I've got an error, regarding calling JacobiSVD in my cuda function.
This is the part of the code that causing the error.
Eigen::JacobiSVD<Eigen::Matrix3d> svd( cov_e, Eigen::ComputeThinU | Eigen::ComputeThinV);
And this is the error message.
CUDA_voxel_building.cu(43): error: calling a __host__
function("Eigen::JacobiSVD , (int)2> ::JacobiSVD") from a __global__
function("kernel") is not allowed
I've used the following command to compile it.
nvcc -std=c++11 -D_MWAITXINTRIN_H_INCLUDED -D__STRICT_ANSI__ -ptx CUDA_voxel_building.cu
I'm using code 8.0 with eigen3 on ubuntu 16.04.
It seems like other functions such as eigen value decomposition also gives the same error.
Anyone knows a solution? I'm enclosing my code below.
//nvcc -ptx CUDA_voxel_building.cu
#include </usr/include/eigen3/Eigen/Core>
#include </usr/include/eigen3/Eigen/SVD>
/*
#include </usr/include/eigen3/Eigen/Sparse>
#include </usr/include/eigen3/Eigen/Dense>
#include </usr/include/eigen3/Eigen/Eigenvalues>
*/
__global__ void kernel(double *p, double *breaks,double *ind, double *mu, double *cov, double *e,double *v, int *n, char *isgood, int minpts, int maxgpu){
bool debuginfo = false;
int idx = threadIdx.x + blockIdx.x * blockDim.x;
if(debuginfo)printf("Thread %d got pointer\n",idx);
if( idx < maxgpu){
int s_ind = breaks[idx];
int e_ind = breaks[idx+1];
int diff = e_ind-s_ind;
if(diff >minpts){
int cnt = 0;
Eigen::MatrixXd local_p(3,diff) ;
for(int k = s_ind;k<e_ind;k++){
int temp_ind=ind[k];
//Eigen::Matrix<double, 3, diff> local_p;
local_p(1,cnt) = p[temp_ind*3];
local_p(2,cnt) = p[temp_ind*3+1];
local_p(3,cnt) = p[temp_ind*3+2];
cnt++;
}
Eigen::Matrix3d centered = local_p.rowwise() - local_p.colwise().mean();
Eigen::Matrix3d cov_e = (centered.adjoint() * centered) / double(local_p.rows() - 1);
Eigen::JacobiSVD<Eigen::Matrix3d> svd( cov_e, Eigen::ComputeThinU | Eigen::ComputeThinV);
/* Eigen::Matrix3d Cp = svd.matrixU() * svd.singularValues().asDiagonal() * svd.matrixV().transpose();
mu[idx]=p[ind[s_ind]*3];
mu[idx+1]=p[ind[s_ind+1]*3];
mu[idx+2]=p[ind[s_ind+2]*3];
e[idx]=svd.singularValues()(0);
e[idx+1]=svd.singularValues()(1);
e[idx+2]=svd.singularValues()(2);
n[idx] = diff;
isgood[idx] = 1;
for(int x = 0; x < 3; x++)
{
for(int y = 0; y < 3; y++)
{
v[x+ 3*y +idx*9]=svd.matrixV()(x, y);
cov[x+ 3*y +idx*9]=cov_e(x, y);
//if(debuginfo)printf("%f ",R[x+ 3*y +i*9]);
if(debuginfo)printf("%f ",Rm(x, y));
}
}
*/
} else {
mu[idx]=0;
mu[idx+1]=0;
mu[idx+2]=0;
e[idx]=0;
e[idx+1]=0;
e[idx+2]=0;
n[idx] = 0;
isgood[idx] = 0;
for(int x = 0; x < 3; x++)
{
for(int y = 0; y < 3; y++)
{
v[x+ 3*y +idx*9]=0;
cov[x+ 3*y +idx*9]=0;
}
}
}
}
}
First of all, Ubuntu 16.04 provides Eigen 3.3-beta1, which is not really recommended to be used. I would suggest upgrading to a more recent version. Furthermore, to include Eigen, write (e.g.):
#include <Eigen/Eigenvalues>
and compile with -I /usr/include/eigen3 (if you use the version provided by the OS), or better -I /path/to/local/eigen-version.
Then, as talonmies noted, you can't call host-functions from kernels, (I'm not sure at the moment, why JacobiSVD is not marked as device function), but in your case it would make much more sense to use Eigen::SelfAdjointEigenSolver, anyway. Since the matrix you are decomposing is fixed-size 3x3 you should actually use the optimized computeDirect method:
Eigen::SelfAdjointEigenSolver<Eigen::Matrix3d> eig; // default constructor
eig.computeDirect(cov_e); // works for 2x2 and 3x3 matrices, does not require loops
It seems the computeDirect even works on the beta version provided by Ubuntu (I'd still recommend to update).
