved:
Given an array A of positive integers. Convert it to a sorted array with minimum cost. The only valid operation are:
1) Decrement with cost = 1
2) Delete an element completely from the array with cost = value of element
This is an interview question asked for a tech company
NOTE : The original answer has been replaced with one in which I have a lot more confidence (and I can explain it, too). Both answers produced the same results on my set of test cases.
You can solve this problem using a dynamic programming approach. The key observation is that it never makes sense to decrement a number to a value not found in the original array. (Informal proof: suppose that you decremented a number O1 to a value X that is not in the original sequence in order to avoid removing a number O2 > X from the result sequence. Then you can decrement O1 to O2 instead, and reduce the cost by O2-X).
Now the solution becomes easy to understand: it is a DP in two dimensions. If we sort the elements of the distinct elements of the original sequence d into a sorted array s, the length of d becomes the first dimension of the DP; the length of s becomes the second dimension.
We declare dp[d.Length,s.Length]. The value of dp[i,j] is the cost of solving subproblem d[0 to i] while keeping the last element of the solution under s[j]. Note: this cost includes the cost of eliminating d[i] if it is less than s[j].
The first row dp[0,j] is computed as the cost of trimming d[0] to s[j], or zero if d[0] < s[j]. The value of dp[i,j] next row is calculated as the minimum of dp[i-1, 0 to j] + trim, where trim is the cost of trimming d[i] to s[j], or d[i] if it needs to be eliminated because s[j] is bigger than d[i].
The answer is calculated as the minimum of the last row dp[d.Length-1, 0 to s.Length].
Here is an implementation in C#:
static int Cost(int[] d) {
var s = d.Distinct().OrderBy(v => v).ToArray();
var dp = new int[d.Length,s.Length];
for (var j = 0 ; j != s.Length ; j++) {
dp[0, j] = Math.Max(d[0] - s[j], 0);
}
for (var i = 1; i != d.Length; i++) {
for (var j = 0 ; j != s.Length ; j++) {
dp[i, j] = int.MaxValue;
var trim = d[i] - s[j];
if (trim < 0) {
trim = d[i];
}
dp[i, j] = int.MaxValue;
for (var k = j ; k >= 0 ; k--) {
dp[i, j] = Math.Min(dp[i, j], dp[i - 1, k] + trim);
}
}
}
var best = int.MaxValue;
for (var j = 0 ; j != s.Length ; j++) {
best = Math.Min(best, dp[d.Length - 1, j]);
}
return best;
}
This direct implementation has space complexity of O(N^2). You can reduce it to O(N) by observing that only two last rows are used at the same time.
I'm assuming that "sorted" means smallest values at the start of the array, given the nature of the allowed operations.
The performance boundary between the two operations occurs when the cost of removing an out of sequence element is equal to the cost of either decrementing all greater-valued elements up to and including the offender, or removing all lesser-valued elements after the offender. You choose between decrementing preceding elements or removing later elements based on why the offending element is out of sequence. If it's less than the previous element, consider decrementing the earlier elements; if it's greater than the next element, consider removing later elements.
Some examples:
10 1 2 3 4 5
Decrement 10 to 1, cost 9.
1 2 3 4 10 4
Remove 4, cost 4.
1 2 3 4 10 5
Remove 5 or decrement 10 to 5, cost 5.
5 6 7 8 1 10
Remove 1, cost 1.
5 6 7 8 6 10
Decrement 7 and 8 to 6, cost 3.
2 1 1 4 2 4 4 3
Decrement the first 1, the first 4 by two, and the other two fours once each, cost 5.
The simplest implementation to find the solutions relies on having set knowledge, so it's very inefficient. Thankfully, the question doesn't care about that. The idea is to walk the array, and make the decision whether to remove or decrement to fix the set when an out of sequence element is encountered. A much more efficient implementation of this would be to use running totals (as opposed to calculate methods) and walk the array twice, forwards and backwards. I've written a mock up of the simpler version, as I think it's easier to read.
Pseudocode, returns total cost:
if array.Length < 2 : return 0; // no sorting necessary
resultArray = array.Copy();
int cost = 0;
for i = 0 to array.Length - 1 :
if i > 0 and array[i-1] > array[i] :
if CostToDecrementPreviousItems(i, array[i]) > array[i]) :
resultArray[i] = -1;
cost += array[i];
else :
cost += DecrementItemsThroughIndexGreaterThanValue(resultArray, i, array[i]);
end if
else if i < array.Length - 1 and array[i+1] < array[i] :
if CostToRemoveLaterItems(i, array[i]) > array[i] :
resultArray[i] = -1;
cost += array[i];
else :
cost += RemoveItemsAfterIndexGreaterThanValue(resultArray, i, array[i]);
end if
end if
end for
RemoveNegativeElements(resultArray);
array = resultArray;
return cost;
Hopefully the undefined method calls are self explanatory.
Construct decision graph, add start vertex to it. Each vertex contains "trim level", i.e. the value to which should be decremented all array values to the left of current node. Start vertex's "trim level" is infinity. Each edge of the graph has a value, corresponding to the cost of decision.
For each array element, starting from the rightmost, do steps 3 .. 5.
For each leaf vertex, do steps 4 .. 5.
Create up to 2 outgoing edges, (1) with the cost of deleting the array element and (2) with the cost of trimming all elements to the left (exactly, the cost of decreasing "trim level").
Connect these edges to newly created vertexes, one vertex for each array element and each "trim level".
Find shortest path from start vertex to one of the vertexes, corresponding to leftmost array element. Length of this path equals to the cost of the solution.
Decrement and delete array elements according to the decision graph.
This algorithm may be treated as an optimization of brute-force approach. For brute-force search, starting from rightmost array element, construct binary decision tree. Each vertex has 2 outgoing edges, one for "delete" decision, other "trim" decision. Decision cost is associated with each edge. "Trim level" is associated with each vertex. Optimal solution is determined by shortest path in this tree.
Remove every path, that is obviously non-optimal. For example, if the largest element is the last in the array, "trim" decision has cost zero, and "delete" decision is non-optimal. Delete path, starting from this "delete" decision. After this optimization, decision tree is more sparse: some vertexes have 2 outgoing edges, some - only one.
On each depth level, decision tree may have several vertexes with the same "trim level". Subtrees, starting from these vertexes, are identical to each other. That's a good reason to join all these vertexes to one vertex. This transforms tree into graph having at most n2/2 vertexes.
Complexity
Simplest implementation of this algorithm is O(n3), because for each of the O(n2) vertexes it computes trimming cost iteratively, in O(n) time.
Repeated trimming cost calculations are not necessary if there is enough memory to store all partial trimming cost results. This may require O(n2) or even O(n) space.
With such optimization, this algorithm is O(n2). Due to simple structure of the graph, shortest path search has O(n2) complexity, not O(n2 * log(n)).
C++11 implementation (both space and time complexity is O(n2)):
//g++ -std=c++0x
#include <iostream>
#include <vector>
#include <algorithm>
typedef unsigned val_t;
typedef unsigned long long acc_t; // to avoid overflows
typedef unsigned ind_t;
typedef std::vector<val_t> arr_t;
struct Node
{
acc_t trimCost;
acc_t cost;
ind_t link;
bool used;
Node()
: trimCost(0)
, used(false)
{}
};
class Matrix
{
std::vector<Node> m;
ind_t columns;
public:
Matrix(ind_t rows, ind_t cols)
: m(rows * cols)
, columns(cols)
{}
Node& operator () (ind_t row, ind_t column)
{
return m[columns * row + column];
}
};
void fillTrimCosts(const arr_t& array, const arr_t& levels, Matrix& matrix)
{
for (ind_t row = 0; row != array.size(); ++row)
{
for (ind_t column = 0; column != levels.size(); ++column)
{
Node& node = matrix(row + 1, column);
node.trimCost = matrix(row, column).trimCost;
if (array[row] > levels[column])
{
node.trimCost += array[row] - levels[column];
}
}
}
}
void updateNode(Node& node, acc_t cost, ind_t column)
{
if (!node.used || node.cost > cost)
{
node.cost = cost;
node.link = column;
}
}
acc_t transform(arr_t& array)
{
const ind_t size = array.size();
// Sorted array of trim levels
arr_t levels = array;
std::sort(levels.begin(), levels.end());
levels.erase(
std::unique(levels.begin(), levels.end()),
levels.end());
// Initialize matrix
Matrix matrix(size + 1, levels.size());
fillTrimCosts(array, levels, matrix);
Node& startNode = matrix(size, levels.size() - 1);
startNode.used = true;
startNode.cost = 0;
// For each array element, starting from the last one
for (ind_t row = size; row != 0; --row)
{
// Determine trim level for this array element
auto iter = std::lower_bound(levels.begin(), levels.end(), array[row - 1]);
const ind_t newLevel = iter - levels.begin();
// For each trim level
for (ind_t column = 0; column != levels.size(); ++column)
{
const Node& node = matrix(row, column);
if (!node.used)
continue;
// Determine cost of trimming to current array element's level
const acc_t oldCost = node.trimCost;
const acc_t newCost = matrix(row, newLevel).trimCost;
const acc_t trimCost = (newCost > oldCost)? newCost - oldCost: 0;
// Nodes for "trim" and "delete" decisions
Node& trimNode = matrix(row - 1, newLevel);
Node& nextNode = matrix(row - 1, column);
if (trimCost)
{
// Decision needed, update both nodes
updateNode(trimNode, trimCost + node.cost, column);
updateNode(nextNode, array[row - 1] + node.cost, column);
trimNode.used = true;
}
else
{
// No decision needed, pass current state to the next row's node
updateNode(nextNode, node.cost, column);
}
nextNode.used = true;
}
}
// Find optimal cost and starting trim level for it
acc_t bestCost = size * levels.size();
ind_t bestLevel = levels.size();
for (ind_t column = 0; column != levels.size(); ++column)
{
const Node& node = matrix(0, column);
if (node.used && node.cost < bestCost)
{
bestCost = node.cost;
bestLevel = column;
}
}
// Trace the path of minimum cost
for (ind_t row = 0; row != size; ++row)
{
const Node& node = matrix(row, bestLevel);
const ind_t next = node.link;
if (next == bestLevel && node.cost != matrix(row + 1, next).cost)
{
array[row] = 0;
}
else if (array[row] > levels[bestLevel])
{
array[row] = levels[bestLevel];
}
bestLevel = next;
}
return bestCost;
}
void printArray(const arr_t& array)
{
for (val_t val: array)
if (val)
std::cout << val << ' ';
else
std::cout << "* ";
std::cout << std::endl;
}
int main()
{
arr_t array({9,8,7,6,5,4,3,2,1});
printArray(array);
acc_t cost = transform(array);
printArray(array);
std::cout << "Cost=" << cost << std::endl;
return 0;
}

Finding maximum for every window of size k in an array

Given an array of size n and k, how do you find the maximum for every contiguous subarray of size k?
For example
arr = 1 5 2 6 3 1 24 7
k = 3
ans = 5 6 6 6 24 24
I was thinking of having an array of size k and each step evict the last element out and add the new element and find maximum among that. It leads to a running time of O(nk). Is there a better way to do this?
You have heard about doing it in O(n) using dequeue.
Well that is a well known algorithm for this question to do in O(n).
The method i am telling is quite simple and has time complexity O(n).
Your Sample Input:
n=10 , W = 3
10 3
1 -2 5 6 0 9 8 -1 2 0
Answer = 5 6 6 9 9 9 8 2
Concept: Dynamic Programming
Algorithm:
N is number of elements in an array and W is window size. So, Window number = N-W+1
Now divide array into blocks of W starting from index 1.
Here divide into blocks of size 'W'=3.
For your sample input:
We have divided into blocks because we will calculate maximum in 2 ways A.) by traversing from left to right B.) by traversing from right to left.
but how ??
Firstly, Traversing from Left to Right. For each element ai in block we will find maximum till that element ai starting from START of Block to END of that block.
So here,
Secondly, Traversing from Right to Left. For each element 'ai' in block we will find maximum till that element 'ai' starting from END of Block to START of that block.
So Here,
Now we have to find maximum for each subarray or window of size 'W'.
So, starting from index = 1 to index = N-W+1 .
max_val[index] = max(RL[index], LR[index+w-1]);
for index=1: max_val[1] = max(RL[1],LR[3]) = max(5,5)= 5
Simliarly, for all index i, (i<=(n-k+1)), value at RL[i] and LR[i+w-1]
are compared and maximum among those two is answer for that subarray.
So Final Answer : 5 6 6 9 9 9 8 2
Time Complexity: O(n)
Implementation code:
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#define LIM 100001
using namespace std;
int arr[LIM]; // Input Array
int LR[LIM]; // maximum from Left to Right
int RL[LIM]; // maximum from Right to left
int max_val[LIM]; // number of subarrays(windows) will be n-k+1
int main(){
int n, w, i, k; // 'n' is number of elements in array
// 'w' is Window's Size
cin >> n >> w;
k = n - w + 1; // 'K' is number of Windows
for(i = 1; i <= n; i++)
cin >> arr[i];
for(i = 1; i <= n; i++){ // for maximum Left to Right
if(i % w == 1) // that means START of a block
LR[i] = arr[i];
else
LR[i] = max(LR[i - 1], arr[i]);
}
for(i = n; i >= 1; i--){ // for maximum Right to Left
if(i == n) // Maybe the last block is not of size 'W'.
RL[i] = arr[i];
else if(i % w == 0) // that means END of a block
RL[i] = arr[i];
else
RL[i] = max(RL[i+1], arr[i]);
}
for(i = 1; i <= k; i++) // maximum
max_val[i] = max(RL[i], LR[i + w - 1]);
for(i = 1; i <= k ; i++)
cout << max_val[i] << " ";
cout << endl;
return 0;
}
Running Code Link
I'll try to proof: (by #johnchen902)
If k % w != 1 (k is not the begin of a block)
Let k* = The begin of block containing k
ans[k] = max( arr[k], arr[k + 1], arr[k + 2], ..., arr[k + w - 1])
= max( max( arr[k], arr[k + 1], arr[k + 2], ..., arr[k*]),
max( arr[k*], arr[k* + 1], arr[k* + 2], ..., arr[k + w - 1]) )
= max( RL[k], LR[k+w-1] )
Otherwise (k is the begin of a block)
ans[k] = max( arr[k], arr[k + 1], arr[k + 2], ..., arr[k + w - 1])
= RL[k] = LR[k+w-1]
= max( RL[k], LR[k+w-1] )
Dynamic programming approach is very neatly explained by Shashank Jain. I would like to explain how to do the same using dequeue.
The key is to maintain the max element at the top of the queue(for a window ) and discarding the useless elements and we also need to discard the elements that are out of index of current window.
useless elements = If Current element is greater than the last element of queue than the last element of queue is useless .
Note : We are storing the index in queue not the element itself. It will be more clear from the code itself.
1. If Current element is greater than the last element of queue than the last element of queue is useless . We need to delete that last element.
(and keep deleting until the last element of queue is smaller than current element).
2. If if current_index - k >= q.front() that means we are going out of window so we need to delete the element from front of queue.
vector<int> max_sub_deque(vector<int> &A,int k)
{
deque<int> q;
for(int i=0;i<k;i++)
{
while(!q.empty() && A[i] >= A[q.back()])
q.pop_back();
q.push_back(i);
}
vector<int> res;
for(int i=k;i<A.size();i++)
{
res.push_back(A[q.front()]);
while(!q.empty() && A[i] >= A[q.back()] )
q.pop_back();
while(!q.empty() && q.front() <= i-k)
q.pop_front();
q.push_back(i);
}
res.push_back(A[q.front()]);
return res;
}
Since each element is enqueued and dequeued atmost 1 time to time complexity is O(n+n) = O(2n) = O(n).
And the size of queue can not exceed the limit k . so space complexity = O(k).
An O(n) time solution is possible by combining the two classic interview questions:
Make a stack data-structure (called MaxStack) which supports push, pop and max in O(1) time.
This can be done using two stacks, the second one contains the minimum seen so far.
Model a queue with a stack.
This can done using two stacks. Enqueues go into one stack, and dequeues come from the other.
For this problem, we basically need a queue, which supports enqueue, dequeue and max in O(1) (amortized) time.
We combine the above two, by modelling a queue with two MaxStacks.
To solve the question, we queue k elements, query the max, dequeue, enqueue k+1 th element, query the max etc. This will give you the max for every k sized sub-array.
I believe there are other solutions too.
1)
I believe the queue idea can be simplified. We maintain a queue and a max for every k. We enqueue a new element, and dequeu all elements which are not greater than the new element.
2) Maintain two new arrays which maintain the running max for each block of k, one array for one direction (left to right/right to left).
3) Use a hammer: Preprocess in O(n) time for range maximum queries.
The 1) solution above might be the most optimal.
You need a fast data structure that can add, remove and query for the max element in less than O(n) time (you can just use an array if O(n) or O(nlogn) is acceptable). You can use a heap, a balanced binary search tree, a skip list, or any other sorted data structure that performs these operations in O(log(n)).
The good news is that most popular languages have a sorted data structure implemented that supports these operations for you. C++ has std::set and std::multiset (you probably need the latter) and Java has PriorityQueue and TreeSet.
Here is the java implementation
public static Integer[] maxsInEveryWindows(int[] arr, int k) {
Deque<Integer> deque = new ArrayDeque<Integer>();
/* Process first k (or first window) elements of array */
for (int i = 0; i < k; i++) {
// For very element, the previous smaller elements are useless so
// remove them from deque
while (!deque.isEmpty() && arr[i] >= arr[deque.peekLast()]) {
deque.removeLast(); // Remove from rear
}
// Add new element at rear of queue
deque.addLast(i);
}
List<Integer> result = new ArrayList<Integer>();
// Process rest of the elements, i.e., from arr[k] to arr[n-1]
for (int i = k; i < arr.length; i++) {
// The element at the front of the queue is the largest element of
// previous window, so add to result.
result.add(arr[deque.getFirst()]);
// Remove all elements smaller than the currently
// being added element (remove useless elements)
while (!deque.isEmpty() && arr[i] >= arr[deque.peekLast()]) {
deque.removeLast();
}
// Remove the elements which are out of this window
while (!deque.isEmpty() && deque.getFirst() <= i - k) {
deque.removeFirst();
}
// Add current element at the rear of deque
deque.addLast(i);
}
// Print the maximum element of last window
result.add(arr[deque.getFirst()]);
return result.toArray(new Integer[0]);
}
Here is the corresponding test case
#Test
public void maxsInWindowsOfSizeKTest() {
Integer[] result = ArrayUtils.maxsInEveryWindows(new int[]{1, 2, 3, 1, 4, 5, 2, 3, 6}, 3);
assertThat(result, equalTo(new Integer[]{3, 3, 4, 5, 5, 5, 6}));
result = ArrayUtils.maxsInEveryWindows(new int[]{8, 5, 10, 7, 9, 4, 15, 12, 90, 13}, 4);
assertThat(result, equalTo(new Integer[]{10, 10, 10, 15, 15, 90, 90}));
}
Using a heap (or tree), you should be able to do it in O(n * log(k)). I'm not sure if this would be indeed better.
here is the Python implementation in O(1)...Thanks to #Shahshank Jain in advance..
from sys import stdin,stdout
from operator import *
n,w=map(int , stdin.readline().strip().split())
Arr=list(map(int , stdin.readline().strip().split()))
k=n-w+1 # window size = k
leftA=[0]*n
rightA=[0]*n
result=[0]*k
for i in range(n):
if i%w==0:
leftA[i]=Arr[i]
else:
leftA[i]=max(Arr[i],leftA[i-1])
for i in range(n-1,-1,-1):
if i%w==(w-1) or i==n-1:
rightA[i]=Arr[i]
else:
rightA[i]=max(Arr[i],rightA[i+1])
for i in range(k):
result[i]=max(rightA[i],leftA[i+w-1])
print(*result,sep=' ')
Method 1: O(n) time, O(k) space
We use a deque (it is like a list but with constant-time insertion and deletion from both ends) to store the index of useful elements.
The index of the current max is kept at the leftmost element of deque. The rightmost element of deque is the smallest.
In the following, for easier explanation we say an element from the array is in the deque, while in fact the index of that element is in the deque.
Let's say {5, 3, 2} are already in the deque (again, if fact their indexes are).
If the next element we read from the array is bigger than 5 (remember, the leftmost element of deque holds the max), say 7: We delete the deque and create a new one with only 7 in it (we do this because the current elements are useless, we have found a new max).
If the next element is less than 2 (which is the smallest element of deque), say 1: We add it to the right ({5, 3, 2, 1})
If the next element is bigger than 2 but less than 5, say 4: We remove elements from right that are smaller than the element and then add the element from right ({5, 4}).
Also we keep elements of the current window only (we can do this in constant time because we are storing the indexes instead of elements).
from collections import deque
def max_subarray(array, k):
deq = deque()
for index, item in enumerate(array):
if len(deq) == 0:
deq.append(index)
elif index - deq[0] >= k: # the max element is out of the window
deq.popleft()
elif item > array[deq[0]]: # found a new max
deq = deque()
deq.append(index)
elif item < array[deq[-1]]: # the array item is smaller than all the deque elements
deq.append(index)
elif item > array[deq[-1]] and item < array[deq[0]]:
while item > array[deq[-1]]:
deq.pop()
deq.append(index)
if index >= k - 1: # start printing when the first window is filled
print(array[deq[0]])
Proof of O(n) time: The only part we need to check is the while loop. In the whole runtime of the code, the while loop can perform at most O(n) operations in total. The reason is that the while loop pops elements from the deque, and since in other parts of the code, we do at most O(n) insertions into the deque, the while loop cannot exceed O(n) operations in total. So the total runtime is O(n) + O(n) = O(n)
Method 2: O(n) time, O(n) space
This is the explanation of the method suggested by S Jain (as mentioned in the comments of his post, this method doesn't work with data streams, which most sliding window questions are designed for).
The reason that method works is explained using the following example:
array = [5, 6, 2, 3, 1, 4, 2, 3]
k = 4
[5, 6, 2, 3 1, 4, 2, 3 ]
LR: 5 6 6 6 1 4 4 4
RL: 6 6 3 3 4 4 3 3
6 6 4 4 4
To get the max for the window [2, 3, 1, 4],
we can get the max of [2, 3] and max of [1, 4], and return the bigger of the two.
Max of [2, 3] is calculated in the RL pass and max of [1, 4] is calculated in LR pass.
Using Fibonacci heap, you can do it in O(n + (n-k) log k), which is equal to O(n log k) for small k, for k close to n this becomes O(n).
The algorithm: in fact, you need:
n inserts to the heap
n-k deletions
n-k findmax's
How much these operations cost in Fibonacci heaps? Insert and findmax is O(1) amortized, deletion is O(log n) amortized. So, we have
O(n + (n-k) log k + (n-k)) = O(n + (n-k) log k)
Sorry, this should have been a comment but I am not allowed to comment for now.
#leo and #Clay Goddard
You can save yourselves from re-computing the maximum by storing both maximum and 2nd maximum of the window in the beginning
(2nd maximum will be the maximum only if there are two maximums in the initial window). If the maximum slides out of the window you still have the next best candidate to compare with the new entry. So you get O(n) , otherwise if you allowed the whole re-computation again the worst case order would be O(nk), k is the window size.
class MaxFinder
{
// finds the max and its index
static int[] findMaxByIteration(int arr[], int start, int end)
{
int max, max_ndx;
max = arr[start];
max_ndx = start;
for (int i=start; i<end; i++)
{
if (arr[i] > max)
{
max = arr[i];
max_ndx = i;
}
}
int result[] = {max, max_ndx};
return result;
}
// optimized to skip iteration, when previous windows max element
// is present in current window
static void optimizedPrintKMax(int arr[], int n, int k)
{
int i, j, max, max_ndx;
// for first window - find by iteration.
int result[] = findMaxByIteration(arr, 0, k);
System.out.printf("%d ", result[0]);
max = result[0];
max_ndx = result[1];
for (j=1; j <= (n-k); j++)
{
// if previous max has fallen out of current window, iterate and find
if (max_ndx < j)
{
result = findMaxByIteration(arr, j, j+k);
max = result[0];
max_ndx = result[1];
}
// optimized path, just compare max with new_elem that has come into the window
else
{
int new_elem_ndx = j + (k-1);
if (arr[new_elem_ndx] > max)
{
max = arr[new_elem_ndx];
max_ndx = new_elem_ndx;
}
}
System.out.printf("%d ", max);
}
}
public static void main(String[] args)
{
int arr[] = {10, 9, 8, 7, 6, 5, 4, 3, 2, 1};
//int arr[] = {1,5,2,6,3,1,24,7};
int n = arr.length;
int k = 3;
optimizedPrintKMax(arr, n, k);
}
}
package com;
public class SlidingWindow {
public static void main(String[] args) {
int[] array = { 1, 5, 2, 6, 3, 1, 24, 7 };
int slide = 3;//say
List<Integer> result = new ArrayList<Integer>();
for (int i = 0; i < array.length - (slide-1); i++) {
result.add(getMax(array, i, slide));
}
System.out.println("MaxList->>>>" + result.toString());
}
private static Integer getMax(int[] array, int i, int slide) {
List<Integer> intermediate = new ArrayList<Integer>();
System.out.println("Initial::" + intermediate.size());
while (intermediate.size() < slide) {
intermediate.add(array[i]);
i++;
}
Collections.sort(intermediate);
return intermediate.get(slide - 1);
}
}
Here is the solution in O(n) time complexity with auxiliary deque
public class TestSlidingWindow {
public static void main(String[] args) {
int[] arr = { 1, 5, 7, 2, 1, 3, 4 };
int k = 3;
printMaxInSlidingWindow(arr, k);
}
public static void printMaxInSlidingWindow(int[] arr, int k) {
Deque<Integer> queue = new ArrayDeque<Integer>();
Deque<Integer> auxQueue = new ArrayDeque<Integer>();
int[] resultArr = new int[(arr.length - k) + 1];
int maxElement = 0;
int j = 0;
for (int i = 0; i < arr.length; i++) {
queue.add(arr[i]);
if (arr[i] > maxElement) {
maxElement = arr[i];
}
/** we need to maintain the auxiliary deque to maintain max element in case max element is removed.
We add the element to deque straight away if subsequent element is less than the last element
(as there is a probability if last element is removed this element can be max element) otherwise
remove all lesser element then insert current element **/
if (auxQueue.size() > 0) {
if (arr[i] < auxQueue.peek()) {
auxQueue.push(arr[i]);
} else {
while (auxQueue.size() > 0 && (arr[i] > auxQueue.peek())) {
auxQueue.pollLast();
}
auxQueue.push(arr[i]);
}
}else {
auxQueue.push(arr[i]);
}
if (queue.size() > 3) {
int removedEl = queue.removeFirst();
if (maxElement == removedEl) {
maxElement = auxQueue.pollFirst();
}
}
if (queue.size() == 3) {
resultArr[j++] = maxElement;
}
}
for (int i = 0; i < resultArr.length; i++) {
System.out.println(resultArr[i]);
}
}
}
static void countDistinct(int arr[], int n, int k)
{
System.out.print("\nMaximum integer in the window : ");
// Traverse through every window
for (int i = 0; i <= n - k; i++) {
System.out.print(findMaximuminAllWindow(Arrays.copyOfRange(arr, i, arr.length), k)+ " ");
}
}
private static int findMaximuminAllWindow(int[] win, int k) {
// TODO Auto-generated method stub
int max= Integer.MIN_VALUE;
for(int i=0; i<k;i++) {
if(win[i]>max)
max=win[i];
}
return max;
}
arr = 1 5 2 6 3 1 24 7
We have to find the maximum of subarray, Right?
So, What is meant by subarray?
SubArray = Partial set and it should be in order and contiguous.
From the above array
{1,5,2} {6,3,1} {1,24,7} all are the subarray examples
n = 8 // Array length
k = 3 // window size
For finding the maximum, we have to iterate through the array, and find the maximum.
From the window size k,
{1,5,2} = 5 is the maximum
{5,2,6} = 6 is the maximum
{2,6,3} = 6 is the maximum
and so on..
ans = 5 6 6 6 24 24
It can be evaluated as the n-k+1
Hence, 8-3+1 = 6
And the length of an answer is 6 as we seen.
How can we solve this now?
When the data is moving from the pipe, the first thought for the data structure came in mind is the Queue
But, rather we are not discussing much here, we directly jump on the deque
Thinking Would be:
Window is fixed and data is in and out
Data is fixed and window is sliding
EX: Time series database
While (Queue is not empty and arr[Queue.back() < arr[i]] {
Queue.pop_back();
Queue.push_back();
For the rest:
Print the front of queue
// purged expired element
While (queue not empty and queue.front() <= I-k) {
Queue.pop_front();
While (Queue is not empty and arr[Queue.back() < arr[i]] {
Queue.pop_back();
Queue.push_back();
}
}
arr = [1, 2, 3, 1, 4, 5, 2, 3, 6]
k = 3
for i in range(len(arr)-k):
k=k+1
print (max(arr[i:k]),end=' ') #3 3 4 5 5 5 6
Two approaches.
Segment Tree O(nlog(n-k))
Build a maximum segment-tree.
Query between [i, i+k)
Something like..
public static void printMaximums(int[] a, int k) {
int n = a.length;
SegmentTree tree = new SegmentTree(a);
for (int i=0; i<=n-k; i++) System.out.print(tree.query(i, i+k));
}
Deque O(n)
If the next element is greater than the rear element, remove the rear element.
If the element in the front of the deque is out of the window, remove the front element.
public static void printMaximums(int[] a, int k) {
int n = a.length;
Deque<int[]> deck = new ArrayDeque<>();
List<Integer> result = new ArrayList<>();
for (int i=0; i<n; i++) {
while (!deck.isEmpty() && a[i] >= deck.peekLast()[0]) deck.pollLast();
deck.offer(new int[] {a[i], i});
while (!deck.isEmpty() && deck.peekFirst()[1] <= i - k) deck.pollFirst();
if (i >= k - 1) result.add(deck.peekFirst()[0]);
}
System.out.println(result);
}
Here is an optimized version of the naive (conditional) nested loop approach I came up with which is much faster and doesn't require any auxiliary storage or data structure.
As the program moves from window to window, the start index and end index moves forward by 1. In other words, two consecutive windows have adjacent start and end indices.
For the first window of size W , the inner loop finds the maximum of elements with index (0 to W-1). (Hence i == 0 in the if in 4th line of the code).
Now instead of computing for the second window which only has one new element, since we have already computed the maximum for elements of indices 0 to W-1, we only need to compare this maximum to the only new element in the new window with the index W.
But if the element at 0 was the maximum which is the only element not part of the new window, we need to compute the maximum using the inner loop from 1 to W again using the inner loop (hence the second condition maxm == arr[i-1] in the if in line 4), otherwise just compare the maximum of the previous window and the only new element in the new window.
void print_max_for_each_subarray(int arr[], int n, int k)
{
int maxm;
for(int i = 0; i < n - k + 1 ; i++)
{
if(i == 0 || maxm == arr[i-1]) {
maxm = arr[i];
for(int j = i+1; j < i+k; j++)
if(maxm < arr[j]) maxm = arr[j];
}
else {
maxm = maxm < arr[i+k-1] ? arr[i+k-1] : maxm;
}
cout << maxm << ' ';
}
cout << '\n';
}
You can use Deque data structure to implement this. Deque has an unique facility that you can insert and remove elements from both the ends of the queue unlike the traditional queue where you can only insert from one end and remove from other.
Following is the code for the above problem.
public int[] maxSlidingWindow(int[] nums, int k) {
int n = nums.length;
int[] maxInWindow = new int[n - k + 1];
Deque<Integer> dq = new LinkedList<Integer>();
int i = 0;
for(; i<k; i++){
while(!dq.isEmpty() && nums[dq.peekLast()] <= nums[i]){
dq.removeLast();
}
dq.addLast(i);
}
for(; i <n; i++){
maxInWindow[i - k] = nums[dq.peekFirst()];
while(!dq.isEmpty() && dq.peekFirst() <= i - k){
dq.removeFirst();
}
while(!dq.isEmpty() && nums[dq.peekLast()] <= nums[i]){
dq.removeLast();
}
dq.addLast(i);
}
maxInWindow[i - k] = nums[dq.peekFirst()];
return maxInWindow;
}
the resultant array will have n - k + 1 elements where n is length of the given array, k is the given window size.
We can solve it using the Python , applying the slicing.
def sliding_window(a,k,n):
max_val =[]
val =[]
val1=[]
for i in range(n-k-1):
if i==0:
val = a[0:k+1]
print("The value in val variable",val)
val1 = max(val)
max_val.append(val1)
else:
val = a[i:i*k+1]
val1 =max(val)
max_val.append(val1)
return max_val
Driver Code
a = [15,2,3,4,5,6,2,4,9,1,5]
n = len(a)
k = 3
sl=s liding_window(a,k,n)
print(sl)
Create a TreeMap of size k. Put first k elements as keys in it and assign any value like 1(doesn't matter). TreeMap has the property to sort the elements based on key so now, first element in map will be min and last element will be max element. Then remove 1 element from the map whose index in the arr is i-k. Here, I have considered that Input elements are taken in array arr and from that array we are filling the map of size k. Since, we can't do anything with sorting happening inside TreeMap, therefore this approach will also take O(n) time.
100% working Tested (Swift)
func maxOfSubArray(arr:[Int],n:Int,k:Int)->[Int]{
var lenght = arr.count
var resultArray = [Int]()
for i in 0..<arr.count{
if lenght+1 > k{
let tempArray = Array(arr[i..<k+i])
resultArray.append(tempArray.max()!)
}
lenght = lenght - 1
}
print(resultArray)
return resultArray
}
This way we can use:
maxOfSubArray(arr: [1,2,3,1,4,5,2,3,6], n: 9, k: 3)
Result:
[3, 3, 4, 5, 5, 5, 6]
Just notice that you only have to find in the new window if:
* The new element in the window is smaller than the previous one (if it's bigger, it's for sure this one).
OR
* The element that just popped out of the window was the current bigger.
In this case, re-scan the window.
for how big k? for reasonable-sized k. you can create k k-sized buffers and just iterate over the array keeping track of max element pointers in the buffers - needs no data structures and is O(n) k^2 pre-allocation.
A complete working solution in Amortised Constant O(1) Complexity.
https://github.com/varoonverma/code-challenge.git
Compare the first k elements and find the max, this is your first number
then compare the next element to the previous max. If the next element is bigger, that is your max of the next subarray, if its equal or smaller, the max for that sub array is the same
then move on to the next number
max(1 5 2) = 5
max(5 6) = 6
max(6 6) = 6
... and so on
max(3 24) = 24
max(24 7) = 24
It's only slightly better than your answer

Counting the adjacent swaps required to convert one permutation into another

We're given two sequences of lowercase latin alphabet letters.
