How to separate numbers from a slice? - go

Let's say I have a list with 10 numbers:
[1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
I would like my program to slice every 3 numbers, for example:
[1,2,3]
[4,5,6]
[7,8,9]
How can I do it?
Grateful

For example, with n = 3,
package main
import "fmt"
func main() {
list := []int{1, 2, 3, 4, 5, 6, 7, 8, 9, 10}
for a, n := list, 3; len(a) >= n; a = a[n:] {
slice := a[:n]
fmt.Println(slice)
}
}
Output:
[1 2 3]
[4 5 6]
[7 8 9]

you could make a something like this (sorry for pseudo code)
array = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
while (array){
list = ""
for($i=1;$i -le 3;$i++){
list.add = array[$i]
remove from array the array[$i]
}
your list now here (list)
}
you could ask the first 3 values and after that you remove it

Related

Replace multiple indexes with one value

I have an array that has the value
[1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
I want to replace indexes 1 to 3, [2, 3, 4], with the single value of 123.
Is there a way to do this in golang?
Rather than use an array you should be working with slices.
a := []int{1, 2, 3, 4, 5, 6, 7, 8, 9, 10}
b := append(append(a[:1:1], 123), a[4:]...)
Or if you don't need to keep the original elements then copy in place.
a := []int{1, 2, 3, 4, 5, 6, 7, 8, 9, 10}
a[1] = 123
copy(a[2:8], a[4:10])
a = a[:8]

How to find the list of pairs in an array using ruby?

Input:
a = [4, 5, 5, 5, 6, 6, 4, 1, 4, 4, 3, 6, 6, 3, 6, 1, 4, 5, 5, 5]
How to list out no of pairs in an array.
Output:
9
Description
#no 1(1 pair)
#no 3(1 pair)
#no 4(2 pairs)
#no 5(3 pairs)
#no 6(2 pairs)
#so total 9 pairs
Here is another option:
a.group_by(&:itself).transform_values{ |v| v.size / 2 }.values.sum
#=> 9
How it works.
First group the elements by value:
a.group_by(&:itself) #=> {4=>[4, 4, 4, 4, 4], 5=>[5, 5, 5, 5, 5, 5], 6=>[6, 6, 6, 6, 6], 1=>[1, 1], 3=>[3, 3]}
Then transforming the keys to the pair count:
a.group_by(&:itself).transform_values{ |v| v.size / 2 } #=> {4=>2, 5=>3, 6=>2, 1=>1, 3=>1}
So, get the values of the hash:
a.group_by(&:itself).transform_values{ |v| v.size / 2 }.values #=> [2, 3, 2, 1, 1]
Finally, sum the values, which is the first line of code posted above.
arr = [4, 5, 5, 5, 6, 6, 4, 1, 4, 4, 3, 6, 6, 3, 6, 1, 4, 5, 5, 5]
hash = Hash.new(0)
arr.each { |e| hash[e] += 1 }
hash.values.reduce(0) { |s, n| s += n / 2 } // => 9
Since from what I can gather you are basically removing integers the moment they got paired once so technically it's just an integer division by two.
[1] How to count identical string elements in a Ruby array
[2] Reduce Hash Values
I have done like this, It works
b = []
a.uniq.each { |i| b.push(a.count(i)/2)}
b.sum

Transform one list into another [duplicate]

