Building adjacency graph out of chessboard (for dijkstra) - algorithm

I ran into a problem where I wanted to add a little feature to my homework and it turned out to be overwhelming for me (read bold sentences for question without context).
My program has a list of about 35 items in it, containing information about the map I'm supposed to work with. It can have the following elements:
"Wall" with its coordinates (X, Y), in the dijkstra it is supposed to have weight 100.
"Tree" with cords (X, Y), weight 3
I have a 10x10 map laid out like a chessboard, which means 100 tiles, and 35 items. "Nothing" in the list means weight 1 in dijkstra (it means a normal route)
To make the dijkstra work and be able to find a shortest path between two tiles, I have to build an adjacency graph. My problem here is, how to define tiles "around" the current tile, if all I have is that list?
Only adjacent tiles in the shape of "+" have edges in the graph between them, but I have to run through the list every time to check if there is something on it?
Any lead on the problem would be greatly appreciated, also if you can point me to a source with a code sample, that could also do. I only see really messy code with a lot of "if-elseif-elseif..." to solve that.
Thank you for your time!
Edit: I ended up using #kraskevich 's suggested way, and it works excellent, but all the answers and suggestions were really useful, thank you very much everyone!

You don't really need to build a graph. Just create a 10x10 table and put the weight of the corresponding items into it:
board = 10x10 array filled with 1
for item in list:
if item is a tree:
board[item.row][item.column] = 3
else if item is a wall:
board[item.row][item.column] = 100
After that, you can treat pairs (row, col) of coordinates as vertices and update the distance for 4 adjacent cells when you process a tile. That's it. Sure, you can also create a graph with 100 vertices and add edges explicitly from a tile to all 4 adjacent cells (the weight is the weight of the end of the edge tile) and use a standard implementation.
The most convenient way to iterate over adjacent cells is as follows:
delta_rows = [-1, 1, 0, 0]
delta_cols = [0, 0, -1, 1]
...
for direction = 0 .. 3
new_row = row + delta_rows[direction]
new_col = col + delta_cols[direction]
if is_valid(new_row, new_col)
// do something

It should be straightforward to implement Dijkstra based on this generic graph interface:
interface Graph<T> {
Iterable<T> adjacentNodes(T node);
double getDistance(T node, T adjacent);
}
So now all we need to do is to fill it for your case:
class Field {
final int x;
final int y;
int value = 1;
Field (int x, int y) {
this.x = x;
this.y = y;
}
}
class ChessboardGraph implements Graph<Field> {
Field[][] board = new Filed[10][10];
ChessboardGraph(List<Entry> list) {
for (int x = 0; x < 10; x++) {
for (int y = 0; y < 10; y++) {
board[x][y] = new Field(x, y);
}
}
for (Entry e: list) {
board[e.x][e.y].value = e.value == TREE ? 3 : 100;
}
}
Iterable<Field> adjacentNodes(Field node) {
ArrayList result = new ArrayList<>();
int x = node.x;
int y = node.y;
if (x > 0) {
if (y > 0) {
result.add(board[x - 1][y - 1]);
}
if (y < 9) {
result.add(board[x - 1][y + 1]);
}
}
if (x < 9) {
if (y > 0) {
result.add(board[x + 1][y - 1]);
}
if (y < 9) {
result.add(board[x + 1][y + 1]);
}
}
}
double getDistance(Field node, Field adjacent) {
assert Math.abs(node.x - adjacent.x) + Math.abs(node.y - adjacent.y) == 1;
return board[adjacent.x][adjacent.y];
}
}

Related

Does Knight tour Problem solve depend on sequence of knight move?

Hello I am currently reading at the knight tour problem at Geeksforgeeks https://www.geeksforgeeks.org/the-knights-tour-problem-backtracking-1
I am testing the code bymyself and when I change the sequence of
knight moves at the code
let xMove = [ 2, 1, -1, -2, -2, -1, 1, 2 ];
let yMove = [ 1, 2, 2, 1, -1, -2, -2, -1 ];
to this
let xMove = [1,1,-1,-1,2,2,-2,-2]
let yMove = [2,-2,-2,2,-1,1,-1,1]
and the problem seems doesn't reach to solution. Does this probem relies on the sequence of the knight moves or what is the cause of it? as to my understanding, the recursion will search all possible moves so it should not be difference right?
...and the problem seems doesn't reach to solution
This is exactly the problem that is also mentioned on Wikipedia:
A brute-force search for a knight's tour is impractical on all but the smallest boards. For example, there are approximately 4×1051 possible move sequences on an 8×8 board, and it is well beyond the capacity of modern computers (or networks of computers) to perform operations on such a large set.
The order of moves in the implementation you quote from GfG, is a lucky order. With the order that you have tested with, the amount of backtracking is enormous. One can image that taking the right moves in the very beginning of the path is crucial. If one of the early moves is wrong, there will be a tremendous amount of backtracking taking place in the deeper nodes of the recursion tree.
There is a heuristic that greatly reduces the number of moves to consider, most of the time only 1: this is Warnsdorff's rule:
The knight is moved so that it always proceeds to the square from which the knight will have the fewest onward moves. When calculating the number of onward moves for each candidate square, we do not count moves that revisit any square already visited. It is possible to have two or more choices for which the number of onward moves is equal; there are various methods for breaking such ties,...
In the case of an 8×8 board there is no practical need for breaking ties: the backtracking will resolve wrong choices. But as now the search tree is very narrow, this does not lead to a lot of backtracking, even if we're unlucky.
Here is an implementation in a runnable JavaScript snippet. It intentionally shuffles the list of moves randomly, and prints "backtracking" whenever it needs to backtrack, so that you can experiment on different runs. This will show that this always finds the solution with hardly any backtracking on average:
class Solver {
constructor(size) {
this.size = size;
this.grid = Array.from({length: size}, () => Array(size).fill(-1));
}
toString() {
return this.grid.map(row =>
row.map(i => (i + "").padStart(2, "0")).join(" ")
).join("\n");
}
liberty(x, y) {
// Count the number of legal moves
return [...this.getMoveList(x, y)].length;
}
*getMoveList(x, y) {
// Get list of legal moves, in random order
let moves = [[1, 2], [1, -2], [-1, -2], [-1, 2],
[2, -1], [2, 1], [-2, -1], [-2, 1]];
// Shuffle moves randomly
for (var i = moves.length - 1; i > 0; i--) {
var j = Math.floor(Math.random() * (i + 1));
[moves[i], moves[j]] = [moves[j], moves[i]]; // Swap
}
// Yield the valid positions that can be reached
for (let [moveX, moveY] of moves) {
if (this.grid[x + moveX]?.[y + moveY] == -1) {
yield [x + moveX, y + moveY];
}
}
}
getBestMoveList(x, y) {
// Get list of move(s) that have the least possible follow-up moves
let minLiberty = 100000;
const bestMoves = [];
// Consider every legal move:
for (let [nextX, nextY] of this.getMoveList(x, y)) {
let liberty = this.liberty(nextX, nextY);
if (liberty < minLiberty) {
minLiberty = liberty;
bestMoves.length = 0; // Empty the array
}
if (liberty == minLiberty) bestMoves.push([nextX, nextY]);
}
if (Math.random() >= 0.5) bestMoves.reverse();
return bestMoves;
}
solve(x, y, moveCount=0) {
this.grid[x][y] = moveCount++;
if (moveCount == this.size * this.size) return true;
// Try all of the BEST next moves from the current coordinate x, y
for (let [nextX, nextY] of this.getBestMoveList(x, y)) {
if (this.solve(nextX, nextY, moveCount)) return true;
}
console.log("backtrack");
this.grid[x][y] = -1;
return false;
}
}
// Driver code
const solver = new Solver(8);
let success = solver.solve(0, 0);
console.log(success ? solver.toString() : "Solution does not exist");

