Is `[<var> in <distributed variable>]` equivalent to `forall`? - syntax

I noticed something in a snippet of code I was given:
var D: domain(2) dmapped Block(boundingBox=Space) = Space;
var A: [D] int;
[a in A] a = a.locale.id;
Is [a in A] equivalent to forall a in A a = a.locale.id?

For the most part, yes. In Chapel, [a in A] expr can be thought of as a shorthand for forall a in A do expr. However, there is a slight difference in that if A does not support parallel iteration, the forall form will generate a compile-time error whereas the [a in A] form will fall back to serial iteration.
With respect to the title of this question, note that this behavior is independent of whether or not A is distributed. For example, you could also write [i in 1..n] rather than forall i in 1..n do even though ranges like 1..n are never distributed in Chapel.
Array types in Chapel, like [D] real can similarly be read as "for all indices in D, allocate an element of type real."

Related

SML Syntax Breakdown

I am trying to study SML (for full transparency this is in preparation for an exam (exam has not started)) and one area that I have been struggling with is higher level functions such as map and foldl/r. I understand that they are used in situations where you would use a for loop in oop languages (I think). What I am struggling with though is what each part in a fold or map function is doing. Here are some examples that if someone could break them down I would be very appreciative
fun cubiclist L = map (fn x=> x*x*x) L;
fun min (x::xs) = foldr (fn (a,b) => if (a < b) then a else b) x xs;
So if I could break down the parts I see and high light the parts I'm struggling with I believe that would be helpful.
Obviously right off the bat you have the name of the functions and the parameters that are being passed in but one question I have on that part is why are we just passing in a variable to cubiclist but for min we pass in (x::xs)? Is it because the map function is automatically applying the function to each part in the map? Also along with that will the fold functions typically take the x::xs parameters while map will just take a variable?
Then we have the higher order function along with the anonymous functions with the logic/operations that we want to apply to each element in the list. But the parameters being passed in for the foldr anonymous function I'm not quite sure about. I understand we are trying to capture the lowest element in the list and the then a else b is returning either a or b to be compared with the other elements in the list. I'm pretty sure that they are rutnred and treated as a in future comparisons but where do we get the following b's from? Where do we say b is the next element in the list?
Then the part that I really don't understand and have no clue is the L; and x xs; at the end of the respective functions. Why are they there? What are they doing? what is their purpose? is it just syntax or is there actually a purpose for them being there, not saying that syntax isn't a purpose or a valid reason, but does they actually do something? Are those variables that can be changed out with something else that would provide a different answer?
Any help/explanation is much appreciated.
In addition to what #molbdnilo has already stated, it can be helpful to a newcomer to functional programming to think about what we're actually doing when we crate a loop: we're specifying a piece of code to run repeatedly. We need an initial state, a condition for the loop to terminate, and an update between each iteration.
Let's look at simple implementation of map.
fun map f [] = []
| map f (x :: xs) = f x :: map f xs
The initial state of the contents of the list.
The termination condition is the list is empty.
The update is that we tack f x onto the front of the result of mapping f to the rest of the list.
The usefulness of map is that we abstract away f. It can be anything, and we don't have to worry about writing the loop boilerplate.
Fold functions are both more complex and more instructive when comparing to loops in procedural languages.
A simple implementation of fold.
fun foldl f init [] = init
| foldl f init (x :: xs) = foldl f (f init x) xs
We explicitly provide an initial value, and a list to operate on.
The termination condition is the list being empty. If it is, we return the initial value provided.
The update is to call the function again. This time the initial value is updated, and the list is the tail of the original.
Consider summing a list of integers.
foldl op+ 0 [1,2,3,4]
foldl op+ 1 [2,3,4]
foldl op+ 3 [3,4]
foldl op+ 6 [4]
foldl op+ 10 []
10
Folds are important to understand because so many fundamental functions can be implemented in terms of foldl or foldr. Think of folding as a means of reducing (many programming languages refer to these functions as "reduce") a list to another value of some type.
map takes a function and a list and produces a new list.
In map (fn x=> x*x*x) L, the function is fn x=> x*x*x, and L is the list.
This list is the same list as cubiclist's parameter.
foldr takes a function, an initial value, and a list and produces some kind of value.
In foldr (fn (a,b) => if (a < b) then a else b) x xs, the function is fn (a,b) => if (a < b) then a else b, the initial value is x, and the list is xs.
x and xs are given to the function by pattern-matching; x is the argument's head and xs is its tail.
(It follows from this that min will fail if it is given an empty list.)