This question already has answers here:
Algorithm: optimal way to rearrange a list from one order to another?
(4 answers)
Closed 4 years ago.
Given two lists, for example:
a = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
b = [2, 4, 6, 7, 0, 1, 3, 5, 8, 9]
I wish to find a series of moves which will transform list a into list b, where each move is an operation:
move(from_index, to_index)
which moves the element at location from_index and places it at location to_index. So if:
a = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
then the operation move(3,1) on the list a will transform a into:
a = [0, 3, 1, 2, 4, 5, 6, 7, 8, 9]
a = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
b = [2, 4, 6, 7, 0, 1, 3, 5, 8, 9]
move(0, 8)
a = [1, 2, 3, 4, 5, 6, 7, 0, 8, 9]
move(0, 8)
a = [2, 3, 4, 5, 6, 7, 0, 1, 8, 9]
move(1, 8)
a = [2, 4, 5, 6, 7, 0, 1, 3, 8, 9]
move(2, 8)
a = [2, 4, 6, 7, 0, 1, 3, 5, 8, 9]
a==b
Hopefully that's what you're looking for.
Basically, start with the left- most element and move it to where it should be. For example, I took 0 and placed it right after the value that it is supposed to eventually end up behind, which is 7. I continued moving from left to right until all of the elements were in the desired order.
I'd iterate over the second sequence (the sorted list) and swap items in the first. I wrote this pseudo-code in python:
>>> a = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
>>> b = [2, 4, 6, 7, 0, 1, 3, 5, 8, 9]
>>> def swap(seq, i, j):
... a = seq[i]
... seq[i] = seq[j]
... seq[j] = a
...
>>> for index_in_b, value in enumerate(b):
... index_in_a = a.index(value)
... if index_in_b != index_in_a:
... swap(a, index_in_a, index_in_b)
... print('move {} to {}'.format(index_in_a, index_in_b))
move 0 to 2
move 1 to 4
move 2 to 6
move 3 to 7
move 4 to 6
move 5 to 6
move 6 to 7
In this case I'm moving the items in the first sequence by swapping them.
Update
We can slightly improve the performance in python by removing the move inside swap function and also removing the function call. Here is a performance comparison:
import timeit
s1 = """
a = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
b = [2, 4, 6, 7, 0, 1, 3, 5, 8, 9]
def swap(seq, i, j):
a = seq[i]
seq[i] = seq[j]
seq[j] = a
for index_in_b, value in enumerate(b):
index_in_a = a.index(value)
if index_in_b != index_in_a:
swap(a, index_in_a, index_in_b)"""
s2 = """
a = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
b = [2, 4, 6, 7, 0, 1, 3, 5, 8, 9]
for index_in_b, value in enumerate(b):
index_in_a = a.index(value)
if index_in_b != index_in_a:
a[index_in_a], a[index_in_b] = a[index_in_b], a[index_in_a]"""
# on an i7 macbook pro
timeit.timeit(s1)
4.087386846542358
timeit.timeit(s2)
3.5381240844726562
Slightly better, but for sure there are better ways to achieve this.

How to merge arrays to one array kind of respectively in ruby

I want to combine the arrays together to add the first column of all arrays, then the second columns, respectively, to the end.
My arrays :
[1,2,3,4,5]
[6,7,8,9,10]
[11,12,13,14,15]
i want result :
[1,6,11 , 2,7,12 , 3,8,13 , 4,9,14 , 5,10,15]
Suppose we have a "simple" case where the three arrays are the same length:
a = [1,2,3,4,5]
b = [6,7,8,9,10]
c = [11,12,13,14,15]
In this case, you can use Array#zip to merge the arrays in your desired way, then flatten the result into a single array:
a.zip(b, c).flatten
#=> [1, 6, 11, 2, 7, 12, 3, 8, 13, 4, 9, 14, 5, 10, 15]
However, what if a.length > b.length or b.length > c.length?
a = [1,2,3,4,5]
b = [6,7,8,9]
c = [10,11,12]
This is a little bit harder, because now Array#zip will leave you with some nil values that you presumably want to remove:
a.zip(b, c).flatten
#=> [1, 6, 10, 2, 7, 11, 3, 8, 12, 4, 9, nil, 5, nil, nil]
a.zip(b, c).flatten.compact
#=> [1, 6, 10, 2, 7, 11, 3, 8, 12, 4, 9, 5]
And finally, what if a.length < b.length or b.length < c.length?
a = [1,2,3]
b = [4,5,6,7]
c = [8,9,10,11,12]
This is again a bit harder. Now, you'll presumably want to pad the arrays with as many nils as needed, and then perform the same operation as above:
max_length = [a,b,c].map(&:length).max
def padded_array(array, size)
array.dup.fill(nil, array.length, size)
end
padded_array(a, max_length).zip(
padded_array(b, max_length), padded_array(c, max_length)
).flatten.compact
So the complexity of your final answer depends on what arrays you are dealing with, and how far you need to go with accounting for edge cases.
a = [1,2,3,4,5]
b = [6,7,8,9,10]
c = [11,12,13,14,15]
((a.zip b).zip c).flatten.compact
=> [1, 6, 11, 2, 7, 12, 3, 8, 13, 4, 9, 14, 5, 10, 15]

How to sort an array using minimum number of writes?