Sort polygon's points for drawing

I have a matrix (0 means nothing, 1 means terrain) that represents a level in my game. The matrix corresponds to a grid that my screen is broken up into, and indicates where my terrain goes.
My terrain is actually composed of 4 points in the corners of each block within the grid. When you have multiple blocks that are connected, I use a merge-cell algorithm that removes the duplicate points and any interior points. The result is that I end up with a list of points representing only the outer edges of the polygon.
To draw this polygon, I need the points to be in some sort of order (either clockwise or counter-clockwise) such that each point is followed by it's neighboring point. Obviously the first and last points need to be neighbors. Since this is all in a grid, I know the exact distance between neighboring points.
The problem is that I am having trouble coming up with an algorithm that allows me to "walk" around the edge of the polygon while putting the points in order. I believe there should be a way to utilize the fact that I have the matrix representing the geometry, meaning there is only 1 possible way to draw the polygon (even if it is concave).
I have tried several approaches using greedy-type algorithms, but can't seem to find a way to know, in every case, which direction I want to travel in. Given that any particular point can have up to 3 neighbors (the fourth isn't included because it is the "starting" point, meaning that I have already sorted it) I need a way of knowing which way to move.
Update
Another approach that I have been trying is to sort the points by their X (with tiebreaker of Y) which gives me the topmost/leftmost edge. It also guarantees that I am starting on an outer edge. However, I'm still struggling to find an algorithm that guarantees that I stay on the outside without crossing over.
Here is an example matrix:
0 0 0 0 0 0 0 0 0 0
0 0 0 1 1 1 0 0 0 0
0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 1 1 1 0 0
Which corresponds to this (black dots represent my points):
First of all please consider that for a general matrix the output can be composed of more than one closed loop; for example boundaries of the matrix
form three distinct loops, one of them placed inside another.
To extract these loops the first step is to build a map of all "walls": you have a vertical wall each time the content of one cell is different from the next cell on the same row; you have instead an horizontal wall when the content is different from the same cell in the next row.
data = [[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ],
[ 0, 1, 1, 1, 1, 0, 0, 0, 0, 0 ],
[ 0, 1, 0, 0, 1, 0, 1, 1, 0, 0 ],
[ 0, 1, 0, 0, 1, 0, 1, 1, 1, 0 ],
[ 0, 1, 1, 1, 1, 0, 0, 1, 1, 0 ],
[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ]]
rows = len(data)
cols = len(data[0])
walls = [[2*(data[r][c] != data[r][c+1]) + (data[r][c] != data[r+1][c])
for c in range(cols-1)]
for r in range(rows-1)]
In the example above I'm using two bits: 0x01 to mark horizontal walls and 0x02 to mark vertical walls. For a given (r, c) cell the walls are the right and bottom wall of the cell.
For simplicity I'm also assuming that the interesting areas are not touching the limits of the matrix; this can be solved by either adding extra rows and cols of zeros or by wrapping matrix access in a function that returns 0 for out-of-matrix virtual elements.
To build the list of boundaries you need to simply start from any point on a wall and move following walls, removing the walls from the map as you process them. When you cannot move any more a cycle has been completed (you're guaranteed to complete cycles because in a graph built in this way from a matrix of inside/outside flags the degree is guaranteed to be even in all vertices).
Filling all those cycles simultaneously using odd-even filling rules is also guaranteed to reproduce the original matrix.
In the code following I'm using r and c as row/col index and i and j instead to represent points on the boundary... for example for cell (r=3, c=2) the schema is:
where the red wall corresponds to bit 0x02 and the green wall to bit 0x01. The walls matrix has one row and one column less than the original data matrix because it's assumed that no walls can be present on last row or column.
result = []
for r in range(rows-1):
for c in range(cols-1):
if walls[r][c] & 1:
i, j = r+1, c
cycle = [(i, j)]
while True:
if i < rows-1 and walls[i][j-1] & 2:
ii, jj = i+1, j
walls[i][j-1] -= 2
elif i > 0 and walls[i-1][j-1] & 2:
ii, jj = i-1, j
walls[i-1][j-1] -= 2
elif j < cols-1 and walls[i-1][j] & 1:
ii, jj = i, j+1
walls[i-1][j] -= 1
elif j > 0 and walls[i-1][j-1] & 1:
ii, jj = i, j-1
walls[i-1][j-1] -= 1
else:
break
i, j = ii, jj
cycle.append((ii, jj))
result.append(cycle)
Basically the code starts from a point on a boundary and the checks if it can move on a wall going up, down, left or right. When it cannot move any more a cycle has been completed and can be added to the final result.
The complexity of the algorithm is O(rows*cols), i.e. it's proportional to the input size and it's optimal (in big-O sense) because you cannot compute the result without at least reading the input. This is easy to see because the body of the while cannot be entered more times than the total number of walls in the map (at each iteration a wall is removed).
Edit
The algorithm can be modified to generate as output only simple cycles (i.e. paths in which each vertex is visited only once).
result = []
index = [[-1] * cols for x in range(rows)]
for r in range(rows-1):
for c in range(cols-1):
if walls[r][c] & 1:
i, j = r+1, c
cycle = [(i, j)]
index[i][j] = 0
while True:
if i > 0 and walls[i-1][j-1] & 2:
ii, jj = i-1, j
walls[i-1][j-1] -= 2
elif j > 0 and walls[i-1][j-1] & 1:
ii, jj = i, j-1
walls[i-1][j-1] -= 1
elif i < rows-1 and walls[i][j-1] & 2:
ii, jj = i+1, j
walls[i][j-1] -= 2
elif j < cols-1 and walls[i-1][j] & 1:
ii, jj = i, j+1
walls[i-1][j] -= 1
else:
break
i, j = ii, jj
cycle.append((ii, jj))
ix = index[i][j]
if ix >= 0:
# closed a loop
result.append(cycle[ix:])
for i_, j_ in cycle[ix:]:
index[i_][j_] = -1