fast and concurrent algorithm of frequency calculation in elixir

I have two big lists that their item's lengths isn't constant. Each list include millions items.
And I want to count frequency of items of first list in second list!
For example:
a = [[c, d], [a, b, e]]
b = [[a, d, c], [e, a, b], [a, d], [c, d, a]]
# expected result of calculate_frequency(a, b) is %{[c, d] => 2, [a, b, e] => 1} Or [{[c, d], 2}, {[a, b, e], 1}]
Due to the large size of the lists, I would like this process to be done concurrently.
So I wrote this function:
def calculate_frequency(items, data_list) do
items
|> Task.async_stream(
fn item ->
frequency =
data_list
|> Enum.reduce(0, fn data_row, acc ->
if item -- data_row == [] do
acc + 1
else
acc
end
end)
{item, frequency}
end,
ordered: false
)
|> Enum.reduce([], fn {:ok, merged}, merged_list -> [merged | merged_list] end)
end
But this algorithm is slow. What should I do to make it fast?
PS: Please do not consider the type of inputs and outputs, the speed of execution is important.
Not sure if this fast enough and certainly it's not concurrent. It's O(m + n) where m is the size of items and n is the size of data_list. I can't find a faster concurrent way because combining the result of all the sub-processes also takes time.
data_list
|> Enum.reduce(%{}, fn(item, counts)->
Map.update(counts, item, 1, &(&1 + 1))
end)
|> Map.take(items)
FYI, doing things concurrently does not necessarily mean doing things in parallel. If you have only one CPU core, concurrency actually slows things down because one CPU core can only do one thing at a time.
Put one list into a MapSet.
Go through the second list and see whether or not each element is in the MapSet.
This is linear in the lengths of the lists, and both operations should be able to be parallelized.
I would start by normalizing the data you want to compare so a simple equality check can tell if two items are "equal" as you would define it. Based on your code, I would guess Enum.sort/1 would do the trick, though MapSet.new/1 or a function returning a map may compare faster if it matches your use case.
defp normalize(item) do
Enum.sort(item)
end
def calculate_frequency(items, data_list) do
data_list = Enum.map(data_list, &normalize/1)
items = Enum.map(items, &normalize/1)
end
If you're going to get most frequencies from data list, I would then calculate all frequencies for data list. Elixir 1.10 introduced Enum.frequencies/1 and Enum.frequencies_by/2, but you could do this with a reduce if desired.
def calculate_frequency(items, data_list) do
data_frequencies = Enum.frequencies_by(data_list, &normalize/1) # does map for you
Map.new(items, &Map.get(data_frequencies, normalize(&1), 0)) # if you want result as map
end
I haven't done any benchmarks on my code or yours. If you were looking to do more asynchronous stuff, you could replace your mapping with Task.async_stream/3, and you could replace your frequencies call with a combination of Stream.chunk_every/2, Task.async_stream/3 (with Enum.frequencies/1 being the function), and Map.merge/3.

