Apply procedure on previous result - scheme

Given a list of lists as an input, I want to execute a procedure such that the final result would be:
(define (thing . lists) ; list of lists (l1 l2 ... lN)
;returns ...f(f(f(l1 l2) l3) lN)...
)
So for example:
(thing '(a b) '(c d) '(e f))
...would result in f(f((a b) (c d)) (e f))
I am fighting with folding, lambda, apply and map, but I can't figure out right way.

Assuming that the input has at least two lists and that f was previously defined:
(define (thing . lists)
(foldr (lambda (lst acc)
(f acc lst))
(f (car lists) (cadr lists))
(cddr lists)))
For example:
(define f append)
(thing '(a b) '(c d) '(e f))
=> '(a b c d e f)

Related

cons* in scheme - how to implement

I tried to implement the cons* (https://scheme.com/tspl4/objects.html#./objects:s44).
Examples:
(cons* '()) -> ()
(cons* '(a b)) -> (a b)
(cons* 'a 'b 'c) -> (a b . c)
(cons* 'a 'b '(c d)) -> (a b c d)
this is what I did do far but I don't know how to replace the ?? to make the third example (the dot notion) work
(define cons*
(lambda x
(if
(null? x)
x
(if (list? (car (reverse x)))
(fold-right cons (car (reverse x)) (reverse (cdr (reverse x))))
???
)
)
)
)
Here's a lo-fi way using lambda -
(define cons*
(lambda l
(cond ((null? l) null)
((null? (cdr l)) (car l))
(else (cons (car l) (apply cons* (cdr l)))))))
Here's a way you can do it using match (Racket)
(define (cons* . l)
(match l
((list) null) ; empty list
((list a) a) ; singleton list
((list a b ...) (cons a (apply cons* b))))) ; two or elements
Often times patterns and order can be rearranged and still produce correct programs. It all depends on how you're thinking about the problem -
(define (cons* . l)
(match l
((list a) a) ; one element
((list a b) (cons a b)) ; two elements
((list a b ...) (cons a (apply cons* b))))) ; more
Or sugar it up with define/match -
(define/match (cons* . l)
[((list)) null]
[((list a)) a]
[((list a b ...)) (cons a (apply cons* b))])
All four variants produce the expected output -
(cons* '())
(cons* '(a b))
(cons* 'a 'b 'c)
(cons* 'a 'b '(c d))
'()
'(a b)
'(a b . c)
'(a b c d)
Personally, I'd use a macro instead of a function to transform a cons* into a series of cons calls:
(define-syntax cons*
(syntax-rules ()
((_ arg) arg)
((_ arg1 rest ...) (cons arg1 (cons* rest ...)))))
(define (writeln x)
(write x)
(newline))
(writeln (cons* '())) ;; -> '()
(writeln (cons* '(a b))) ;; -> '(a b)
(writeln (cons* 'a 'b 'c)) ;; -> (cons 'a (cons 'b 'c)) -> '(a b . c)
(writeln (cons* 'a 'b '(c d))) ;; -> (cons 'a (cons 'b '(c d))) -> '(a b c d)
A Simple Procedure
I think that you are making this more complicated than it needs to be. It seems best not to use lambda x here, since that would allow calls like (cons*) with no arguments. Instead, I would use (x . xs), and I would even just use the define syntax:
(define (cons* x . xs)
(if (null? xs)
x
(cons x (apply cons*
(car xs)
(cdr xs)))))
If there is only one argument to cons*, then xs is empty, i.e., (null? xs) is true, and that single argument x should be returned. Otherwise you should cons the first argument to the result of calling cons* again, with the first element of xs as the first argument, followed by the remaining arguments from xs. The trick here is that (cdr xs) returns a list, which will itself be put into a list thanks to the (x . xs) syntax. This is the reason for using apply, which will apply cons* to the arguments in the list.
This works for all of the test cases:
> (cons* '())
()
> (cons* '(a b))
(a b)
> (cons* 'a 'b 'c)
(a b . c)
> (cons* 'a 'b '(c d))
(a b c d)
Using Mutation
Taking a closer look at what a proper list really is suggests another approach to solving the problem. Consider a list like (a b c d). This is really a chain of cons cells that look like this:
(a . (b . (c . (d . ()))))
We would like to transform this list to an improper, or dotted, list:
(a . (b . (c . (d . ())))) --> (a . (b . (c . d)))
This transformed list is equivalent to (abc.d), which is what we would like the call to (cons* 'a 'b 'c 'd) to return.
We could mutate the proper list to an improper list by setting the cdr of the next-to-last pair to the car of the last pair; that is, by setting the cdr of (c . (d .()) to d. We can use the list-tail procedure to get at the next-to-last pair, list-ref to get at the car of the last pair, and set-cdr! to set the cdr of the next-to-last pair to the new value. After this, the list is no longer terminated by an empty list (unless the car of the final pair is itself an empty list!).
Here is a procedure proper->improper! that mutates a proper list to an improper list. Note that the input must be a proper list to avoid an error. If the input list contains only a single element, then that element is simply returned and no mutation takes place.
(define (proper->improper! xs)
(cond ((null? (cdr xs))
(car xs))
(else
(set-cdr! (list-tail xs (- (length xs) 2))
(list-ref xs (- (length xs) 1)))
xs)))
Now cons* can be defined simply in terms of proper->improper!:
(define (cons* . xs)
(proper->improper! xs))
Here, the arguments to cons* are packed up into a fresh list and passed to proper->improper! which effectively removes the terminal empty list from its input, returning a chain of pairs whose last cdr is the last argument to cons*; or if only one argument is provided, that argument is returned. This works just like the other solution:
> (cons* '())
()
> (cons* 'a)
a
> (cons* 'a 'b 'c 'd)
(a b c . d)
> (cons* 'a 'b '(c d))
(a b c d)
Real Life
In real life, at least in Chez Scheme, cons* is not implemented like any of these solutions, or even in Scheme at all. Instead Chez opted to make cons* a primitive procedure, implemented in C (I believe).

