How to calculate number of missing values summed over time dimension in a netcdf file in bash - bash

I have a netcdf file with data as a function of lon,lat and time. I would like to calculate the total number of missing entries in each grid cell summed over the time dimension, preferably with CDO or NCO so I do not need to invoke R, python etc.
I know how to get the total number of missing values
ncap2 -s "nmiss=var.number_miss()" in.nc out.nc
as I answered to this related question:
count number of missing values in netcdf file - R
and CDO can tell me the total summed over space with
cdo info in.nc
but I can't work out how to sum over time. Is there a way for example of specifying the dimension to sum over with number_miss in ncap2?

We added the missing() function to ncap2 to solve this problem elegantly as of NCO 4.6.7 (May, 2017). To count missing values through time:
ncap2 -s 'mss_val=three_dmn_var_dbl.missing().ttl($time)' in.nc out.nc
Here ncap2 chains two methods together, missing(), followed by a total over the time dimension. The 2D variable mss_val is in out.nc. The response below does the same but averages over space and reports through time (because I misinterpreted the OP).
Old/obsolete answer:
There are two ways to do this with NCO/ncap2, though neither is as elegant as I would like. Either call assemble the answer one record at a time by calling num_miss() with one record at a time, or (my preference) use the boolean comparison function followed by the total operator along the axes of choice:
zender#aerosol:~$ ncap2 -O -s 'tmp=three_dmn_var_dbl;mss_val=tmp.get_miss();tmp.delete_miss();tmp_bool=(tmp==mss_val);tmp_bool_ttl=tmp_bool.ttl($lon,$lat);print(tmp_bool_ttl);' ~/nco/data/in.nc ~/foo.nc
tmp_bool_ttl[0]=0
tmp_bool_ttl[1]=0
tmp_bool_ttl[2]=0
tmp_bool_ttl[3]=8
tmp_bool_ttl[4]=0
tmp_bool_ttl[5]=0
tmp_bool_ttl[6]=0
tmp_bool_ttl[7]=1
tmp_bool_ttl[8]=0
tmp_bool_ttl[9]=2
or
zender#aerosol:~$ ncap2 -O -s 'for(rec=0;rec<time.size();rec++){nmiss=three_dmn_var_int(rec,:,:).number_miss();print(nmiss);}' ~/nco/data/in.nc ~/foo.nc
nmiss = 0
nmiss = 0
nmiss = 8
nmiss = 0
nmiss = 0
nmiss = 1
nmiss = 0
nmiss = 2
nmiss = 1
nmiss = 2

Even though you are asking for another solution, I would like to show you that it takes only one very short line to find the answer with the help of Python. The variable m_data has exactly the same shape as a variable with missing values read using the netCDF4 package. With the execution of only one np.sum command with the correct axis specified, you have your answer.
import numpy as np
import matplotlib.pyplot as plt
import netCDF4 as nc4
# Generate random data for this experiment.
data = np.random.rand(365, 64, 128)
# Masked data, this is how the data is read from NetCDF by the netCDF4 package.
# For this example, I mask all values less than 0.1.
m_data = np.ma.masked_array(data, mask=data<0.1)
# It only takes one operation to find the answer.
n_values_missing = np.sum(m_data.mask, axis=0)
# Just a plot of the result.
plt.figure()
plt.pcolormesh(n_values_missing)
plt.colorbar()
plt.xlabel('lon')
plt.ylabel('lat')
plt.show()
# Save a netCDF file of the results.
f = nc4.Dataset('test.nc', 'w', format='NETCDF4')
f.createDimension('lon', 128)
f.createDimension('lat', 64 )
n_values_missing_nc = f.createVariable('n_values_missing', 'i4', ('lat', 'lon'))
n_values_missing_nc[:,:] = n_values_missing[:,:]
f.close()