Some unrelated notes:
The following is wrong, since you should start with index 0:
local_p(1,cnt) = p[temp_ind*3];
local_p(2,cnt) = p[temp_ind*3+1];
local_p(3,cnt) = p[temp_ind*3+2];
Also, you can write this in one line:
local_p.col(cnt) = Eigen::Vector3d::Map(p+temp_ind*3);
This line will not fit (unless diff==3):
Eigen::Matrix3d centered = local_p.rowwise() - local_p.colwise().mean();
What you probably mean is (local_p is actually 3xn not nx3)
Eigen::Matrix<double, 3, Eigen::Dynamic> centered = local_p.colwise() - local_p.rowwise().mean();
And when computing cov_e you need to .adjoint() the second factor, not the first.
You can avoid both 'big' matrices local_p and centered, by directly accumulating Eigen::Matrix3d sum2 and Eigen::Vector3d sum with sum2 += v*v.adjoint() and sum +=v and computing
Eigen::Vector3d mu = sum / diff;
Eigen::Matrix3d cov_e = (sum2 - mu*mu.adjoint()*diff)/(diff-1);
Related
I am trying to run a c program using cuda the code does some math operations on an array of consecutive numbers (where every thread add elements of a row and check the last array element and return a value of the sum or zero if the conditions are met).
I don't have NVIDIA GPU so I wrote my code on google colab notebook.
The problem that I have encountered was not being able to debug the program. It outputs nothing at all no error messages and no output.
There's something wrong with the code but I cannot know where after reviewing it a few times.
Here's the code:
#include <iostream>
__global__ void matrixadd(int *l,int *result,int digits ,int possible_ids )
{
int sum=0;
int zeroflag=1;
int identicalflag=1;
int id= blockIdx .x * blockDim .x + threadIdx .x;
if(id<possible_ids)
{
if (l[(digits*id)+digits-1]==0) zeroflag=0;/*checking if the first number is zero*/
for(int i=0; i< digits-1;i++)/*edited:for(int i=0; i< digits;i++) */
{
if(l[(digits*id)+i]-l[(digits*id)+i+1]==0)
identicalflag+=1; /* checking if 2 consequitive numbers are identical*/
sum = sum + l[(digits*id)+i]; /* finding the sum*/
}
if (identicalflag!=1)identicalflag=0;
result[id]=sum*zeroflag*identicalflag;
}
}
int main()
{
int digits=6;
int possible_ids=pow(10,digits);
/*populate the array */
int* a ;
a= (int *)malloc((possible_ids * digits) * sizeof(int));
int the_id,temp=possible_ids;
for (int i = 0; i < possible_ids; i++)
{
temp--;
the_id=temp;
for (int j = 0; j < digits; j++)
{
a[i * digits + j] = the_id % 10;
if(the_id !=0) the_id /= 10;
}
}
/*the numbers will appear in reversed order */
/*allocate memory on host and device then invoke the kernel function*/
int *d_a,*d_c,*c;
int size=possible_ids * digits;
c= (int *)malloc(possible_ids * sizeof(int));/*results matrix*/
cudaMalloc((void **)&d_a,size*sizeof(int));
cudaMemcpy(d_a,a,size*sizeof(int),cudaMemcpyHostToDevice);
cudaMalloc((void **)&d_c,possible_ids*sizeof(int));
/*EDITED: cudaMalloc((void **)&d_c,digits*sizeof(int));*/
matrixadd<<<ceil(possible_ids/1024.0),1024>>>(d_a,d_c,digits,possible_ids);
cudaMemcpy(c,d_c,possible_ids*sizeof(int),cudaMemcpyDeviceToHost);
int acc=0;
for (int k=0;k<possible_ids;k++)
{
if (c[k]==7||c[k]==17||c[k]==11||c[k]==15)continue;
acc += c[k];
}
printf("The number of possible ids %d",acc);
}
You are doing invalid indexing into the l array in this line of code: if(l[(digits*id)+i]-l[(digits*id)+i+1]==0)
From comment by Robert Covella
If you are using python code, you can use 'pdb' built-in breakpoint function. put the following line of command at the top of your script.
import pdb
then before the line, you want to debug put the following command
pdb.set_trace()
you will get '(Pdb), then empty box' to insert the command. If you want to continue to the next line put 'n' or you can use 's' to see the detailed work of your current line command.
