How to do 2 phase commit between two micro-services(Spring-boot)? - spring-boot

I Have two mico-serives A and B where they connect to seperate database, From Mico-serives A i need to persist(save) objects of both A and B in same transtation how to achive this.
I am using Spring micro-servies with netflix-oss.Please give suggestions on best way to do achive 2 phase commit.

you can not implement traditional transaction system in micro-services in a distributed environment.
You should you Event Sourcing + CQRS technique and because they are atomic you will gain something like implementing transactions or 2PC in a monolithic system.
Other possible way is transaction-log-mining that I think linked-in is using this way but it has its own cons and pros. for e.g. binary log of different databases are different and event in same kind of database there are differences between different versions.
I suggest that you use Event Sourcing + CQRS and string events in an event-store then try reaching eventual consistency base on CAP theorem after transferring multiple events between micro-service A and B and updating domain states in each step.
It is suggested that you use a message broker like ActiveMQ, RabbitMQ or Kafka for sending event-sourced events between different microservices and string them in an event store like mysql or other systems.
Another benefit of this way beside mimicking transactions is that you will have a complete audit log.

It is an architecture(microservices) problem. Spring boot or netflix-oss do not offer a direct solution. You have to implement your own solution. Check with event driven architecture. It can give you some ideas.

You could try the SAGA pattern https://microservices.io/patterns/data/saga.html

Related

How event sourcing and CQRS help in decoupling microservices?

How do event sourcing and CQRS help to achieve decoupled architecture for microservices.
We can have microservices which own their data and others accessing that data via service even by having traditional means of persistence. Isn't?
Event sourcing and CQRS are not intended to be used to decouple services.
The main goal achived by using CQRS is to improve the performance of a service because you can use different persistence type for writes (command) and for reads (query).
Thanks to that, you can use a higly performance write type persistence like event log to store all events that happen in the service and use a relational model for example for reads where you store the information in the way that you need for your queries.
The way to achieve consistency between the two models is normally by using events generated by the command model that are consumed by the query to update the read model. The drawback of this appproach is the eventual consistency, because the update of the read model does not happen inmediately.
Higly related with cqrs is event sourcing that states that all modifications in the model should be stored like events in an event store. This way you have an historic of all the actions made in the application. The advantage of this is that you have an historic of all changes for audit purposes and that writes are extremely fast. The drawback is that if you want to get the current state you have to replay all the events since the begining.
To solve this, you use cqrs to get the actual state to make queries

is there any alternative to event sourcing in microservices arcitechure implementation? please suggest

Normally for maintianing atomicity we use event sourcing concept in microservices . Are there alternative approach/approaches to solve this data consistency issue without using event sourcing frameworks.
The first and best way to maintain consistency in you microservices is to organize them in a way that each microservice manages its own data only.
Event sourcing may be a way for managing distributed data among several services. Several patterns exist, with no silver bullet.
The topic is too large for here, but I wanted to give you clues about the down votes on your question.

Is Event sourcing using Database CDC considered good architecture?

When we talk about sourcing events, we have a simple dual write architecture where we can write to database and then write the events to a queue like Kafka. Other downstream systems can read those events and act on/use them accordingly.
But the problem occurs when trying to make both DB and Events in sync as the ordering of these events are required to make sense out of it.
To solve this problem people encourage to use database commit logs as a source of events, and there are tools build around it like Airbnb's Spinal Tap, Redhat's Debezium, Oracle's Golden gate, etc... It solves the problem of consistency, ordering guaranty and all these.
But the problem with using the Database commit log as event source is we are tightly coupling with DB schema. DB schema for a micro-service is exposed, and any breaking changes in DB schema like datatype change or column name change can actually break the downstream systems.
So is using the DB CDC as an event source a good idea?
A talk on this problem and using Debezium for event sourcing
Extending Constantin's answer:
TLDR;
Transaction log tailing/mining should be hidden from others.
It is not strictly an event-stream, as you should not access it directly from other services. It is generally used when transitioning a legacy system gradually to a microservices based. The flow could look like this:
Service A commits a transaction to the DB
A framework or service polls the commit log and maps new commits to Kafka as events
Service B is subscribed to a Kafka stream and consumes events from there, not from the DB
Longer story:
Service B doesn't see that your event is originated from the DB nor it accesses the DB directly. The commit data should be projected into an event. If you change the DB, you should only modify your projection rule to map commits in the new schema to the "old" event format, so consumers must not be changed. (I am not familiar with Debezium, or if it can do this projection).
Your events should be idempotent as publishing an event and committing a transaction
atomically is a problem in a distributed scenario, and tools will guarantee at-least-once-delivery with exactly-once-processing semantics at best, and the exactly-once part is rarer. This is due to an event origin (the transaction log) is not the same as the stream that will be accessed by other services, i.e. it is distributed. And this is still the producer part, the same problem exists with Kafka->consumer channel, but for a different reason. Also, Kafka will not behave like an event store, so what you achieved is a message queue.
I recommend using a dedicated event-store instead if possible, like Greg Young's: https://eventstore.org/. This solves the problem by integrating an event-store and message-broker into a single solution. By storing an event (in JSON) to a stream, you also "publish" it, as consumers are subscribed to this stream. If you want to further decouple the services, you can write projections that map events from one stream to another stream. Your event consuming should be idempotent with this too, but you get an event store that is partitioned by aggregates and is pretty fast to read.
If you want to store the data in the SQL DB too, then listen to these events and insert/update the tables based on them, just do not use your SQL DB as your event store cuz it will be hard to implement it right (failure-proof).
For the ordering part: reading events from one stream will be ordered. