Scheme, can someone explain how I'm using set-car! wrong? - scheme

I wanted to make a procedure that destructively increments the odd numbers of a list. I thought I'd recurse through it and just use 'set-car!' whenever 'odd?' was true.
Here is the code:
(define (test lst)
(cond ((null? lst) lst)
((odd? (car lst)) (set-car! lst (+ (car lst) 1))
(test (cdr lst)))
(else (test (cdr lst)))))
I'm not sure why it is not working, I guess I do not understand set-car! and set-cdr!
Could someone explain? Thank you.

The problem might be with your interpreter, or the language in which you're defining the procedure, or the way you're calling it. For instance, in DrRacket this works fine:
#lang r5rs
(define (test lst)
(cond ((null? lst) lst) ; this is the '() returned by the recursion
((odd? (car lst)) (set-car! lst (+ (car lst) 1))
(test (cdr lst)))
(else (test (cdr lst)))))
Bear in mind that your procedure will return an empty list, because that's the base case of the recursion and this is a tail-recursive procedure, which returns the value at the base case as its final result. But don't worry, the input list was modified in-place, you can check it after the procedure returns its value.
(define lst (list 1 2 3 4))
(display (test lst))
=> ()
(display lst)
=> (2 2 4 4)
See how mutability is confusing? a procedure is returning one value, but its input was modified and has a different value now. That's one of the reasons why functional programming (which favors immutable data) is cleaner and simpler to understand, and also demonstrates why is a bad idea to mutate input parameters inside a procedure ;)
If you absolutely want the procedure to return the mutated list, do as #sepp2k suggests, but remember - the input list was modified and in fact, is the same list that is returned as a result:
(define (test lst)
(cond ((null? lst) lst)
((odd? (car lst)) (set-car! lst (+ (car lst) 1))
(test (cdr lst))
lst) ; add this line
(else (test (cdr lst)))))
See for yourself:
(define lst (list 1 2 3 4))
(display (test lst))
=> (2 2 4 4)
(display lst)
=> (2 2 4 4)

was expecting the have the list containing (2 2 4 4) returned
The way you defined your function, it will return an empty list when called on the empty list and the result of the recursion in all other cases. So since the only base case is the empty list, you'll always return the empty list.
If you want to return the modified list, you'll need to do that after the recursion. That is after (test (cdr lst)), add lst to return the value of lst.

You are using set-car! correct. Here is how you tell it's working:
(define (test lst)
(cond ((null? lst) lst)
((odd? (car lst)) (set-car! lst (+ (car lst) 1))
(test (cdr lst)))
(else (test (cdr lst)))))
(define test-list (list 1 2 3 4))
(test test-list)
test-list ; ==> (2 2 4 4)
Your expectation that the function will return the modified list is wrong. To do that you need the first recursion step to return the argument. You need to wrap it:
(define (inc-odds lst)
(define (test lst)
(cond ((null? lst) lst)
((odd? (car lst)) (set-car! lst (+ (car lst) 1))
(test (cdr lst)))
(else (test (cdr lst)))))
(inc-odds lst) ; do the stuff
lst) ; return the list
(inc-odds (list 1 2 3 4)) ; ==> (2 2 4 4)
(inc-odds '(1 2 3 4)) ; ==> "pigs flying"
Notice the last one. In the RNRS upto R5RS passing a quoted literal to set-car! would produce an undefined behaviour which means anything is ok because technically the code isn't Scheme. In R6RS it's required to raise an exception.

Related

How to find if a list consists of ordered perfect squares in scheme?

I want to return true if the list is a square list, that is, true if the list is of the type '(0 1 4 9 16).
This is what I have (below) but it does check if the list is ordered. That is, my code will return true if a list is '(4 0 1 9 16). How can I modify my code?
(define (squares? lst)
(cond
((null? lst) #t)
((not( integer? (sqrt(car lst)))) #f)
(else (squares? (cdr lst)))))
for a list of the type '(4 0 1 9 16) I am going to obtain true with the above code, but the answer should be false, because my list is not '(0 1 4 9 16). Thanks in advance.
In the true spirit of functional programming, you should attempt to split the problem in smaller parts, and to reuse and combine existing procedures.
Assuming that the list doesn't need to be "complete", we just need to create and invoke one extra procedure that checks if the list is sorted:
(define (square? lst)
(and (all-squares? lst)
(sorted? lst)))
(define (all-squares? lst)
(cond
((null? lst) #t)
((not (integer? (sqrt (car lst)))) #f)
(else (all-squares? (cdr lst)))))
(define (sorted? lst)
(apply <= lst))
Just for fun, we can also rewrite all-squares? taking advantage of existing procedures:
(define (square? lst)
(and (andmap (compose integer? sqrt) lst)
(apply <= lst)))
Anyway, it'll work as expected with either implementation:
(square? '(0 1 4 9 16))
=> #t
(square? '(4 0 1 9 16))
=> #f
You could pass additionally last checked number
(define (squares? lst last-n)
and then check if (car lst) is bigger than last-n
((not (< last-n (car lst)) #f)
Oh, and also, don't forget to pass new last-n to squares?
(else (squares? (cdr lst) (car lst)))
You can define last-n as optional parameter, ie (define (squares? lst . last-n)) but then you have to access value by (car last-n), because all optional parameters are passed joined together as a list.

How to find the mean of a list with mixed symbols (numbers and characters) in scheme?

Given a list of the type '('a 1 'b 2 'c 3) I want to calculate the mean of the numbers in the list.
This is what I have done so far: I have written 3 functions that work correctly, one to remove the characters, the other to calculate the sum of the numbers in a list, and the other to find the average. But I do not know how to put them together to solve my problem.
;remove all non numbers from a list:
(define (all-numbers x)
(cond ((null? x) null)
((integer? (car x)) (cons (car x) (all-numbers (cdr x))))
(else (all-numbers (cdr x)))))
;sum the elements of the list
(define (sumlist lst)
(cond ((null? lst) 0)
(( + (car lst) (sumlist (cdr lst))))))
; find the mean of the list
(define (a_mean lst)
(cond ((null? lst) 0)
((/ (sumlist lst) (length lst)))))
(a_mean '(1 2 3))
;find the mean of a mixed list
(define (m_mean lst)
(cond ((null? lst) 0)
((/ (sumlist ((all-numbers lst)) (length (all-numbers lst)))))))
(m_mean '('a 1 'b 2 'c 3))
I get an error in the above code for m_mean. Please help! Thanks.
The answer by Óscar López should fix your problems.
I will now provide a more concise way of solving the same problem:
(define (m-mean lst)
(define all-numbers (filter number? lst)) ; Filter out all the non-numbers.
(if (null? all-numbers)
0 ; The mean is 0 if there are no numbers.
(/ (apply + all-numbers) (length all-numbers)))) ; Calculate mean.
This way, you do not have to explicitly define the all-numbers and sumlist functions.
For starters, some of your cond expressions are missing the else keyword in the final condition - this is mandatory, as you did in all-numbers. Also, in m_mean there are a couple of incorrect brackets; this should fix the errors:
(define (m_mean lst)
(cond ((null? lst) 0)
(else (/ (sumlist (all-numbers lst))
(length (all-numbers lst))))))
Now it works as expected:
(m_mean '(a 1 b 2 c 3))
=> 2