My friend was asked a question in his interview:
The interviewer gave him an array of unsorted numbers and asked him to sort. The restriction is that the number of writes should be minimized while there is no limitation on the number of reads.
Selection sort is not the right algorithm here. Selection sort will swap values, making up to two writes per selection, giving a maximum of 2n writes per sort.
An algorithm that's twice as good as selection sort is "cycle" sort, which does not swap. Cycle sort will give a maximum of n writes per sort. The number of writes is absolutely minimized. It will only write a number once to its final destination, and only then if it's not already there.
It is based on the idea that all permutations are products of cycles and you can simply cycle through each cycle and write each element to its proper place once.
import java.util.Random;
import java.util.Collections;
import java.util.Arrays;
public class CycleSort {
public static final <T extends Comparable<T>> int cycleSort(final T[] array) {
int writes = 0;
// Loop through the array to find cycles to rotate.
for (int cycleStart = 0; cycleStart < array.length - 1; cycleStart++) {
T item = array[cycleStart];
// Find where to put the item.
int pos = cycleStart;
for (int i = cycleStart + 1; i < array.length; i++)
if (array[i].compareTo(item) < 0) pos++;
// If the item is already there, this is not a cycle.
if (pos == cycleStart) continue;
// Otherwise, put the item there or right after any duplicates.
while (item.equals(array[pos])) pos++;
{
final T temp = array[pos];
array[pos] = item;
item = temp;
}
writes++;
// Rotate the rest of the cycle.
while (pos != cycleStart) {
// Find where to put the item.
pos = cycleStart;
for (int i = cycleStart + 1; i < array.length; i++)
if (array[i].compareTo(item) < 0) pos++;
// Put the item there or right after any duplicates.
while (item.equals(array[pos])) pos++;
{
final T temp = array[pos];
array[pos] = item;
item = temp;
}
writes++;
}
}
return writes;
}
public static final void main(String[] args) {
final Random rand = new Random();
final Integer[] array = new Integer[8];
for (int i = 0; i < array.length; i++) { array[i] = rand.nextInt(8); }
for (int iteration = 0; iteration < 10; iteration++) {
System.out.printf("array: %s ", Arrays.toString(array));
final int writes = cycleSort(array);
System.out.printf("sorted: %s writes: %d\n", Arrays.toString(array), writes);
Collections.shuffle(Arrays.asList(array));
}
}
}
A few example runs :
array: [3, 2, 6, 1, 3, 1, 4, 4] sorted: [1, 1, 2, 3, 3, 4, 4, 6] writes: 6
array: [1, 3, 4, 1, 3, 2, 4, 6] sorted: [1, 1, 2, 3, 3, 4, 4, 6] writes: 4
array: [3, 3, 1, 1, 4, 4, 2, 6] sorted: [1, 1, 2, 3, 3, 4, 4, 6] writes: 6
array: [1, 1, 3, 2, 4, 3, 6, 4] sorted: [1, 1, 2, 3, 3, 4, 4, 6] writes: 6
array: [3, 2, 3, 4, 6, 4, 1, 1] sorted: [1, 1, 2, 3, 3, 4, 4, 6] writes: 7
array: [6, 2, 4, 3, 1, 3, 4, 1] sorted: [1, 1, 2, 3, 3, 4, 4, 6] writes: 6
array: [6, 3, 2, 4, 3, 1, 4, 1] sorted: [1, 1, 2, 3, 3, 4, 4, 6] writes: 5
array: [4, 2, 6, 1, 1, 4, 3, 3] sorted: [1, 1, 2, 3, 3, 4, 4, 6] writes: 7
array: [4, 3, 3, 1, 2, 4, 6, 1] sorted: [1, 1, 2, 3, 3, 4, 4, 6] writes: 7
array: [1, 6, 4, 2, 4, 1, 3, 3] sorted: [1, 1, 2, 3, 3, 4, 4, 6] writes: 7
array: [5, 1, 2, 3, 4, 3, 7, 0] sorted: [0, 1, 2, 3, 3, 4, 5, 7] writes: 5
array: [5, 1, 7, 3, 2, 3, 4, 0] sorted: [0, 1, 2, 3, 3, 4, 5, 7] writes: 6
array: [4, 0, 3, 1, 5, 2, 7, 3] sorted: [0, 1, 2, 3, 3, 4, 5, 7] writes: 8
array: [4, 0, 7, 3, 5, 1, 3, 2] sorted: [0, 1, 2, 3, 3, 4, 5, 7] writes: 7