They're both the same length and have the same amount of given types
of letters (the first has an equal number of t's as the second and so
on). We are required to find the minimum number of swaps (by "swap" we mean changing
the order of two neighboring letters) required to
transform the first sequence into the second. We
can safely assume every two sequences CAN be transformed
into each other. We could do this with brute-force, but the sequences are too long for that.
Input:
The length of the sequences (at least 2, at most 999999) and
then two sequences.
Output:
An integer representing the number of swaps needed for the
sequences to become the same.
Example:
{5, aaaaa, aaaaa} should output {0},
{4, abcd, acdb} should output {2}.
The first thing that came to my mind was bubblesort. We can simply bubblesort the sequence counting each swap. The problem is: a) it's O(n^2) worst-case b) I'm not convinced it would give me the smallest number for every case... Even the optimized bubblesort doesn't seem to be doing the trick. We could implement the cocktail sort which would solve the problem with turtles - but will it give me the best performance? Or maybe there's something simpler/faster?
This question can also be phrased as: How can we determine the edit distance between two strings when the only operation allowed is transposition?
Regarding the minimum number of (not necessarily adjacent) swaps needed to convert a permutation into another, the metric you should use is the Cayley distance which is essentially the size of the permutation - the number of cycles.
Counting the number of cycles in a permutation is a quite trivial issue. A simple example. Suppose permutation 521634.
If you check the first position, you have 5, in the 5th you have 3 and in the 3rd you have 1, closing the first cycle. 2 is in the 2nd position, so it make a cycle itself and 4 and 6 make the last cycle (4 is in the 6th position and 6 in the 4th). If you want to convert this permutation in the identity permutation (with the minimum number of swaps), you need to reorder each cycle independently. The total number of swaps is the length of the permutation (6) minus the number of cycles (3).
Given any two permutations, the distance between them is equivalent to the distance between the composition of the first with the inverse of the second and the identity (computed as explained above). Therefore, the only thing you need to do is composing the first permutation and the inverse of the second and count the number of cycles in the result. All these operations are O(n), so you can get the minimum number of swaps in linear time.
Here's a simple and efficient solution:
Let Q[ s2[i] ] = the positions character s2[i] is on in s2. Let P[i] = on what position is the character corresponding to s1[i] in the second string.
To build Q and P:
for ( int i = 0; i < s1.size(); ++i )
Q[ s2[i] ].push_back(i); // basically, Q is a vector [0 .. 25] of lists
temp[0 .. 25] = {0}
for ( int i = 0; i < s1.size(); ++i )
P[i + 1] = 1 + Q[ s1[i] ][ temp[ s1[i] ]++ ];
Example:
1234
s1: abcd
s2: acdb
Q: Q[a = 0] = {0}, Q[b = 1] = {3}, Q[c = 2] = {1}, Q[d = 3] = {2}
P: P[1] = 1, P[2] = 4 (because the b in s1 is on position 4 in s2), P[3] = 2
P[4] = 3
P has 2 inversions (4 2 and 4 3), so this is the answer.
This solution is O(n log n) because building P and Q can be done in O(n) and merge sort can count inversions in O(n log n).
What you are looking for may be identical to the "Kendall tau distance", which is the (normalized) difference of concordant minus discordant pairs. See Wikipedia, where it is claimed that it is equivalent to the bubble sort distance.
In R, functions are avialable not only for computing tau, e.g.
cor( X, method="kendall", use="pairwise" ) ,
but also for testing the significance of the difference, e.g.
cor.test( x1, x2, method="kendall" ) ,
and they are even able to properly take into account ties.
See here for more.
"Kendall tau distance" algorithm is the exact solution in this case, where the number of swaps of adjacent elements must be found.
Example.
eyssaasse (base string)
seasysaes
Base string provides indexes for each element: e=0, y=1, s=2, s=3, a=4, a=5, s=6, s=7, e=8;
Some elements are duplicate, so:
1) Create a dictionary where elements are keys, and values are lists of indices:
idx = {'e'=>[0, 8], 'y'=>[1], 's'=>[2, 3, 6, 7], 'a'=>[4, 5]}
2) Create an index map of the second string using element indexes in the idx dictionary:
seasysaes -> 204316587 (loop 'seasysaes' and pop next index from lists for each key in idx)
3) Create a list of all paired combinations of this map, 204316587: 20 24 23 21 26 25 28 27 04 03 01 06 ... 65 68 67 58 57 87;
Loop through these pairs counting those where first number bigger than second number.
This count is the sought-for number of adjacent swaps between strings.
Python script:
from itertools import combinations, cycle
word = 'eyssaasse' # base string
cmpr = 'seasysaes' # a string to find number of swaps from the base string
swaps = 0
# 1)
chars = {c: [] for c in word}
[chars[c].append(i) for i, c in enumerate(word)]
for k in chars.keys():
chars[k] = cycle(chars[k])
# 2)
idxs = [next(chars[c]) for c in cmpr]
# 3)
for cmb in combinations(idxs, 2):
if cmb[0] > cmb[1]:
swaps += 1
print(swaps)
Number of swaps between 'eyssaasse' and 'seasysaes' is 7.
For 'reviver' and 'vrerevi' it's 8.
I have written a class Permutation which among other things can return a number of transpositions needed to convert given permutation into identity. This is done by creating orbits (cycles) and counting their lengths. Terminology is taken from Kostrikin A., I., "Introduction to Linear Algebra I".