Terminate program early and return list

I have a recursive code and need to terminate it when condition is fullfilled. I am capable of display the list when the condition, but then there are another calls on stack that I don't need to process that doesn't let me to return the list.
A variation of Sylwester's solution:
(define (example n)
(call-with-current-continuation
(lambda (return)
(let loop ([n 0])
(if (= n 5) ; done
(return 'the-result)
(loop (+ n 1)))))))
(example 10)
Using the continuation in this way allows one to use an escape continuation instead of a full continuation with call/ec (if your implementation has escape continuations).
The best way to do it is by using an accumulator. Aborting is then just not recursing.
(define (copy-unless-contains-5 lst)
(define (helper lst acc)
(cond
((null? lst) (reverse acc))
((equal? (car lst) 5) #f)
(else (helper (cdr lst) (cons (car lst) acc)))))
(helper lst '()))
If you are recursing with a continuation and that is the optimum way of doing it, then call-with-current-continuation can give you a way to abort waiting continuations and choose what to return.
(define (copy-unless-contains-5 lst)
(call-with-current-continuation
(lambda (abort)
(define (helper lst)
(cond
((null? lst) '())
((equal? (car lst) 5) (abort #f))
(else (cons (car lst) (helper (cdr lst))))))
(helper lst))))
Needless to say this last version is overly complicated. Both work the same:
(copy-unless-contains-5 '(1 2 3 4)) ; ==> (1 2 3 4)
(copy-unless-contains-5 '(1 2 5 3 4)) ; ==> #f

Sum of all numbers in a list at the top level

I'm new to Scheme and I've spent about a week on this.
Write a Lisp function sumlist which takes a list and returns the sum of all the numbers in the list, at the top level. Thus,
(sumlist '(1 2 (3) (4 a) nil b 5)) should return 1+2+5=8. The numbers 3 and 4 are not at the top level. Use number? to check if a thing is a number."
This is what I have so far. It can recognize whether something is a number or not, but I can't get it to only add up the numbers on the top level.
(define (sumlist lst)
(cond ((null? lst) 0)
((number? lst) lst)
((list? lst)
(+ (sumlist (car lst)) (sumlist (cdr lst))))
(#t 0)))
; no values returned
> (sumlist '(1 2 (3) (4 a) nil b 5))
15
Any help is appreciated.
EDIT: Both Jedi's and Daniel's answers work. Thank you both very much.
I think it can be a bit simpler:
(define (sumlist lst)
(cond
((null? lst) 0)
((number? (car lst)) (+ (car lst) (sumlist (cdr lst))))
(else (sumlist (cdr lst)))))
Since you only care if an element is a number or not, you only have 3 cases.
(define (sumlist lst)
(cond ((null? lst) 0) ;; list is empty, we're done ;;
((number? (car lst)) (+ (car lst) (sumlist (cdr lst)))) ;; the first item is a number, so we add it to the rest
(else (sumlist (cdr lst))) ;; the first item was not a number, we just check the rest of the list
))

How to define Sets in scheme

I'm having trouble using my member? function. I need to recurse on my set? function until the last element in my list 'lst' is reached. I believe I have the navigation down correctly, but maybe my inputs syntax is wrong. I know there are three cases:
1) What happens if the list is empty? that means that there aren't any duplicates in it
2) What happens if the current element of the list exists somewhere in the rest of the list? then it means that there's a duplicate in the list (hint: the member procedure might be useful)
3) If none of the above are true, continue with the next element.
Here is my code.
(define (member? e lst)
(if (null? lst) #f
(if (equal? e (car lst)) #t
(member? e (cdr lst)))))
(define (set? lst)
(if (null? lst) #t ;Case1
(if (member? (car lst) lst) #f ;Case2
(set? (cdr lst))))) ;Case3
;Example tests for the set? function
(set? '(x y z))
(set? '(a 1 b 2 c 3))
(set? '())
(set? '(6 2 2))
(set? '(x y z x))
There's a small mistake with your code, look how it gets fixed:
(define (set? lst)
(if (null? lst)
#t
(if (member? (car lst) (cdr lst)) ; in here
#f
(set? (cdr lst)))))
In particular, notice what this line is doing:
(member? (car lst) lst)
That won't work: the test is checking whether the first element in lst is a member of lst - and that'll always be true. The solution is simple, just check to see if the current element is in the rest of the list, if it's there, then we know that we've found a duplicate:
(member? (car lst) (cdr lst))
And by the way, the above code would look much nicer using cond, which is great when you have nested ifs:
(define (set? lst)
(cond ((null? lst) #t)
((member? (car lst) (cdr lst)) #f)
(else (set? (cdr lst)))))

Resources