Related

auto_arima() m value, and seasonal decomposition period parameter

I am working on arima modeling. The data has hourly granularity - taken from 1st May 2022 till 8th June 2022. I am trying to do forecasting for next 30 days i.e 720 hours. I am facing trouble & getting confused with the below doubts. If anybody could provide pointers then it will be great.
Tried plotting the raw data & found no trend, and seasonality
a) Checked with seasonal_decomposition() with a few period values with period=1 (correct with my understanding that season should be 0)
b) period = 12 (just random - but why it is showing some seasons?. Even if I pot without period for which default value is 7, it still shows season - why?)
Plotted this graph with seasonality value False as in the raw plot I do not see any seasons/trend & getting the below plot. How & what should be concluded???
Then I thought of capturing this season thing through resampling by plotting daily graph and getting further confused.
a) period - 7 (default for seasonal_decomposition), again I can see seasonality of 4 days when the raw plot do not show seasons.
The forecasting for this resampled (daily) data is below
I am extremely clueless now as to what to see. The more I am reading the more I am getting confused.
Below is the code that I am using.
df=pd.read_csv('~/Desktop/gru-scl/gru-scl-filtered.csv', index_col="time")
del df["Index"]
df.index=pd.to_datetime(df.index)
model = pm.auto_arima(df.bps, start_p=0, start_q=0,
test='adf', # use adftest to find optimal 'd'
max_p=3, max_q=3, # maximum p and q
m=24, # frequency of series
d=None, # let model determine 'd'
seasonal=False, # No Seasonality
start_P=0,
D=0,
trace=True,
error_action='ignore',
suppress_warnings=True,
stepwise=True)
f_steps=720
fc, confint = model.predict(n_periods=f_steps, return_conf_int=True)
fc_index = np.arange(len(df.bps), len(df.bps)+f_steps)
val=0
for f in fc:
val = val+f
mean = val/f_steps
print(mean)
# make series for plotting purpose
fc_series = pd.Series(fc, index=fc_index)
lower_series = pd.Series(confint[:, 0], index=fc_index)
upper_series = pd.Series(confint[:, 1], index=fc_index)
# Plot
plt.plot(df.bps, label="Actual values")
plt.plot(fc, color='darkgreen', label="Predicted values")
plt.fill_between(fc_index,
lower_series,
upper_series,
color='k', alpha=.15)
plt.legend(loc='upper left', fontsize=8)
plt.title('Forecast vs Actuals')
plt.xlabel("Hours since 1st May 2022")
plt.ylabel("Bps")
plt.show()