cycle = cycle[:ix+1]
index[i][j] = len(cycle)-1
This is implemented by adding to the output a separate cycle once the same vertex is met twice in the processing (the index table stores for a given i,j point the 0-based index in the current cycle being built).
This seems like it would work to me:
For every filled square, check which of its neighbours are filled. For those that aren't, add the appropriate edges to a list of edges. Generate those edges as directed, either clockwise or anticlockwise as you prefer.
To construct a full path, start by pulling any edge from the set and add it to the path. It has an order so look at the second vertex. Find the edge in the set with the first vertex that is equal to that second vertex. Pull that edge from the set and add it to the path. Continue until the path is closed.
Repeat to generate a list of paths. A simple polygon should end up as one path. A complex polygon — one with holes in the middle in this case — will be several.
I guess there are different ways to do this, I suppose there is quite simple one for case when diagonal connected cells counted as different contours:
You just need too keep cell and corner direction. For example you started from upper right corner of some earth cell (it supposed that either upper or right cell, or both are nothing if it is bourder) and want to go clockwise.
If cell to the right is earth, than you change current cell to it and change corner to upper left (it is the same point). Then you go to next iteration.
In other case, if you started from upper right corner of some earth cell and want to go clockwise. If cell to the right is NOT earth than you don't change current cell and change corner to bottom right, (it's next point)
So you also have symmetrical situation for other three possible corners, and you can go to next iteration until returning to start point.
So here is pseudo-code I wrote, it uses the same indexing as picture uses, and supposes that all cells along borders are free, otherwise you will need to check if index id not out of range.
I will also need additional array with almost the same dimensions as matrix to mark processed contours, it need to be 1 cell wider than matrix cause I'm going to mark vertical lines, and each vertical line is supposed to have coordinates of cell to the right of it. Note that there are only 2 cases midst 8 dwscribed above when you need to mark vertical line.
int mark[,] = new int[height,width+1]
start_i = i = 0;
start_j = j = 0;
direction = start_direction = top_left;
index = 0;
//outer cycle through different contours
while(true)
{
++index;
//scanning for contours through all the matrix
//continue from the same place, we stopped last time
for(/*i = i*/; i < n; i++)
{
for(/*j = j*/; j < n; j++)
{
//if we found earth
if(m[i,j] == 1)
{
//check if previous cell is nothing
//check if line between this and previous contour doesn't already added
if(m[i,j - 1] == 0 && mark[i,j] == 0)
{
direction = bottom_left;
break;
}
//the same for next cell
if(m[i,j + 1] == 0 && mark[i,j+1] == 0)
{
direction = top_right;
break;
}
}
}
//break if we found contour
if(i != start_i || j != start_j)
break;
}
//stop if we didn't find any contour
if(i == start_i && j == start_j)
{
break;
}
polygon = new polygon;
start_i = i;
start_j = j;
start_direction = direction;
//now the main part of algorithm described above
do
{
if(direction == top_left)
{
if(n(i-1,j) == 1)
{
direction = bottom_left;
position = (i-1,j)
}
else
{
direction = top_right;
polygon.Add(i,j+1);
}
}
if(direction == top_right;)
{
if(n[i,j + 1] == 1)
{
direction = top_left;
position = (i,j + 1)
}
else
{
direction = bottom_right;
mark[i, j + 1] = index;//don't forget to mark edges!
polygon.Add(i+1,j+1);
}
}
if(direction == bottom_right;
{
if(n[i+1,j] == 1)
{
direction = top_right;
position = (i+1,j)
}
else
{
direction = bottom_left;
polygon.Add(i+1,j);
}
}
if(direction == bottom_left)
{
if(n[i,j - 1] == 1)
{
direction = bottom_right;
position = [i,j - 1]
}
else
{
direction = top_left;
mark[i, j] = index;//don't forget to mark edges!
polygon.Add(i,j);
}
}
//and we can stop as we reached the starting state
}while(i != start_i || j != start_j || direction != start_direction);
//stop if it was last cell
if(i == n-1 && j == n- 1)
{
break;
}
}
Also you may need to know which contour is inside which, and you mat need a stack to keep what contours you are inside while you are scanning, so every time you are crossing the existing contour you need to add it to the stack or remove if it is already at the top of the stack.
It will cause the next changes in code:
...
//continue from the same place, we stopped last time
for(/*i = i*/; i < n; i++)
{
for(/*j = j*/; j < n; j++)
{
if(mark[i,j] != 0)
{
if(stack.top() == mark [i,j])
{
stack.pop();
}
else
{
stack.push(mark [i,j]);
}
}
//if we found earth
if(m[i,j] == 1)
{
...
If your matrix can contain random patterns, the answer is far more complicated than it seems.
For one thing they may be an arbitrary number of distinct polygons, and each of them might be hollow.
Besides, finding the contour of a region (even with no holes) is of little help for drawing the surface. Your GPU will eventually need triangles, which means you will need to decompose your polygons into rectangles.
Finding an optimal decomposition of a hollow bunch of squares (i.e. the smallest set of rectangles that will cover them all) is a well studied NP-complete problem with no known solution.
There exist algorithms to find an optimal decomposition of such shapes with no holes, but they are very complex.
A greedy algorithm is much easier to implement and usually yields acceptable results.
So I would do a greedy search on your matrix, collecting rectangles until all "1" values have been visited. Turning these rectangles into coordinates should be easy enough, since you know exactly where the top left and bottom right corners are.
The greedy scan will look like:
while your matrix is not empty
move to first "1" value. This is the rectangle top left corner
from this corner, extend the rectangle in x and y to maximize its surface
store the rectangle in a list and clear all corresponding "1" values