Functional programming with OCAML

I'm new to functional programming and I'm trying to implement a basic algorithm using OCAML for course that I'm following currently.
I'm trying to implement the following algorithm :
Entries :
- E : a non-empty set of integers
- s : an integer
- d : a positive float different of 0
Output :
- T : a set of integers included into E
m <- min(E)
T <- {m}
FOR EACH e ∈ sort_ascending(E \ {m}) DO
IF e > (1+d)m AND e <= s THEN
T <- T U {e}
m <- e
RETURN T
let f = fun (l: int list) (s: int) (d: float) ->
List.fold_left (fun acc x -> if ... then (list_union acc [x]) else acc)
[(list_min l)] (list_sort_ascending l) ;;
So far, this is what I have, but I don't know how to handle the modification of the "m" variable mentioned in the algorithm... So I need help to understand what is the best way to implement the algorithm, maybe I'm not gone in the right direction.
Thanks by advance to anyone who will take time to help me !
The basic trick of functional programming is that although you can't modify the values of any variables, you can call a function with different arguments. In the initial stages of switching away from imperative ways of thinking, you can imagine making every variable you want to modify into the parameters of your function. To modify the variables, you call the function recursively with the desired new values.
This technique will work for "modifying" the variable m. Think of m as a function parameter instead.
You are already using this technique with acc. Each call inside the fold gets the old value of acc and returns the new value, which is then passed to the function again. You might imagine having both acc and m as parameters of this inner function.
Assuming list_min is defined you should think the problem methodically. Let's say you represent a set with a list. Your function takes this set and some arguments and returns a subset of the original set, given the elements meet certain conditions.
Now, when I read this for the first time, List.filter automatically came to my mind.
List.filter : ('a -> bool) -> 'a list -> 'a list
But you wanted to modify the m so this wouldn't be useful. It's important to know when you can use library functions and when you really need to create your own functions from scratch. You could clearly use filter while handling m as a reference but it wouldn't be the functional way.
First let's focus on your predicate:
fun s d m e -> (float e) > (1. +. d)*.(float m) && (e <= s)
Note that +. and *. are the plus and product functions for floats, and float is a function that casts an int to float.
Let's say the function predicate is that predicate I just mentioned.
Now, this is also a matter of opinion. In my experience I wouldn't use fold_left just because it's just complicated and not necessary.
So let's begin with my idea of the code:
let m = list_min l;;
So this is the initial m
Then I will define an auxiliary function that reads the m as an argument, with l as your original set, and s, d and m the variables you used in your original imperative code.
let rec f' l s d m =
match l with
| [] -> []
| x :: xs -> if (predicate s d m x) then begin
x :: (f' xs s d x)
end
else
f' xs s d m in
f' l s d m
Then for each element of your set, you check if it satisfies the predicate, and if it does, you call the function again but you replace the value of m with x.
Finally you could just call f' from a function f:
let f (l: int list) (s: int) (d: float) =
let m = list_min l in
f' l s d m
Be careful when creating a function like your list_min, what would happen if the list was empty? Normally you would use the Option type to handle those cases but you assumed you're dealing with a non-empty set so that's great.
When doing functional programming it's important to think functional. Pattern matching is super recommended, while pointers/references should be minimal. I hope this is useful. Contact me if you any other doubt or recommendation.