Trying to put together a teaching-example with pyhf

I'm trying to learn more about pyhf and my understanding of what the goals are might be limited. I would love to fit my HEP data outside of ROOT, but I could be imposing expectations on pyhf which are not what the authors intended for it's use.
I'd like to write myself a hello-world example, but I might just not know what I'm doing. My misunderstanding could also be gaps in my statistical knowledge.
With that preface, let me explain what I'm trying to explore.
I have some observed set of events for which I calculate some observable and make a binned histogram of that data. I hypothesize that there are two contributing physics processes, which I call signal and background. I generate some Monte Carlo samples for these processes and the theorized total number of events is close to, but not exactly what I observe.
I would like to:
Fit the data to this two process hypothesis
Get from the fit the optimal values for the number of events for each process
Get the uncertainties on these fitted values
If appropriate, calculate an upper limit on the number of signal events.
My starter code is below, where all I'm doing is an ML fit but I'm not sure where to go. I know it's not set up to do what I want, but I'm getting lost in the examples I find on RTD. I'm sure it's me, this is not a criticism of the documentation.
import pyhf
import numpy as np
import matplotlib.pyplot as plt
nbins = 15
# Generate a background and signal MC sample`
MC_signal_events = np.random.normal(5,1.0,200)
MC_background_events = 10*np.random.random(1000)
signal_data = np.histogram(MC_signal_events,bins=nbins)[0]
bkg_data = np.histogram(MC_background_events,bins=nbins)[0]
# Generate an observed dataset with a slightly different
# number of events
signal_events = np.random.normal(5,1.0,180)
background_events = 10*np.random.random(1050)
observed_events = np.array(signal_events.tolist() + background_events.tolist())
observed_sample = np.histogram(observed_events,bins=nbins)[0]
# Plot these samples, if you like
plt.figure(figsize=(12,4))
plt.subplot(1,3,1)
plt.hist(observed_events,bins=nbins,label='Observations')
plt.legend()
plt.subplot(1,3,2)
plt.hist(MC_signal_events,bins=nbins,label='MC signal')
plt.legend()
plt.subplot(1,3,3)
plt.hist(MC_background_events,bins=nbins,label='MC background')
plt.legend()
# Use a very naive estimate of the background
# uncertainties
bkg_uncerts = np.sqrt(bkg_data)
print("Defining the PDF.......")
pdf = pyhf.simplemodels.hepdata_like(signal_data=signal_data.tolist(), \
bkg_data=bkg_data.tolist(), \
bkg_uncerts=bkg_uncerts.tolist())
print("Fit.......")
data = pyhf.tensorlib.astensor(observed_sample.tolist() + pdf.config.auxdata)
bestfit_pars, twice_nll = pyhf.infer.mle.fit(data, pdf, return_fitted_val=True)
print(bestfit_pars)
print(twice_nll)
plt.show()
Note: this answer is based on pyhf v0.5.2.
Alright, so it looks like you've managed to figure most of the big pieces for sure. However, there's two different ways to do this depending on how you prefer to set things up. In both cases, I assume you want an unconstrained fit and you want to...
fit your signal+background model to observed data
fit your background model to observed data
First, let's discuss uncertainties briefly. At the moment, we default to numpy for the tensor background and scipy for the optimizer. See documentation:
numpy backend
scipy optimizer
However, one unfortunate drawback right now with the scipy optimizer is that it cannot return the uncertainties. What you need to do anywhere in your code before the fit (although we generally recommend as early as possible) is to use the minuit optimizer instead:
pyhf.set_backend('numpy', 'minuit')
This will get you the nice features of being able to get the correlation matrix, the uncertainties on the fitted parameters, and the hessian -- amongst other things. We're working to make this consistent for scipy as well, but this is not ready right now.