reverse a general list using scheme

I am trying to reverse a general list using Scheme. How can I reverse a complex list?
I can make a single list like (A B C D) works using my function, but for some complex list inside another list like (F ((E D) C B) A), the result is just (A ((E D) C B) F). How can I improve it?
(define (reverse lst)
(if (null? lst)
lst
(append (reverse (cdr lst)) (list (car lst)))))
Any comments will be much appreciated!
Here is another way that uses a default parameter (r null) instead of the expensive append operation -
(define (reverse-rec a (r null))
(if (null? a)
r
(reverse-rec (cdr a)
(cons (if (list? (car a))
(reverse-rec (car a))
(car a))
r))))
(reverse-rec '(F ((E D) C B) A))
; '(A (B C (D E)) F)
Using a higher-order procedure foldl allows us to encode the same thing without the extra parameter -
(define (reverse-rec a)
(foldl (lambda (x r)
(cons (if (list? x) (reverse-rec x) x)
r))
null
a))
(reverse-rec '(F ((E D) C B) A))
; '(A (B C (D E)) F)
There are several ways of obtaining the expected result. One is to call reverse recursively also on the car of the list that we are reversing, of course taking care of the cases in which we must terminate the recursion:
(define (reverse x)
(cond ((null? x) '())
((not (list? x)) x)
(else (append (reverse (cdr x)) (list (reverse (car x)))))))
(reverse '(F ((E D) C B) A))
'(A (B C (D E)) F)
(A ((E D) C B) F) is the correct result, if your goal is to reverse the input list. There were three elements in the input list, and now the same three elements are present, in reverse order. Since it is correct, I don't suggest you improve its behavior!
If you have some other goal in mind, some sort of deep reversal, you would do well to specify more clearly what result you want, and perhaps a solution will be easier to find then.

Trying to replace all instances of an element in a list with a new element [Racket]

As the title said, I'm trying to write a function that takes a list, a variable, and an element, then replaces all instances of the variable in the list with that element.
For example:
(substitute '(C or (D or D)) 'D #f) would return
'(C or (#f or #f))
Right now what I've got is:
(define (substitute lst rep new)
(cond ((or (null? lst))
lst)
((eq? (car lst) rep)
(cons new (substitute (cdr lst) rep new)))
(else
(cons (car lst) (substitute (cdr lst) rep new)))))
Which doesn't check nested lists like my example, though it works fine when they aren't a part of the input.
And I'm having trouble with where to place recursion in order to do so - or would it be easier to flatten it all and then rebuild it after everything's been replaced in some way?
Here's another solution using pattern matching via match -
(define (sub l rep new)
(match l
((list (list a ...) b ...) ; nested list
(cons (sub a rep new)
(sub b rep new)))
((list a b ...) ; flat list
(cons (if (eq? a rep) new a)
(sub b rep new)))
(_ ; otherwise
null)))
It works like this -
(sub '(a b c a b c a b c) 'a 'z)
;; '(z b c z b c z b c)
(sub '(a b c (a b c (a b c))) 'a 'z)
;; '(z b c (z b c (z b c)))
(sub '() 'a 'z)
; '()
At first sight, your question looks similar to How to replace an item by another in a list in DrScheme when given paramters are two items and a list?. From my understanding, your question is slightly different because you also want to replace occurrences within nested lists.
In order to deal with nested lists, you must add a clause to check for the existence of a nested list, and replace all occurrences in that nested list by recursing down the nested list:
(define (subst l rep new)
(cond ((null? l)
'())
((list? (car l)) ; Check if it is a nested list.
(cons (subst (car l) rep new) ; Replace occurrences in the nested list.
(subst (cdr l) rep new))) ; Replace occurrences in the rest of the list.
((eq? (car l) rep)
(cons new
(subst (cdr l) rep new)))
(else
(cons (car l)
(subst (cdr l) rep new)))))
Example use (borrowed from the answer given by user633183):
(subst '(a b c a b c a b c) 'a 'z)
;; '(z b c z b c z b c)
(subst '(a b c (a b c (a b c))) 'a 'z)
;; '(z b c (z b c (z b c)))
(subst '() 'a 'z)
; '()
This can be done using map and recursion:
(define (subst lst rep new)
(map (lambda (x)
(if (list? x)
(subst x rep new)
(if (eq? rep x) new x))) lst))
the output:
(subst '(a b c (a b c (a b c))) 'a 'z)
; '(z b c (z b c (z b c)))

Scheme procedure to substitute the element in a pair

I'm trying to write a procedure: when a pair starts with a, it would return b; when a pair starts with b, it would return c; and when a pair starts with c, it would return a.
(define e '((a b) (b c) (c a)))
(define (make-encoder e)
(cond ((eq? 'a (car (assq 'a e)))
(cadr (assq 'a e)))
((eq? 'b (car (assq 'b e)))
(cadr (assq 'b e)))
((eq? 'c (car (assq 'c e)))
(cadr (assq 'c e)))))
What is returned is only 'b', so I'm wondering where my brackets are wrong in cutting off the remaining code? I have played around for so long and wondering if that's my problem, or if it something else.
I don't think it's an issue of wrong parens; I can't really see a way to tweak your code to get the desired behavior. Here's how I would do it:
(define (make-encoder assoc-list)
(lambda (lst)
(define (-> elem)
(cadr (assq elem assoc-list)))
(map -> lst)))
As you can see, when you call this procedure with an association list such as e, it will return a new function that takes a list and maps -> over it, where -> looks up the element in the association list and returns result. Hence:
> ((make-encoder e) '(a b a c a b))
'(b c b a b c)
You have looking up the value of a key in a association list with (cadr (assq k a)) but what you are missing is how to apply that to every item in a list. That is where map comes in. So:
> (map (lambda (v) (cadr (assq v '((a b) (b c) (c a))))) '(a b a c a b))
'(b c b a b c)
This can be turned into a function by placing it within lambdas or a definition and replacing the values with bound names.

Recursion on deep list scheme

I have created a function that takes a list as input and returns either a list or a atom. I want to apply this function to a deep list, starting with the inner lists, then finish once the function has been run on the outer list.
Can somebody give me some direction on this?
A sample input would be (a b (c (d e))) z) the function should compute on (d e) first with a result of say f. then the function should compute on (c f) with a result of say g then similarly on (a b g z) to produce an output of h.
An example function could be:
(define sum
(lambda (l)
(if (not (pair? l))
0
(+ (car l) (sum (cdr l))))))
Where input would be (1 2 (3 4) 5) > 15
Assuming your example transformation, expressed as a Scheme procedure:
(define (transform lst)
(case lst
(((d e)) 'f)
(((c f)) 'g)
(((a b g z)) 'h)
(else (error (~a "wot? " lst)))))
then what you are looking for seems to be
(define (f lst)
(transform
(map (lambda (e)
(if (list? e) (f e) e))
lst)))
Testing:
> (f '(a b (c (d e)) z))
'h
Here is an example:
(define product
(lambda (l)
(cond
[(number? l) l]
[(pair? l) (* (product (car l)) (product (cdr l)))]
[else 1])))
> (product '(1 2 (3 4) 5))
120

Resources