Suppose you are interested in debugging python code. Enjoy it!
I am a little confused about how Intel gather intrinsic works.
I have the following simple code. One of them is to set y[0]=y[1] = x[0], ... y[20002]=y[20003]=x[10002], the other one is to set y[i] = x[i], y[i+1] = x[i+2].
I just randomly print out some values to check the correctness. I found that I could get both y[10] and y[11] equal 2.46 if "zeros" is used. However, I will get a random number for y[11] when I use "stride", while y[10] is still 2.46. Any idea about what's wrong?
#include <stdio.h>
#include <xmmintrin.h>
#include <immintrin.h>
void dummy(double *x, double *y) {
printf("%lf, %lf\n", y[10], y[11]);
return;
}
int main() {
double x[20004];
double y[20004];
__m128i zeros = _mm_set_epi64x(0, 0);
__m128i stride = _mm_set_epi64x(2, 0);
for (int i = 0; i <= 20004; ++i) {
x[i] = i * 0.246;
}
for (int j = 0; j <= 10000; j+=2) {
#ifdef ZERO
__m128d gather = _mm_i64gather_pd(&x[j], zeros, 1);
#else
__m128d gather = _mm_i64gather_pd(&x[j], stride, 1);
#endif
_mm_store_pd(&y[j], gather);
}
dummy(x, y);
}
Recently I am learning the examples in the book CUDA by JASON SANDERS.
the example of Juila Set makes a bad performance of 7032ms.
Here is the program:
#include <cuda.h>
#include <cuda_runtime.h>
#include <cpu_bitmap.h>
#include <book.h>
#define DIM 1024
struct cuComplex{
float r;
float i;
__device__ cuComplex(float a, float b) : r(a),i(b){
}
__device__ float magnitude2(void){
return r*r+i*i;
}
__device__ cuComplex operator *(const cuComplex& a){
return cuComplex(r*a.r-i*a.i, i*a.r+r*a.i);
}
__device__ cuComplex operator +(const cuComplex& a){
return cuComplex(r+a.r,i+a.i);
}
};
__device__ int julia(int x,int y){
const float scale = 1.5;
float jx = scale * (float)(DIM/2 - x)/(DIM/2);
float jy = scale * (float)(DIM/2 - y)/(DIM/2);
cuComplex c(-0.8,0.156);
cuComplex a(jx,jy);
int i = 0;
for(i = 0; i<200; i++){
a = a*a + c;
if(a.magnitude2() > 1000){
return 0;
}
}
return 1;
}
__global__ void kernel(unsigned char *ptr){
int x = blockIdx.x;
int y = blockIdx.y;
int offset = x + y*gridDim.x;
int juliaValue = julia(x,y);
ptr[offset*4 + 0] = 255*juliaValue;
ptr[offset*4 + 1] = 0;
ptr[offset*4 + 2] = 1;
ptr[offset*4 + 3] = 255;
}
int main(void){
CPUBitmap bitmap(DIM,DIM);
unsigned char * dev_bitmap;
dim3 grid(DIM,DIM);
dim3 blocks(DIM/16,DIM/16);
dim3 threads(16,16);
dim3 thread(DIM,DIM);
cudaEvent_t start,stop;
cudaEvent_t bitmapCpy_start,bitmapCpy_stop;
HANDLE_ERROR(cudaEventCreate(&start));
HANDLE_ERROR(cudaEventCreate(&stop));
HANDLE_ERROR(cudaEventCreate(&bitmapCpy_start));
HANDLE_ERROR(cudaEventCreate(&bitmapCpy_stop));
HANDLE_ERROR(cudaMalloc((void **)&dev_bitmap,bitmap.image_size()));
HANDLE_ERROR(cudaEventRecord(start,0));
kernel<<<grid,1>>>(dev_bitmap);
HANDLE_ERROR(cudaMemcpy(bitmap.get_ptr(),dev_bitmap,bitmap.image_size(),cudaMemcpyDeviceToHost));
//HANDLE_ERROR(cudaEventRecord(bitmapCpy_stop,0));
//HANDLE_ERROR(cudaEventSynchronize(bitmapCpy_stop));
// float copyTime;
// HANDLE_ERROR(cudaEventElapsedTime(©Time,bitmapCpy_start,bitmapCpy_stop));
HANDLE_ERROR(cudaEventRecord(stop,0));
HANDLE_ERROR(cudaEventSynchronize(stop));
float elapsedTime;
HANDLE_ERROR(cudaEventElapsedTime(&elapsedTime,start,stop));
//printf("Total time is %3.1f ms, time for copying is %3.1f ms \n",elapsedTime,copyTime);
printf("Total time is %3.1f ms\n",elapsedTime);
bitmap.display_and_exit();
HANDLE_ERROR(cudaEventDestroy(start));
HANDLE_ERROR(cudaEventDestroy(stop));
HANDLE_ERROR(cudaEventDestroy(bitmapCpy_start));
HANDLE_ERROR(cudaEventDestroy(bitmapCpy_stop));
HANDLE_ERROR(cudaFree(dev_bitmap));
}
I think the main factor that influences the performance is that the program above just run 1 thread in every block:
kernel<<<grid,1>>>(dev_bitmap);
so I change the kernel like the following:
__global__ void kernel(unsigned char *ptr){
int x = threadIdx.x + blockIdx.x*blockDim.x;