All optimizations go through our optimizer API which you can currently view through the mixin here in our documentation. Specifically, the signature is
minimize(
objective,
data,
pdf,
init_pars,
par_bounds,
fixed_vals=None,
return_fitted_val=False,
return_result_obj=False,
do_grad=None,
do_stitch=False,
**kwargs)
There are a lot of options here. Let's just focus on the fact that one of the keyword arguments we can pass through is return_uncertainties which will change the bestfit parameters by adding a column for the fitted parameter uncertainty which you want.
1. Signal+Background
In this case, we want to just use the default model
result, twice_nll = pyhf.infer.mle.fit(
data,
pdf,
return_uncertainties=True,
return_fitted_val=True
)
bestfit_pars, errors = result.T
2. Background-Only
In this case, we need to turn off the signal. The way we do this is by setting the parameter of interest (POI) fixed to 0.0. Then we can get the fitted parameters for the background-only model in a similar way, but using fixed_poi_fit instead of an unconstrained fit:
result, twice_nll = pyhf.infer.mle.fixed_poi_fit(
0.0,
data,
pdf,
return_uncertainties=True,
return_fitted_val=True
)
bestfit_pars, errors = result.T
Note that this is quite simply a quick way of doing the following unconstrained fit
bkg_params = pdf.config.suggested_init()
fixed_params = pdf.config.suggested_fixed()
bkg_params[pdf.config.poi_index] = 0.0
fixed_params[pdf.config.poi_index] = True
result, twice_nll = pyhf.infer.mle.fit(
data,
pdf,
init_pars=bkg_params,
fixed_params=fixed_params,
return_uncertainties=True,
return_fitted_val=True
)
bestfit_pars, errors = result.T
Hopefully that clarifies things up more!
Giordon's solution should answer all of your question, but I thought I'd also write out the code to basically address everything we can.
I also take the liberty of changing some of your values a bit so that the signal isn't so strong that the observed CLs value isn't far off to the right of the Brazil band (the results aren't wrong obviously, but it probably makes more sense to be talking about using the discovery test statistic at that point then setting limits. :))
Environment
For this example I'm going to setup a clean Python 3 virtual environment and then install the dependencies (here we're going to be using pyhf v0.5.2)
$ python3 -m venv "${HOME}/.venvs/question"
$ . "${HOME}/.venvs/question/bin/activate"
(question) $ cat requirements.txt
pyhf[minuit,contrib]~=0.5.2
black
(question) $ python -m pip install -r requirements.txt
Code
While we can't easily get the best fit value for both the number of signal events as well as the background events we definitely can do inference to get the best fit value for the signal strength.
The following chunk of code (which is long only because of the visualization) should address all of the points of your question.
# answer.py
import numpy as np
import pyhf
import matplotlib.pyplot as plt
import pyhf.contrib.viz.brazil
# Goals:
# - Fit the model to the observed data
# - Infer the best fit signal strength given the model
# - Get the uncertainties on the best fit signal strength
# - Calculate an 95% CL upper limit on the signal strength
def plot_hist(ax, bins, data, bottom=0, color=None, label=None):
bin_width = bins[1] - bins[0]
bin_leftedges = bins[:-1]
bin_centers = [edge + bin_width / 2.0 for edge in bin_leftedges]
ax.bar(
bin_centers, data, bin_width, bottom=bottom, alpha=0.5, color=color, label=label
)
def plot_data(ax, bins, data, label="Data"):
bin_width = bins[1] - bins[0]
bin_leftedges = bins[:-1]
bin_centers = [edge + bin_width / 2.0 for edge in bin_leftedges]
ax.scatter(bin_centers, data, color="black", label=label)
def invert_interval(test_mus, hypo_tests, test_size=0.05):
# This will be taken care of in v0.5.3
cls_obs = np.array([test[0] for test in hypo_tests]).flatten()
cls_exp = [
np.array([test[1][idx] for test in hypo_tests]).flatten() for idx in range(5)
]
crossing_test_stats = {"exp": [], "obs": None}
for cls_exp_sigma in cls_exp:
crossing_test_stats["exp"].append(
np.interp(