No of ways to walk M steps in a grid

You are situated in an grid at position x,y. The dimensions of the row is dx,dy. In one step, you can walk one step ahead or behind in the row or the column. In how many ways can you take M steps such that you do not leave the grid at any point ?You can visit the same position more than once.
You leave the grid if you for any x,y either x,y <= 0 or x,y > dx,dy.
1 <= M <= 300
1 <= x,y <= dx,dy <= 100
Input:
M
x y
dx dy
Output:
no of ways
Example:
Input:
1
6 6
12 12
Output:
4
Example:
Input:
2
6 6
12 12
Output:
16
If you are at position 6,6 then you can walk to (6,5),(6,7),(5,6),(7,6).
I am stuck at how to use Pascal's Triangle to solve it.Is that the correct approach? I have already tried brute force but its too slow.
C[i][j], Pascal Triangle
C[i][j] = C[i - 1][j - 1] + C[i - 1][j]
T[startpos][stp]
T[pos][stp] = T[pos + 1][stp - 1] + T[pos - 1][stp - 1]
You can solve 1d problem with the formula you provided.
Let H[pos][step] be number of ways to move horizontal using given number of steps.
And V[pos][step] be number of ways to move vertical sing given number of steps.
You can iterate number of steps that will be made horizontal i = 0..M
Number of ways to move so is H[x][i]*V[y][M-i]*C[M][i], where C is binomial coefficient.
You can build H and V in O(max(dx,dy)*M) and do second step in O(M).
EDIT: Clarification on H and V. Supppose that you have line, that have d cells: 1,2,...,d. You're standing at cell number pos then T[pos][step] = T[pos-1][step-1] + T[pos+1][step-1], as you can move either forward or backward.
Base cases are T[0][step] = 0, T[d+1][step] = 0, T[pos][0] = 1.
We build H assuming d = dx and V assuming d = dy.
EDIT 2: Basically, the idea of algorithm is since we move in one of 2 dimensions and check is also based on each dimension independently, we can split 2d problem in 2 1d problems.
One way would be an O(n^3) dynamic programming solution:
Prepare a 3D array:
int Z[dx][dy][M]
Where Z[i][j][n] holds the number of paths that start from position (i,j) and last n moves.
The base case is Z[i][j][0] = 1 for all i, j
The recursive case is Z[i][j][n+1] = Z[i-1][j][n] + Z[i+1][j][n] + Z[i][j-1][n] + Z[i][j+1][n] (only include terms in the sumation that are on the map)
Once the array is filled out return Z[x][y][M]
To save space you can discard each 2D array for n after it is used.
Here's a Java solution I've built for the original hackerrank problem. For big grids runs forever. Probably some smart math is needed.
long compute(int N, int M, int[] positions, int[] dimensions) {
if (M == 0) {
return 1;
}
long sum = 0;
for (int i = 0; i < N; i++) {
if (positions[i] < dimensions[i]) {
positions[i]++;
sum += compute(N, M - 1, positions, dimensions);
positions[i]--;
}
if (positions[i] > 1) {
positions[i]--;
sum += compute(N, M - 1, positions, dimensions);
positions[i]++;
}
}
return sum % 1000000007;
}

Find the a location in a matrix so that the cost of every one moving to that location is smallest