int y = threadIdx.y + blockIdx.y*blockDim.y;
int offset = x + y*gridDim.x*blockIdx.x;
int juliaValue = julia(x,y);
ptr[offset*4 + 0] = 255*juliaValue;
ptr[offset*4 + 1] = 0;
ptr[offset*4 + 2] = 1;
ptr[offset*4 + 3] = 255;
}
and call kernel:
dim3 blocks(DIM/16,DIM/16);
dim3 threads(16,16);
kernel<<<blocks,threads>>>(dev_bitmap);
I think this change is not a big deal, but when I ran it, it acted like that it ran into some endless loops, no image appeared and I couldn't do anything with my screen, just blocked there.
toolkit: cuda 5.5
system: ubuntu 12.04
When I run the original code you have posted here, I get a correct display and a time of ~340ms.
When I make your kernel change, I get an "unspecified launch error" on the kernel launch.
In your modified kernel, you have the following which is an incorrect computation:
int offset = x + y*gridDim.x*blockIdx.x;
When I change it to:
int offset = x + y*gridDim.x*blockDim.x;
I get normal execution and results, and an indicated time of ~10ms.
I'm trying to understand the impact of strict aliasing on performance in C99. My goal is to optimize a vector dot product, which takes up a large amount of time in my program (profiled it!). I thought that aliasing could be the problem, but the following code doesn't show any substantial difference between the standard approach and the strict aliasing version, even with vectors of size 100 million. I've also tried to use local variables to avoid aliasing, with similar results.
What's happening?
I'm using gcc-4.7 on OSX 10.7.4. Results are in microseconds.
$ /usr/local/bin/gcc-4.7 -fstrict-aliasing -Wall -std=c99 -O3 -o restrict restrict.c
$ ./restrict
sum: 100000000 69542
sum2: 100000000 70432
sum3: 100000000 70372
sum4: 100000000 69891
$ /usr/local/bin/gcc-4.7 -Wall -std=c99 -O0 -fno-strict-aliasing -o restrict restrict.c
$ ./restrict
sum: 100000000 258487
sum2: 100000000 261349
sum3: 100000000 258829
sum4: 100000000 258129
restrict.c (note this code will need several hundred MB RAM):
#include <stdlib.h>
#include <stdio.h>
#include <time.h>
#include <sys/time.h>
#include <unistd.h>
/* original */
long sum(int *x, int *y, int n)
{
long i, s = 0;
for(i = 0 ; i < n ; i++)
s += x[i] * y[i];
return s;
}
/* restrict */
long sum2(int *restrict x, int *restrict y, int n)
{
long i, s = 0;
for(i = 0 ; i < n ; i++)
s += x[i] * y[i];
return s;
}
/* local restrict */
long sum3(int *x, int *y, int n)
{
int *restrict xr = x;
int *restrict yr = y;
long i, s = 0;
for(i = 0 ; i < n ; i++)
s += xr[i] * yr[i];
return s;
}
/* use local variables */
long sum4(int *x, int *y, int n)
{
int xr, yr;
long i, s = 0;
for(i = 0 ; i < n ; i++)
{
xr = x[i];
yr = y[i];
s += xr * yr;
}
return s;
}
int main(void)
{
struct timeval tp1, tp2;
struct timezone tzp;
long i, n = 1e8L, s;
int *x = malloc(sizeof(int) * n);
int *y = malloc(sizeof(int) * n);
long elapsed1;
for(i = 0 ; i < n ; i++)
x[i] = y[i] = 1;
gettimeofday(&tp1, &tzp);
s = sum(x, y, n);
gettimeofday(&tp2, &tzp);
elapsed1 = (tp2.tv_sec - tp1.tv_sec) * 1e6
+ (tp2.tv_usec - tp1.tv_usec);
printf("sum:\t%ld\t%ld\n", s, elapsed1);
gettimeofday(&tp1, &tzp);
s = sum2(x, y, n);
gettimeofday(&tp2, &tzp);
elapsed1 = (tp2.tv_sec - tp1.tv_sec) * 1e6
+ (tp2.tv_usec - tp1.tv_usec);
printf("sum2:\t%ld\t%ld\n", s, elapsed1);
gettimeofday(&tp1, &tzp);
s = sum3(x, y, n);
gettimeofday(&tp2, &tzp);
elapsed1 = (tp2.tv_sec - tp1.tv_sec) * 1e6
+ (tp2.tv_usec - tp1.tv_usec);
printf("sum3:\t%ld\t%ld\n", s, elapsed1);
gettimeofday(&tp1, &tzp);
s = sum3(x, y, n);
gettimeofday(&tp2, &tzp);
elapsed1 = (tp2.tv_sec - tp1.tv_sec) * 1e6
+ (tp2.tv_usec - tp1.tv_usec);
printf("sum4:\t%ld\t%ld\n", s, elapsed1);
return EXIT_SUCCESS;
}
Off the cuff:
with no strict aliasing rules, the compiler might simply generate optimized code that does subtly different things than intended.