test_size, list(reversed(cls_exp_sigma)), list(reversed(test_mus))
)
)
crossing_test_stats["obs"] = np.interp(
test_size, list(reversed(cls_obs)), list(reversed(test_mus))
)
return crossing_test_stats
def main():
np.random.seed(0)
pyhf.set_backend("numpy", "minuit")
observable_range = [0.0, 10.0]
bin_width = 0.5
_bins = np.arange(observable_range[0], observable_range[1] + bin_width, bin_width)
n_bkg = 2000
n_signal = int(np.sqrt(n_bkg))
# Generate simulation
bkg_simulation = 10 * np.random.random(n_bkg)
signal_simulation = np.random.normal(5, 1.0, n_signal)
bkg_sample, _ = np.histogram(bkg_simulation, bins=_bins)
signal_sample, _ = np.histogram(signal_simulation, bins=_bins)
# Generate observations
signal_events = np.random.normal(5, 1.0, int(n_signal * 0.8))
bkg_events = 10 * np.random.random(int(n_bkg + np.sqrt(n_bkg)))
observed_events = np.array(signal_events.tolist() + bkg_events.tolist())
observed_sample, _ = np.histogram(observed_events, bins=_bins)
# Visualize the simulation and observations
fig, ax = plt.subplots()
fig.set_size_inches(7, 5)
plot_hist(ax, _bins, bkg_sample, label="Background")
plot_hist(ax, _bins, signal_sample, bottom=bkg_sample, label="Signal")
plot_data(ax, _bins, observed_sample)
ax.legend(loc="best")
ax.set_ylim(top=np.max(observed_sample) * 1.4)
ax.set_xlabel("Observable")
ax.set_ylabel("Count")
fig.savefig("components.png")
# Build the model
bkg_uncerts = np.sqrt(bkg_sample)
model = pyhf.simplemodels.hepdata_like(
signal_data=signal_sample.tolist(),
bkg_data=bkg_sample.tolist(),
bkg_uncerts=bkg_uncerts.tolist(),
)
data = pyhf.tensorlib.astensor(observed_sample.tolist() + model.config.auxdata)
# Perform inference
fit_result = pyhf.infer.mle.fit(data, model, return_uncertainties=True)
bestfit_pars, par_uncerts = fit_result.T
print(
f"best fit parameters:\
\n * signal strength: {bestfit_pars[0]} +/- {par_uncerts[0]}\
\n * nuisance parameters: {bestfit_pars[1:]}\
\n * nuisance parameter uncertainties: {par_uncerts[1:]}"
)
# Perform hypothesis test scan
_start = 0.0
_stop = 5
_step = 0.1
poi_tests = np.arange(_start, _stop + _step, _step)
print("\nPerforming hypothesis tests\n")
hypo_tests = [
pyhf.infer.hypotest(
mu_test,
data,
model,
return_expected_set=True,
return_test_statistics=True,
qtilde=True,
)
for mu_test in poi_tests
]
# Upper limits on signal strength
results = invert_interval(poi_tests, hypo_tests)
print(f"Observed Limit on µ: {results['obs']:.2f}")
print("-----")
for idx, n_sigma in enumerate(np.arange(-2, 3)):
print(
"Expected {}Limit on µ: {:.3f}".format(
" " if n_sigma == 0 else "({} σ) ".format(n_sigma),
results["exp"][idx],
)
)
# Visualize the "Brazil band"
fig, ax = plt.subplots()
fig.set_size_inches(7, 5)
ax.set_title("Hypothesis Tests")
ax.set_ylabel(r"$\mathrm{CL}_{s}$")
ax.set_xlabel(r"$\mu$")
pyhf.contrib.viz.brazil.plot_results(ax, poi_tests, hypo_tests)
fig.savefig("brazil_band.png")
if __name__ == "__main__":
main()
which when run gives
(question) $ python answer.py
best fit parameters:
* signal strength: 1.5884737977889158 +/- 0.7803435235862329
* nuisance parameters: [0.99020988 1.06040191 0.90488207 1.03531383 1.09093327 1.00942088
1.07789316 1.01125627 1.06202964 0.95780043 0.94990993 1.04893286
1.0560711 0.9758487 0.93692481 1.04683181 1.05785515 0.92381263
0.93812855 0.96751869]
* nuisance parameter uncertainties: [0.06966439 0.07632218 0.0611428 0.07230328 0.07872258 0.06899675
0.07472849 0.07403246 0.07613661 0.08606657 0.08002775 0.08655314
0.07564512 0.07308117 0.06743479 0.07383134 0.07460864 0.06632003
0.06683251 0.06270965]
Performing hypothesis tests
/home/stackoverflow/.venvs/question/lib/python3.7/site-packages/pyhf/infer/calculators.py:229: RuntimeWarning: invalid value encountered in double_scalars
teststat = (qmu - qmu_A) / (2 * self.sqrtqmuA_v)
Observed Limit on µ: 2.89
-----
Expected (-2 σ) Limit on µ: 0.829
Expected (-1 σ) Limit on µ: 1.110
Expected Limit on µ: 1.542
Expected (1 σ) Limit on µ: 2.147
Expected (2 σ) Limit on µ: 2.882
Let us know if you have any further questions!