There is a matrix, m×n. Several groups of people locate at some certain spots. In the following example, there are three groups and the number 4 indicates there are four people in this group. Now we want to find a meeting point in the matrix so that the cost of all groups moving to that point is the minimum. As for how to compute the cost of moving one group to another point, please see the following example.
Group1: (0, 1), 4
Group2: (1, 3), 3
Group3: (2, 0), 5
. 4 . .
. . . 3
5 . . .
If all of these three groups moving to (1, 1), the cost is:
4*((1-0)+(1-1)) + 5*((2-1)+(1-0))+3*((1-1)+(3-1))
My idea is :
Firstly, this two dimensional problem can be reduced to two one dimensional problem.
In the one dimensional problem, I can prove that the best spot must be one of these groups.
In this way, I can give a O(G^2) algorithm.(G is the number of group).
Use iterator's example for illustration:
{(-100,0,100),(100,0,100),(0,1,1)},(x,y,population)
for x, {(-100,100),(100,100),(0,1)}, 0 is the best.
for y, {(0,100),(0,100),(1,1)}, 0 is the best.
So it's (0, 0)
Is there any better solution for this problem.
I like the idea of noticing that the objective function can be decomposed to give the sum of two one-dimensional problems. The remaining problems look a lot like the weighted median to me (note "solves the following optimization problem in "http://www.stat.ucl.ac.be/ISdidactique/Rhelp/library/R.basic/html/weighted.median.html" or consider what happens to the objective function as you move away from the weighted median).
The URL above seems to say the weighted median takes time n log n, which I guess means that you could attain their claim by sorting the data and then doing a linear pass to work out the weighted median. The numbers you have to sort are in the range [0, m] and [0, n] so you could in theory do better if m and n are small, or - of course - if you are given the data pre-sorted.
Come to think of it, I don't see why you shouldn't be able to find the weighted median with a linear time randomized algorithm similar to that used to find the median (http://en.wikibooks.org/wiki/Algorithms/Randomization#find-median) - repeatedly pick a random element, use it to partition the items remaining, and work out which half the weighted median should be in. That gives you expected linear time.
I think this can be solved in O(n>m?n:m) time and O(n>m?n:m) space.
We have to find the median of x coordinates and median of all y coordinates in the k points and the answer will be (x_median,y_median);
Assumption is this function takes in the following inputs:
total number of points :int k= 4+3+5 = 12;
An array of coordinates:
struct coord_t c[12] = {(0,1),(0,1),(0,1), (0,1), (1,3), (1,3),(1,3),(2,0),(2,0),(2,0),(2,0),(2,0)};
c.int size = n>m ? n:m;
Let the input of the coordinates be an array of coordinates. coord_t c[k]
struct coord_t {
int x;
int y;
};
1. My idea is to create an array of size = n>m?n:m;
2. int array[size] = {0} ; //initialize all the elements in the array to zero
for(i=0;i<k;i++)
{
array[c[i].x] = +1;
count++;
}
int tempCount =0;
for(i=0;i<k;i++)
{
if(array[i]!=0)
{
tempCount += array[i];
}
if(tempCount >= count/2)
{
break;
}
}
int x_median = i;
//similarly with y coordinate.
int array[size] = {0} ; //initialize all the elements in the array to zero
for(i=0;i<k;i++)
{
array[c[i].y] = +1;
count++;
}
int tempCount =0;
for(i=0;i<k;i++)
{
if(array[i]!=0)
{
tempCount += array[i];
}
if(tempCount >= count/2)
{
break;
}
}
int y_median = i;
coord_t temp;
temp.x = x_median;
temp.y= y_median;
return temp;
Sample Working code for MxM matrix with k points:
*Problem
Given a MxM grid . and N people placed in random position on the grid. Find the optimal meeting point of all the people.
/
/
Answer:
Find the median of all the x coordiates of the positions of the people.
Find the median of all the y coordinates of the positions of the people.
*/
#include<stdio.h>
#include<stdlib.h>
typedef struct coord_struct {
int x;
int y;
}coord_struct;
typedef struct distance {
int count;
}distance;
coord_struct toFindTheOptimalDistance (int N, int M, coord_struct input[])
{
coord_struct z ;
z.x=0;
z.y=0;
int i,j;
distance * array_dist;
array_dist = (distance*)(malloc(sizeof(distance)*M));
for(i=0;i<M;i++)
{
array_dist[i].count =0;
}
for(i=0;i<N;i++)
{
array_dist[input[i].x].count +=1;
printf("%d and %d\n",input[i].x,array_dist[input[i].x].count);
}
j=0;
for(i=0;i<=N/2;)
{
printf("%d\n",i);
if(array_dist[j].count !=0)
i+=array_dist[j].count;
j++;
}