Adding 2 Int Lists Together F#

I am working on homework and the problem is where we get 2 int lists of the same size, and then add the numbers together. Example as follows.
vecadd [1;2;3] [4;5;6];; would return [5;7;9]
I am new to this and I need to keep my code pretty simple so I can learn from it. I have this so far. (Not working)
let rec vecadd L K =
if L <> [] then vecadd ((L.Head+K.Head)::L) K else [];;
I essentially want to just replace the first list (L) with the added numbers. Also I have tried to code it a different way using the match cases.
let rec vecadd L K =
match L with
|[]->[]
|h::[]-> L
|h::t -> vecadd ((h+K.Head)::[]) K
Neither of them are working and I would appreciate any help I can get.
First, your idea about modifying the first list instead of returning a new one is misguided. Mutation (i.e. modifying data in place) is the number one reason for bugs today (used to be goto, but that's been banned for a long time now). Making every operation produce a new datum rather than modify existing ones is much, much safer. And in some cases it may be even more performant, quite counterintuitively (see below).
Second, the way you're trying to do it, you're not doing what you think you're doing. The double-colon doesn't mean "modify the first item". It means "attach an item in front". For example:
let a = [1; 2; 3]
let b = 4 :: a // b = [4; 1; 2; 3]
let c = 5 :: b // c = [5; 4; 1; 2; 3]
That's how lists are actually built: you start with a empty list and prepend items to it. The [1; 2; 3] syntax you're using is just a syntactic sugar for that. That is, [1; 2; 3] === 1::2::3::[].
So how do I modify a list, you ask? The answer is, you don't! F# lists are immutable data structures. Once you've created a list, you can't modify it.
This immutability allows for an interesting optimization. Take another look at the example I posted above, the one with three lists a, b, and c. How many cells of memory do you think these three lists occupy? The first list has 3 items, second - 4, and third - 5, so the total amount of memory taken must be 12, right? Wrong! The total amount of memory taken up by these three lists is actually just 5 cells. This is because list b is not a block of memory of length 4, but rather just the number 4 paired with a pointer to the list a. The number 4 is called "head" of the list, and the pointer is called its "tail". Similarly, the list c consists of one number 5 (its "head") and a pointer to list b, which is its "tail".
If lists were not immutable, one couldn't organize them like this: what if somebody modifies my tail? Lists would have to be copied every time (google "defensive copy").
So the only way to do with lists is to return a new one. What you're trying to do can be described like this: if the input lists are empty, the result is an empty list; otherwise, the result is the sum of tails prepended with the sum of heads. You can write this down in F# almost verbatim:
let rec add a b =
match a, b with
| [], [] -> [] // sum of two empty lists is an empty list
| a::atail, b::btail -> (a + b) :: (add atail btail) // sum of non-empty lists is sum of their tails prepended with sum of their heads
Note that this program is incomplete: it doesn't specify what the result should be when one input is empty and the other is not. The compiler will generate a warning about this. I'll leave the solution as an exercise for the reader.
You can map over both lists together with List.map2 (see the docs)
It goes over both lists pairwise and you can give it a function (the first parameter of List.map2) to apply to every pair of elements from the lists. And that generates the new list.
let a = [1;2;3]
let b = [4;5;6]
let vecadd = List.map2 (+)
let result = vecadd a b
printfn "%A" result
And if you want't to do more work 'yourself' something like this?
let a = [1;2;3]
let b = [4;5;6]
let vecadd l1 l2 =
let rec step l1 l2 acc =
match l1, l2 with
| [], [] -> acc
| [], _ | _, [] -> failwithf "one list is bigger than the other"
| h1 :: t1, h2 :: t2 -> step t1 t2 (List.append acc [(h1 + h2)])
step l1 l2 []
let result = vecadd a b
printfn "%A" result
The step function is a recursive function that takes two lists and an accumulator to carry the result.
In the last match statement it does three things
Sum the head of both lists
Add the result to the accumulator
Recursively call itself with the new accumulator and the tails of the lists
The first match returns the accumulator when the remaining lists are empty
The second match returns an error when one of the lists is longer than the other.
The accumulator is returned as the result when the remaining lists are empty.
The call step l1 l2 [] kicks it off with the two supplied lists and an empty accumulator.
I have done this for crossing two lists (multiply items with same index together):
let items = [1I..50_000I]
let another = [1I..50_000I]
let rec cross a b =
let rec cross_internal = function
| r, [], [] -> r
| r, [], t -> r#t
| r, t, [] -> r#t
| r, head::t1, head2::t2 -> cross_internal(r#[head*head2], t1, t2)
cross_internal([], a, b)
let result = cross items another
result |> printf "%A,"
Note: not really performant. There are list object creations at each step which is horrible. Ideally the inner function cross_internal must create a mutable list and keep updating it.
Note2: my ranges were larger initially and using bigint (hence the I suffix in 50_000) but then reduced the sample code above to just 50,500 elements.

Repa 3 performance and correct usage of 'now'