Gnuplot: data normalization of multiple dataset in one file

Image one file with 250 datasets with varying length (2000 +-500) lines and 11 columns. Here a comprehensive small example:
file.sum:
0.00000e+00 9.51287e-09
1.15418e-04 8.51287e-09
4.16445e-04 7.51287e-09
8.53721e-04 6.51287e-09
1.42697e-03 5.51287e-09
1.70302e-03 4.51287e-09
2.27189e-03 3.51287e-09
2.54732e-03 1.51287e-09
3.11304e-03 0.51287e-09
0.00000e+00 13.28378e-09
1.15418e-04 12.28378e-09
3.19663e-04 11.28378e-09
5.78178e-04 10.28378e-09
8.67479e-04 09.28378e-09
1.20883e-03 08.28378e-09
1.58817e-03 07.28378e-09
1.75840e-03 06.28378e-09
2.21069e-03 05.28378e-09
I wanted to display every 10 datasets and normalize it to the first element. The first value to normalize is 9.51287e-09 and the second would be 13.28378e-09. Of course with this massive dataset, I can not do it manually or even split the file.
So far I got every ten'th dataset but with the normalization, I do have my problems.
#!/usr/bin/gnuplot
reset
set xrange [0:0.1]
plot for [val=1:250:10] 'file.sum' i val u 1:11 w l
Working of this example:
plot.gp:
#!/usr/bin/gnuplot
reset
set xrange [0:0.01]
plot for [val=1:2:1] 'file.sum' i val u 1:2 w l
Some hints I found in:
Gnuplot: data normalization
I guess you can write a awk script to handle this, but there may be a more gnuplot friendlier way. Any suggestions are appreciated.
Assuming you have one file with data sections each separated by two or more empty lines you can use the script below.
In gnuplot console check help pseudocolumns. column(-2) tells you in which block you are and column(0) tells you wich line of this block you are (counting starts from 0).
Define a function Normalized(n) which does the following: if you are in the first line of a subblock put the value of column(n) into the variable y0. All values of this block will now be divided by y0. Also check help ternary.
In case you want a legend for the blocks you can plot a dummy plot, actually plotting NaN (i.e. nothing) but place an entry for the key.
Code:
### normalize each block by its first value
reset session
set colorsequence classic
$Data <<EOD
0.00000e+00 9.51287e-09
1.15418e-04 8.51287e-09
4.16445e-04 7.51287e-09
8.53721e-04 6.51287e-09
1.42697e-03 5.51287e-09
1.70302e-03 4.51287e-09
2.27189e-03 3.51287e-09
2.54732e-03 1.51287e-09
3.11304e-03 0.51287e-09
0.00000e+00 13.28378e-09
1.15418e-04 12.28378e-09
3.19663e-04 11.28378e-09
5.78178e-04 10.28378e-09
8.67479e-04 09.28378e-09
1.20883e-03 08.28378e-09
1.58817e-03 07.28378e-09
1.75840e-03 06.28378e-09
2.21069e-03 05.28378e-09
EOD
Normalized(n) = column(n)/(column(0)==0 ? y0=column(n) : y0)
plot $Data u 1:(Normalized(2)):(myBlocks=column(-2)+1) w lp pt 7 lc var notitle, \
for [i=0:myBlocks-1] '' u 1:(NaN) w lp pt 7 lc i+1 ti sprintf("Block %d",i)
### end of code
Result:

Robust Standard Errors in lm() using stargazer()