printf("x coordinate = %d",j-1);
int x= j-1;
for(i=0;i<M;i++)
array_dist[i].count =0;
for(i=0;i<N;i++)
{
array_dist[input[i].y].count +=1;
}
j=0;
for(i=0;i<N/2;)
{
if(array_dist[j].count !=0)
i+=array_dist[j].count;
j++;
}
int y =j-1;
printf("y coordinate = %d",j-1);
z.x=x;
z.y =y;
return z;
}
int main()
{
coord_struct input[5];
input[0].x =1;
input[0].y =2;
input[1].x =1;
input[1].y =2;
input[2].x =4;
input[2].y =1;
input[3].x = 5;
input[3].y = 2;
input[4].x = 5;
input[4].y = 2;
int size = m>n?m:n;
coord_struct x = toFindTheOptimalDistance(5,size,input);
}
Your algorithm is fine, and divide the problem into two one-dimensional problem. And the time complexity is O(nlogn).
You only need to divide every groups of people into n single people, so every move to left, right, up or down will be 1 for each people. We only need to find where's the (n + 1) / 2th people stand for row and column respectively.
Consider your sample. {(-100,0,100),(100,0,100),(0,1,1)}.
Let's take the line numbers out. It's {(-100,100),(100,100),(0,1)}, and that means 100 people stand at -100, 100 people stand at 100, and 1 people stand at 0.
Sort it by x, and it's {(-100,100),(0,1),(100,100)}. There is 201 people in total, so we only need to set the location at where the 101th people stands. It's 0, and that's for the answer.
The column number is with the same algorithm. {(0,100),(0,100),(1,1)}, and it's sorted. The 101th people is at 0, so the answer for column is also 0.
The answer is (0,0).
I can think of O(n) solution for one dimensional problem, which in turn means you can solve original problem in O(n+m+G).
Suppose, people are standing like this, a_0, a_1, ... a_n-1: a_0 people at spot 0, a_1 at spot 1. Then the solution in pseudocode is
cur_result = sum(i*a_i, i = 1..n-1)
cur_r = sum(a_i, i = 1..n-1)
cur_l = a_0
for i = 1:n-1
cur_result = cur_result - cur_r + cur_l
cur_r = cur_r - a_i
cur_l = cur_l + a_i
end
You need to find point, where cur_result is minimal.
So you need O(n) + O(m) for solving 1d problems + O(G) to build them, meaning total complexity is O(n+m+G).
Alternatively you solve 1d in O(G*log G) (or O(G) if data is sorted) using the same idea. Choose the one from expected number of groups.
you can solve this in O(G Log G) time by reducing it to, two one dimensional problems as you mentioned.
And as to how to solve it in one dimension, just sort them and go through them one by one and calculate cost moving to that point. This calculation can be done in O(1) time for each point.
You can also avoid Log(G) component if your x and y coordinates are small enough for you to use bucket/radix sort.
Inspired by kilotaras's idea. It seems that there is a O(G) solution for this problem.
Since everyone agree with the two dimensional problem can be reduced to two one dimensional problem. I will not repeat it again. I just focus on how to solve the one dimensional problem
with O(G).
Suppose, people are standing like this, a[0], a[1], ... a[n-1]. There is a[i] people standing at spot i. There are G spots having people(G <= n). Assuming these G spots are g[1], g[2], ..., g[G], where gi is in [0,...,n-1]. Without losing generality, we can also assume that g[1] < g[2] < ... < g[G].
It's not hard to prove that the optimal spot must come from these G spots. I will pass the
prove here and left it as an exercise if you guys have interest.
Since the above observation, we can just compute the cost of moving to the spot of every group and then chose the minimal one. There is an obvious O(G^2) algorithm to do this.
But using kilotaras's idea, we can do it in O(G)(no sorting).
cost[1] = sum((g[i]-g[1])*a[g[i]], i = 2,...,G) // the cost of moving to the
spot of first group. This step is O(G).
cur_r = sum(a[g[i]], i = 2,...,G) //How many people is on the right side of the
second group including the second group. This step is O(G).
cur_l = a[g[1]] //How many people is on the left side of the second group not
including the second group.
for i = 2:G
gap = g[i] - g[i-1];
cost[i] = cost[i-1] - cur_r*gap + cur_l*gap;
if i != G
cur_r = cur_r - a[g[i]];
cur_l = cur_l + a[g[i]];
end
end
The minimal of cost[i] is the answer.
Using the example 5 1 0 3 to illustrate the algorithm.
In this example,
n = 4, G = 3.
g[1] = 0, g[2] = 1, g[3] = 3.
a[0] = 5, a[1] = 1, a[2] = 0, a[3] = 3.
(1) cost[1] = 1*1+3*3 = 10, cur_r = 4, cur_l = 5.
(2) cost[2] = 10 - 4*1 + 5*1 = 11, gap = g[2] - g[1] = 1, cur_r = 4 - a[g[2]] = 3, cur_l = 6.
(3) cost[3] = 11 - 3*2 + 6*2 = 17, gap = g[3] - g[2] = 2.