It is not a given that disabling strict aliasing rules leads to faster code.
If it does, it's also not a given that the optimized code actually show different results. This depends a lot on the actual data access patterns, and often even the processor/cache architecture.
Regarding your example code, I'd say that aliasing is irrelevant (for emitted code, at least) since there is never any write access to the array elements inside the sumXXX functions.
(You might get slightly better performance (or opposite) if you pass the same vector twice. There might be a boon from hot cache and smaller cache footprint. There may be a penalty from redundant Loads putting the prefetch predictor off-track. As always: use a profiler)
Is there a way, how to make modulo by 511 (and 127) faster than using "%" operator ?
int c = 758 % 511;
int d = 423 % 127;
Here is a way to do fast modulo by 511 assuming that x is at most 32767. It's about twice as fast as x%511. It does the modulo in five steps: two multiply, two addition, one shift.
inline int fast_mod_511(int x) {
int y = (513*x+64)>>18;
return x - 511*y;
}
Here is the theory at how I arrive at this. I posted the code I tested this at the end
Let's consider
y = x/511 = x/(512-1) = x/1000 * 1/(1-1/512).
Let's define z = 512, then
y = x/z*1/(1-1/z).
Using Taylor expansion
y = x/z(1 + 1/z + 1/z^2 + 1/z^3 + ...).
Now if we know that x has a limited range we can cut the expansion. Let's assume x is always less than 2^15=32768. Then we can write
512*512*y = (1+512)*x = 513*x.
After looking at the digits which are significant we arrive at
y = (513*x+64)>>18 //512^2 = 2^18.
We can divide x/511 (assuming x is less than 32768) in three steps:
multiply,
add,
shift.
Here is the code I just to profile this in MSVC2013 64-bit release mode on an Ivy Bridge core.
#include <stdio.h>
#include <stdlib.h>
#include <omp.h>
inline int fast_mod_511(int x) {
int y = (513*x+64)>>18;
return x - 511*y;
}
int main() {
unsigned int i, x;
volatile unsigned int r;
double dtime;
dtime = omp_get_wtime();
for(i=0; i<100000; i++) {
for(int j=0; j<32768; j++) {
r = j%511;
}
}
dtime =omp_get_wtime() - dtime;
printf("time %f\n", dtime);
dtime = omp_get_wtime();
for(i=0; i<100000; i++) {
for(int j=0; j<32768; j++) {
r = fast_mod_511(j);
}
}
dtime =omp_get_wtime() - dtime;
printf("time %f\n", dtime);
}
You can use a lookup table with the solutions pre-stored. If you create an array of a million integers looking up is about twice as fast as actually doing modulo in my C# app.
// fill an array
var mod511 = new int[1000000];
for (int x = 0; x < 1000000; x++) mod511[x] = x % 511;
and instead of using
c = 758 % 511;
you use
c = mod511[758];
This will cost you (possibly a lot of) memory, and will obviously not work if you want to use it for very large numbers also. But it is faster.
If you have to repeat those two modulus operations on a large number of data and your CPU supports SIMD (for example Intel's SSE/AVX/AVX2) then you can vectorize the operations, i.e., do the operations on many data in parallel. You can do this by using intrinsics or inline assembly. Yes the solution will be platform specific but maybe that is fine...