I have read a lot about the pain of replicate the easy robust option from STATA to R to use robust standard errors. I replicated following approaches: StackExchange and Economic Theory Blog. They work but the problem I face is, if I want to print my results using the stargazer function (this prints the .tex code for Latex files).
Here is the illustration to my problem:
reg1 <-lm(rev~id + source + listed + country , data=data2_rev)
stargazer(reg1)
This prints the R output as .tex code (non-robust SE) If i want to use robust SE, i can do it with the sandwich package as follow:
vcov <- vcovHC(reg1, "HC1")
if I now use stargazer(vcov) only the output of the vcovHC function is printed and not the regression output itself.
With the package lmtest() it is possible to print at least the estimator, but not the observations, R2, adj. R2, Residual, Residual St.Error and the F-Statistics.
lmtest::coeftest(reg1, vcov. = sandwich::vcovHC(reg1, type = 'HC1'))
This gives the following output:
t test of coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) -2.54923 6.85521 -0.3719 0.710611
id 0.39634 0.12376 3.2026 0.001722 **
source 1.48164 4.20183 0.3526 0.724960
country -4.00398 4.00256 -1.0004 0.319041
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
How can I add or get an output with the following parameters as well?
Residual standard error: 17.43 on 127 degrees of freedom
Multiple R-squared: 0.09676, Adjusted R-squared: 0.07543
F-statistic: 4.535 on 3 and 127 DF, p-value: 0.00469
Did anybody face the same problem and can help me out?
How can I use robust standard errors in the lm function and apply the stargazer function?
You already calculated robust standard errors, and there's an easy way to include it in the stargazeroutput:
library("sandwich")
library("plm")
library("stargazer")
data("Produc", package = "plm")
# Regression
model <- plm(log(gsp) ~ log(pcap) + log(pc) + log(emp) + unemp,
data = Produc,
index = c("state","year"),
method="pooling")
# Adjust standard errors
cov1 <- vcovHC(model, type = "HC1")
robust_se <- sqrt(diag(cov1))
# Stargazer output (with and without RSE)
stargazer(model, model, type = "text",
se = list(NULL, robust_se))
Solution found here: https://www.jakeruss.com/cheatsheets/stargazer/#robust-standard-errors-replicating-statas-robust-option
Update I'm not so much into F-Tests. People are discussing those issues, e.g. https://stats.stackexchange.com/questions/93787/f-test-formula-under-robust-standard-error
When you follow http://www3.grips.ac.jp/~yamanota/Lecture_Note_9_Heteroskedasticity
"A heteroskedasticity-robust t statistic can be obtained by dividing an OSL estimator by its robust standard error (for zero null hypotheses). The usual F-statistic, however, is invalid. Instead, we need to use the heteroskedasticity-robust Wald statistic."
and use a Wald statistic here?
This is a fairly simple solution using coeftest:
reg1 <-lm(rev~id + source + listed + country , data=data2_rev)
cl_robust <- coeftest(reg1, vcov = vcovCL, type = "HC1", cluster = ~
country)
se_robust <- cl_robust[, 2]
stargazer(reg1, reg1, cl_robust, se = list(NULL, se_robust, NULL))
Note that I only included cl_robust in the output as a verification that the results are identical.

Not to print header information when using summary(mcmc) in coda package

I have wrote a function that extracts already-thinned and post-warmup MCMC samples after some processing, and the output is a mcmc object. However when I run the summary() function, it naturally does not recognize that the output is already processed, hence display incorrect information in the header, i.e. Iterations etc.
My question is, is there a way to not display the header information when I call summary(mcmc object)?
> summary(output)
Iterations = 1:10000
Thinning interval = 1
Number of chains = 1
Sample size per chain = 10000
1. Empirical mean and standard deviation for each variable,
plus standard error of the mean:
Mean SD Naive SE Time-series SE
beta 1.052e+00 3.189e-02 8.914e-04 9.185e-04
df 3.849e+00 2.916e-01 8.150e-03 1.516e-02
sigma 1.056e-02 2.504e-04 6.998e-06 1.000e-05
tau 8.990e+03 4.273e+02 1.194e+01 1.710e+01
2. Quantiles for each variable:
2.5% 25% 50% 75% 97.5%
beta 9.891e-01 1.032e+00 1.052e+00 1.073e+00 1.113e+00
df 3.304e+00 3.650e+00 3.836e+00 4.042e+00 4.450e+00
sigma 1.004e-02 1.039e-02 1.055e-02 1.072e-02 1.105e-02
tau 8.197e+03 8.700e+03 8.977e+03 9.263e+03 9.917e+03

Resources