Fewest number of turns heuristic

Is there anyway to ensure the that the fewest number of turns heuristic is met by anything except a breadth first search? Perhaps some more explanation would help.
I have a random graph, much like this:
0 1 1 1 2
3 4 5 6 7
9 a 5 b c
9 d e f f
9 9 g h i
Starting in the top left corner, I need to know the fewest number of steps it would take to get to the bottom right corner. Each set of connected colors is assumed to be a single node, so for instance in this random graph, the three 1's on the top row are all considered a single node, and every adjacent (not diagonal) connected node is a possible next state. So from the start, possible next states are the 1's in the top row or 3 in the second row.
Currently I use a bidirectional search, but the explosiveness of the tree size ramps up pretty quickly. For the life of me, I haven't been able to adjust the problem so that I can safely assign weights to the nodes and have them ensure the fewest number of state changes to reach the goal without it turning into a breadth first search. Thinking of this as a city map, the heuristic would be the fewest number of turns to reach the goal.
It is very important that the fewest number of turns is the result of this search as that value is part of the heuristic for a more complex problem.
You said yourself each group of numbers represents one node, and each node is connected to adjascent nodes. Then this is a simple shortest-path problem, and you could use (for instance) Dijkstra's algorithm, with each edge having weight 1 (for 1 turn).
This sounds like Dijkstra's algorithm. The hardest part would lay in properly setting up the graph (keeping track of which node gets which children), but if you can devote some CPU cycles to that, you'd be fine afterwards.
Why don't you want a breadth-first search?
Here.. I was bored :-) This is in Ruby but may get you started. Mind you, it is not tested.
class Node
attr_accessor :parents, :children, :value
def initialize args={}
#parents = args[:parents] || []
#children = args[:children] || []
#value = args[:value]
end
def add_parents *args
args.flatten.each do |node|
#parents << node
node.add_children self unless node.children.include? self
end
end
def add_children *args
args.flatten.each do |node|
#children << node
node.add_parents self unless node.parents.include? self
end
end
end
class Graph
attr_accessor :graph, :root
def initialize args={}
#graph = args[:graph]
#root = Node.new
prepare_graph
#root = #graph[0][0]
end
private
def prepare_graph
# We will iterate through the graph, and only check the values above and to the
# left of the current cell.
#graph.each_with_index do |row, i|
row.each_with_index do |cell, j|
cell = Node.new :value => cell #in-place modification!
# Check above
unless i.zero?
above = #graph[i-1][j]
if above.value == cell.value
# Here it is safe to do this: the new node has no children, no parents.
cell = above
else
cell.add_parents above
above.add_children cell # Redundant given the code for both of those
# methods, but implementations may differ.
end
end
# Check to the left!
unless j.zero?
left = #graph[i][j-1]
if left.value == cell.value
# Well, potentially it's the same as the one above the current cell,
# so we can't just set one equal to the other: have to merge them.
left.add_parents cell.parents
left.add_children cell.children
cell = left
else
cell.add_parents left
left.add_children cell
end
end
end
end
end
end
#j = 0, 1, 2, 3, 4
graph = [
[3, 4, 4, 4, 2], # i = 0
[8, 3, 1, 0, 8], # i = 1
[9, 0, 1, 2, 4], # i = 2
[9, 8, 0, 3, 3], # i = 3
[9, 9, 7, 2, 5]] # i = 4
maze = Graph.new :graph => graph
# Now, going from maze.root on, we have a weighted graph, should it matter.
# If it doesn't matter, you can just count the number of steps.
# Dijkstra's algorithm is really simple to find in the wild.
This looks like same problem as this projeceuler http://projecteuler.net/index.php?section=problems&id=81
Comlexity of solution is O(n) n-> number of nodes
What you need is memoization.
At each step you can get from max 2 directions. So pick the solution that is cheaper.
It is something like (just add the code that takes 0 if on boarder)
for i in row:
for j in column:
matrix[i][j]=min([matrix[i-1][j],matrix[i][j-1]])+matrix[i][j]
And now you have lest expensive solution if you move just left or down
Solution is in matrix[MAX_i][MAX_j]
If you can go left and up too, than the BigO is much higher (I can figure out optimal solution)
In order for A* to always find the shortest path, your heuristic needs to always under-estimate the actual cost (the heuristic is "admissable"). Simple heuristics like using the Euclidean or Manhattan distance on a grid work well because they're fast to compute and are guaranteed to be less than or equal to the actual cost.
Unfortunately, in your case, unless you can make some simplifying assumptions about the size/shape of the nodes, I'm not sure there's much you can do. For example, consider going from A to B in this case:
B 1 2 3 A
C 4 5 6 D
C 7 8 9 C
C e f g C
C C C C C
The shortest path would be A -> D -> C -> B, but using spatial information would probably give 3 a lower heuristic cost than D.
Depending on your circumstances, you might be able to live with a solution that isn't actually the shortest path, as long as you can get the answer sooner. There's a nice blogpost here by Christer Ericson (progammer for God of War 3 on PS3) on the topic: http://realtimecollisiondetection.net/blog/?p=56
Here's my idea for an nonadmissable heuristic: from the point, move horizontally until you're even with the goal, then move vertically until you reach it, and count the number of state changes that you made. You can compute other test paths (e.g. vertically then horizontally) too, and pick the minimum value as your final heuristic. If your nodes are roughly equal size and regularly shaped (unlike my example), this might do pretty well. The more test paths you do, the more accurate you'd get, but the slower it would be.
Hope that's helpful, let me know if any of it doesn't make sense.
This untuned C implementation of breadth-first search can chew through a 100-by-100 grid in less than 1 msec. You can probably do better.
int shortest_path(int *grid, int w, int h) {
int mark[w * h]; // for each square in the grid:
// 0 if not visited
// 1 if not visited and slated to be visited "now"
// 2 if already visited
int todo1[4 * w * h]; // buffers for two queues, a "now" queue
int todo2[4 * w * h]; // and a "later" queue
int *readp; // read position in the "now" queue
int *writep[2] = {todo1 + 1, 0};
int x, y, same;
todo1[0] = 0;
memset(mark, 0, sizeof(mark));
for (int d = 0; ; d++) {
readp = (d & 1) ? todo2 : todo1; // start of "now" queue
writep[1] = writep[0]; // end of "now" queue
writep[0] = (d & 1) ? todo1 : todo2; // "later" queue (empty)
// Now consume the "now" queue, filling both the "now" queue
// and the "later" queue as we go. Points in the "now" queue
// have distance d from the starting square. Points in the