Includes:
#include <iostream>
#include <vector>
#include <set>
#include <algorithm>
#include <iterator>
class Permutation:
class Permutation {
public:
struct ei_element { /* element of the orbit*/
int e; /* identity index */
int i; /* actual permutation index */
};
typedef std::vector<ei_element> Orbit; /* a cycle */
Permutation( std::vector<int> const& i_vector);
/* permute i element, vector is 0 indexed */
int pi( int i) const { return iv[ i - 1]; }
int i( int k) const { return pi( k); } /* i_k = pi(k) */
int q() const { /* TODO: return rank = q such that pi^q = e */ return 0; }
int n() const { return n_; }
/* return the sequence 1, 2, ..., n */
std::vector<int> const& Omega() const { return ev; }
/* return vector of cycles */
std::vector<Orbit> const& orbits() const { return orbits_; }
int l( int k) const { return orbits_[ k].size(); } /* length of k-th cycle */
int transpositionsCount() const; /* return sum of all transpositions */
void make_orbits();
private:
struct Increment {
int current;
Increment(int start) : current(start) {}
int operator() () {
return current++;
}
};
int n_;
std::vector<int> iv; /* actual permutation */
std::vector<int> ev; /* identity permutation */
std::vector<Orbit> orbits_;
};
Definitions:
Permutation::Permutation( std::vector<int> const& i_vector) :
n_( i_vector.size()),
iv( i_vector), ev( n_) {
if ( n_) { /* fill identity vector 1, 2, ..., n */
Increment g ( 1);
std::generate( ev.begin(), ev.end(), g);
}
}
/* create orbits (cycles) */
void Permutation::make_orbits() {
std::set<int> to_visit( ev.begin(), ev.end()); // identity elements to visit
while ( !to_visit.empty()) {
/* new cycle */
Orbit orbit;
int first_to_visit_e = *to_visit.begin();
to_visit.erase( first_to_visit_e);
int k = first_to_visit_e; // element in identity vector
/* first orbit element */
ei_element element;
element.e = first_to_visit_e;
element.i = i( first_to_visit_e);
orbit.push_back( element);
/* traverse permutation until cycle is closed */
while ( pi( k) != first_to_visit_e && !to_visit.empty()) {
k = pi( k);
ei_element element;
element.e = k;
element.i = pi( k);
orbit.push_back( element);
to_visit.erase( k);
}
orbits_.push_back( orbit);
}
}
and:
/* return sum of all transpositions */
int Permutation::transpositionsCount() const {
int count = 0;
int k = 0;
while ( k < orbits_.size()) {
count += l( k++) - 1; /* sum += l_k - 1 */
}
return count;
}
usage:
/*
*
*/
int main(int argc, char** argv) {
//1, 2, 3, 4, 5, 6, 7, 8 identity (e)
int permutation[] = {2, 3, 4, 5, 1, 7, 6, 8}; // actual (i)
std::vector<int> vp( permutation, permutation + 8);
Permutation p( vp);
p.make_orbits();
int k = p.orbits().size();
std::cout << "Number of cycles:" << k << std::endl;
for ( int i = 0; i < k; ++i) {
std::vector<Permutation::ei_element> v = p.orbits()[ i];
for ( int j = 0; j < v.size(); ++j) {
std::cout << v[ j].e << "," << v[ j].i << " | ";
}
std::cout << std::endl;
}
std::cout << "Steps needed to create identity permutation: "
<< p.transpositionsCount();
return 0;
}
output:
Number of cycles:3
1,2 | 2,3 | 3,4 | 4,5 | 5,1 |
6,7 | 7,6 |
8,8 |
Steps needed to create identity permutation: 5
RUN SUCCESSFUL (total time: 82ms)
coliru
Converting permutation from one to another can be converted to a similar problem (Number of swaps in a permutation) by inverting the target permutation in O(n), composing the permutations in O(n) and then finding the number of swaps from there to an identity permutation.
Given:
int P1[] = {0, 1, 2, 3}; // abcd
int P2[] = {0, 2, 3, 1}; // acdb
// we can follow a simple algebraic modification
// (see http://en.wikipedia.org/wiki/Permutation#Product_and_inverse):
// P1 * P = P2 | premultiply P1^-1 *
// P1^-1 * P1 * P = P1^-1 * P2
// I * P = P1^-1 * P2
// P = P1^-1 * P2
// where P is a permutation that makes P1 into P2.
// also, the number of steps from P to identity equals
// the number of steps from P1 to P2.
int P1_inv[4];
for(int i = 0; i < 4; ++ i)
P1_inv[P1[i]] = i;
// invert the first permutation O(n)
int P[4];
for(int i = 0; i < 4; ++ i)
P[i] = P2[P1_inv[i]];
// chain the permutations
int num_steps = NumSteps(P, 4); // will return 2
// now we just need to count the steps
To count the steps, a simple algorithm can be devised, such as:
int NumSteps(int *P, int n)
{
int count = 0;
for(int i = 0; i < n; ++ i) {
for(; P[i] != i; ++ count) // could be permuted multiple times
swap(P[P[i]], P[i]); // look where the number at hand should be
}
// count number of permutations
return count;
}
This always swaps an item for a place where it should be in the identity permutation, therefore at every step it undoes and counts one swap. Now, provided that the number of swaps it returns is indeed minimum, the runtime of the algorithm is bounded by it and is guaranteed to finish (instead of getting stuck in an infinite loop). It will run in O(m) swaps or O(m + n) loop iterations where m is number of swaps (the count returned) and n is number of items in the sequence (4). Note that m < n is always true. Therefore, this should be superior to O(n log n) solutions, as the upper bound is O(n - 1) of swaps or O(n + n - 1) of loop iterations here, which is both practically O(n) (constant factor of 2 omitted in the latter case).
The algorithm will only work for valid permutations, it will loop infinitely for sequences with duplicate values and will do out-of-bounds array access (and crash) for sequences with values other than [0, n). A complete test case can be found here (builds with Visual Studio 2008, the algorithm itself should be fairly portable). It generates all possible permutations of lengths 1 to 32 and checks against solutions, generated with breadth first search (BFS), seems to work for all of permutations of lengths 1 to 12, then it becomes fairly slow but I assume it will just continue working.

Resources