array: [3, 4, 2, 7, 5, 3, 1, 0] sorted: [0, 1, 2, 3, 3, 4, 5, 7] writes: 7
array: [0, 5, 3, 2, 3, 7, 1, 4] sorted: [0, 1, 2, 3, 3, 4, 5, 7] writes: 6
array: [1, 4, 3, 7, 2, 3, 5, 0] sorted: [0, 1, 2, 3, 3, 4, 5, 7] writes: 7
array: [1, 5, 0, 7, 3, 3, 4, 2] sorted: [0, 1, 2, 3, 3, 4, 5, 7] writes: 7
array: [0, 5, 7, 3, 3, 4, 2, 1] sorted: [0, 1, 2, 3, 3, 4, 5, 7] writes: 4
array: [7, 3, 1, 0, 3, 5, 4, 2] sorted: [0, 1, 2, 3, 3, 4, 5, 7] writes: 7
If the array is shorter (ie less than about 100 elements) a Selection sort is often the best choice if you also want to reduce the number of writes.
From wikipedia:
Another key difference is that
selection sort always performs Θ(n)
swaps, while insertion sort performs
Θ(n2) swaps in the average and worst
cases. Because swaps require writing
to the array, selection sort is
preferable if writing to memory is
significantly more expensive than
reading. This is generally the case if
the items are huge but the keys are
small. Another example where writing
times are crucial is an array stored
in EEPROM or Flash. There is no other
algorithm with less data movement.
For larger arrays/lists Quicksort and friends will provide better performance, but may still likely need more writes than a selection sort.
If you're interested this is a fantastic sort visualization site that allows you to watch specific sort algorithms do their job and also "race" different sort algorithms against each other.
You can use a very naive algorithm that satisfies what you need.
The algorithm should look like this:
i = 0
do
search for the minimum in range [i..n)
swap a[i] with a[minPos]
i = i + 1
repeat until i = n.
The search for the minimum can cost you almost nothing, the swap costs you 3 writes, the i++ costs you 1..
This is named selection sort as stated by ash. (Sorry, I didn't knew it was selection sort :( )
One option for large arrays is as follows (assuming n elements):
Initialize an array with n elements numbered 0..n-1
Sort the array using any sorting algorithm. As the comparison function, compare the elements in the input set with the corresponding numbers (eg, to compare 2 and 4, compare the 2nd and 4th elements in the input set). This turns the array from step 1 into a permutation that represents the sorted order of the input set.
Iterate through the elements in the permutation, writing out the blocks in the order specified by the array. This requires exactly n writes, the minimum.
To sort in-place, in step 3 you should instead identify the cycles in the permutation, and 'rotate' them as necessary to result in sorted order.
The ordering I meant in O(n) is like the selection sort(the previous post) useful when you have a small range of keys (or you are ordering numbers between 2 ranges)
If you have a number array where numbers will be between -10 and 100, then you can create an array of 110 and be sure that all numbers will fit in there, if you consider repeated numbers the idea is the same, but you will have lists instead of numbers in the sorted array
the pseudo-idea is like this
N: max value of your array
tosort //array to be sorted
sorted = int[N]
for i = 0 to length(tosort)
do
sorted[tosort[i]]++;
end
finalarray = int[length(tosort)]
k = 0
for i = 0 to N
do
if ( sorted[i] > 0 )
finalarray[k] = i
k++;
endif
end
finalarray will have the final sorted array and you will have o(N) write operations, where N is the range of the array. Once again, this is useful when using keys inside a specific range, but perhaps its your case.
Best regards and good luck!

Resources