// "later" queue have distance d+1.
while (readp < writep[1]) {
int p = *readp++;
if (mark[p] < 2) {
mark[p] = 2;
x = p % w;
y = p / w;
if (x > 0 && !mark[p-1]) { // go left
mark[p-1] = same = (grid[p-1] == grid[p]);
*writep[same]++ = p-1;
}
if (x + 1 < w && !mark[p+1]) { // go right
mark[p+1] = same = (grid[p+1] == grid[p]);
if (y == h - 1 && x == w - 2)
return d + !same;
*writep[same]++ = p+1;
}
if (y > 0 && !mark[p-w]) { // go up
mark[p-w] = same = (grid[p-w] == grid[p]);
*writep[same]++ = p-w;
}
if (y + 1 < h && !mark[p+w]) { // go down
mark[p+w] = same = (grid[p+w] == grid[p]);
if (y == h - 2 && x == w - 1)
return d + !same;
*writep[same]++ = p+w;
}
}
}
}
}
This paper has a slightly faster version of Dijsktra's algorithm, which lowers the constant term. Still O(n) though, since you are really going to have to look at every node.
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.54.8746&rep=rep1&type=pdf
EDIT: THE PREVIOUS VERSION WAS WRONG AND WAS FIXED
Since a Djikstra is out. I'll recommend a simple DP, which has the benefit of running in the optimal time and not having you construct a graph.
D[a][b] is the minimal distance to x=a and y=b using only nodes where the x<=a and y<=b.
And since you can't move diagonally you only have to look at D[a-1][b] and D[a][b-1] when calculating D[a][b]
This gives you the following recurrence relationship:
D[a][b] = min(if grid[a][b] == grid[a-1][b] then D[a-1][b] else D[a-1][b] + 1, if grid[a][b] == grid[a][b-1] then D[a][b-1] else D[a][b-1] + 1)
However doing only the above fails on this case:
0 1 2 3 4
5 6 7 8 9
A b d e g
A f r t s
A z A A A
A A A f d
Therefore you need to cache the minimum of each group of node you found so far. And instead of looking at D[a][b] you look at the minimum of the group at grid[a][b].
Here's some Python code:
Note grid is the grid that you're given as input and it's assumed the grid is N by N
groupmin = {}
for x in xrange(0, N):
for y in xrange(0, N):
groupmin[grid[x][y]] = N+1#N+1 serves as 'infinity'
#init first row and column
groupmin[grid[0][0]] = 0
for x in xrange(1, N):
gm = groupmin[grid[x-1][0]]
temp = (gm) if grid[x][0] == grid[x-1][0] else (gm + 1)
groupmin[grid[x][0]] = min(groupmin[grid[x][0]], temp);
for y in xrange(1, N):
gm = groupmin[grid[0][y-1]]
temp = (gm) if grid[0][y] == grid[0][y-1] else (gm + 1)
groupmin[grid[0][y]] = min(groupmin[grid[0][y]], temp);
#do the rest of the blocks
for x in xrange(1, N):
for y in xrange(1, N):
gma = groupmin[grid[x-1][y]]
gmb = groupmin[grid[x][y-1]]
a = (gma) if grid[x][y] == grid[x-1][y] else (gma + 1)
b = (gmb) if grid[x][y] == grid[x][y-1] else (gma + 1)
temp = min(a, b)
groupmin[grid[x][y]] = min(groupmin[grid[x][y]], temp);
ans = groupmin[grid[N-1][N-1]]
This will run in O(N^2 * f(x)) where f(x) is the time the hash function takes which is normally O(1) time and this is one of the best functions you can hope for and it has a lot lower constant factor than Djikstra's.
You should easily be able to handle N's of up to a few thousand in a second.
Is there anyway to ensure the that the fewest number of turns heuristic is met by anything except a breadth first search?
A faster way, or a simpler way? :)
You can breadth-first search from both ends, alternating, until the two regions meet in the middle. This will be much faster if the graph has a lot of fanout, like a city map, but the worst case is the same. It really depends on the graph.
This is my implementation using a simple BFS. A Dijkstra would also work (substitute a stl::priority_queue that sorts by descending costs for the stl::queue) but would seriously be overkill.
The thing to notice here is that we are actually searching on a graph whose nodes do not exactly correspond to the cells in the given array. To get to that graph, I used a simple DFS-based floodfill (you could also use BFS, but DFS is slightly shorter for me). What that does is to find all connected and same character components and assign them to the same colour/node. Thus, after the floodfill we can find out what node each cell belongs to in the underlying graph by looking at the value of colour[row][col]. Then I just iterate over the cells and find out all the cells where adjacent cells do not have the same colour (i.e. are in different nodes). These therefore are the edges of our graph. I maintain a stl::set of edges as I iterate over the cells to eliminate duplicate edges. After that it is a simple matter of building an adjacency list from the list of edges and we are ready for a bfs.
Code (in C++):
#include <queue>
#include <vector>
#include <iostream>
#include <string>
#include <set>
#include <cstring>
using namespace std;
#define SIZE 1001
vector<string> board;
int colour[SIZE][SIZE];
int dr[]={0,1,0,-1};
int dc[]={1,0,-1,0};
int min(int x,int y){ return (x<y)?x:y;}
int max(int x,int y){ return (x>y)?x:y;}
void dfs(int r, int c, int col, vector<string> &b){
if (colour[r][c]<0){
colour[r][c]=col;
for(int i=0;i<4;i++){
int nr=r+dr[i],nc=c+dc[i];
if (nr>=0 && nr<b.size() && nc>=0 && nc<b[0].size() && b[nr][nc]==b[r][c])
dfs(nr,nc,col,b);
}
}
}
int flood_fill(vector<string> &b){
memset(colour,-1,sizeof(colour));
int current_node=0;
for(int i=0;i<b.size();i++){
for(int j=0;j<b[0].size();j++){
if (colour[i][j]<0){
dfs(i,j,current_node,b);
current_node++;
}
}
}
return current_node;
}
vector<vector<int> > build_graph(vector<string> &b){
int total_nodes=flood_fill(b);
set<pair<int,int> > edge_list;
for(int r=0;r<b.size();r++){
for(int c=0;c<b[0].size();c++){
for(int i=0;i<4;i++){
int nr=r+dr[i],nc=c+dc[i];
if (nr>=0 && nr<b.size() && nc>=0 && nc<b[0].size() && colour[nr][nc]!=colour[r][c]){
int u=colour[r][c], v=colour[nr][nc];
if (u!=v) edge_list.insert(make_pair(min(u,v),max(u,v)));
}
}
}
}
vector<vector<int> > graph(total_nodes);
for(set<pair<int,int> >::iterator edge=edge_list.begin();edge!=edge_list.end();edge++){
int u=edge->first,v=edge->second;
graph[u].push_back(v);
graph[v].push_back(u);
}
return graph;
}
int bfs(vector<vector<int> > &G, int start, int end){
vector<int> cost(G.size(),-1);
queue<int> Q;
Q.push(start);
cost[start]=0;
while (!Q.empty()){
int node=Q.front();Q.pop();
vector<int> &adj=G[node];
for(int i=0;i<adj.size();i++){
if (cost[adj[i]]==-1){
cost[adj[i]]=cost[node]+1;
Q.push(adj[i]);
}
}
}
return cost[end];
}
int main(){
string line;
int rows,cols;
cin>>rows>>cols;
for(int r=0;r<rows;r++){
line="";
char ch;
for(int c=0;c<cols;c++){
cin>>ch;
line+=ch;
}
board.push_back(line);
}
vector<vector<int> > actual_graph=build_graph(board);
cout<<bfs(actual_graph,colour[0][0],colour[rows-1][cols-1])<<"\n";
}
This is just a quick hack, lots of improvements can be made. But I think it is pretty close to optimal in terms of runtime complexity, and should run fast enough for boards of size of several thousand (don't forget to change the #define of SIZE). Also, I only tested it with the one case you have provided. So, as Knuth said, "Beware of bugs in the above code; I have only proved it correct, not tried it." :).

Resources