There is a basic monad question in here, unrelated to Repa, plus several Repa-specific questions.
I am working on a library using Repa3. I am having trouble getting efficient parallel code. If I make my functions return delayed arrays, I get excruciatingly slow code that scales very well up to 8 cores. This code takes over 20GB of memory per the GHC profiler, and runs several orders of magnitude slower than the basic Haskell unboxed vectors.
Alternatively, if I make all of my functions return Unboxed manifest arrays (still attempting to use fusion within the functions, for example when I do a 'map'), I get MUCH faster code (still slower than using Haskell unboxed vectors) that doesn't scale at all, and in fact tends to get slightly slower with more cores.
Based on the FFT example code in Repa-Algorithms, it seems the correct approach is to always return manifest arrays. Is there ever a case where I should be returning delayed arrays?
The FFT code also makes plentiful use of the 'now' function. However, I get a type error when I try to use it in my code:
type Arr t r = Array t DIM1 r
data CycRingRepa m r = CRTBasis (Arr U r)
| PowBasis (Arr U r)
fromArray :: forall m r t. (BaseRing m r, Unbox r, Repr t r) => Arr t r -> CycRingRepa m r
fromArray =
let mval = reflectNum (Proxy::Proxy m)
in \x ->
let sh:.n = extent x
in assert (mval == 2*n) PowBasis $ now $ computeUnboxedP $ bitrev x
The code compiles fine without the 'now'. With the 'now', I get the following error:
Couldn't match type r' withArray U (Z :. Int) r'
`r' is a rigid type variable bound by
the type signature for
fromArray :: (BaseRing m r, Unbox r, Repr t r) =>
Arr t r -> CycRingRepa m r
at C:\Users\crockeea\Documents\Code\LatticeLib\CycRingRepa.hs:50:1
Expected type: CycRingRepa m r
Actual type: CycRingRepa m (Array U DIM1 r)
I don't think this is my problem. It would be helpful if someone could explain the how the Monad works in 'now'. By my best estimation, the monad seems to be creating a 'Arr U (Arr U r)'. I'm expecting a 'Arr U r', which would then match the data constructor pattern. What is going on and how do I fix this?
The type signatures are:
computeUnboxedP :: Fill r1 U sh e => Array r1 sh e -> Array U sh e
now :: (Shape sh, Repr r e, Monad m) => Array r sh e -> m (Array r sh e)
It would be helpful to have a better idea of when it is appropriate to use 'now'.
A couple other Repa questions:
Should I explicitly call computeUnboxedP (as in the FFT example code), or should I use the more general computeP (because the unbox part is inferred by my data type)?
Should I store delayed or manifest arrays in the data type CycRingRepa?
Eventually I would also like this code to work with Haskell Integers. Will this require me to write new code that uses something other than U arrays, or could I write polymorphic code that creates U arrays for unbox types and some other array for Integers/boxed types?
I realize there are a lot of questions in here, and I appreciate any/all answers!
Here's the source code for now:
now arr = do
arr `deepSeqArray` return ()
return arr
So it's really just a monadic version of deepSeqArray. You can use either of these to force evaluation, rather than hanging on to a thunk. This "evalulation" is different than the "computation" forced when computeP is called.
In your code, now doesn't apply, since you're not in a monad. But in this context deepSeqArray wouldn't help either. Consider this situation:
x :: Array U Int Double
x = ...
y :: Array U Int Double
y = computeUnboxedP $ map f x
Since y refers to x, we'd like to be sure x is computed before starting to compute y. If not, the available work won't be distributed correctly among the gang of threads. To get this to work out, it's better to write y as
y = deepSeqArray x . computeUnboxedP $ map f x
Now, for a delayed array, we have
deepSeqArray (ADelayed sh f) y = sh `deepSeq` f `seq` y
Rather than computing all the elements, this just makes sure the shape is computed, and reduces f to weak-head normal form.
As for manifest vs delayed arrays, there are certainly time delayed arrays are preferable.
multiplyMM arr brr
= [arr, brr] `deepSeqArrays`
A.sumP (A.zipWith (*) arrRepl brrRepl)
where trr = computeUnboxedP $ transpose2D brr
arrRepl = trr `deepSeqArray` A.extend (Z :. All :. colsB :. All) arr
brrRepl = trr `deepSeqArray` A.extend (Z :. rowsA :. All :. All) trr
(Z :. _ :. rowsA) = extent arr
(Z :. colsB :. _ ) = extent brr
Here "extend" generates a new array by copying the values across some set of new dimensions. In particular, this means that
arrRepl ! (Z :. i :. j :. k) == arrRepl ! (Z :. i :. j' :. k)
Thankfully, extend produces a delayed array, since it would be a waste to go through the trouble of all this copying.
Delayed arrays also allow the possiblity of fusion, which is impossible if the array is manifest.
Finally, computeUnboxedP is just computeP with a specialized type. Giving computeUnboxedP explicitly might allow GHC to optimize better, and makes the code a little clearer.
Repa 3.1 no longer requires the explict use of now. The parallel computation functions are all monadic, and automatically apply deepSeqArray to their results. The repa-examples package also contains a new implementation of matrix multiply that demonstrates their use.

Resources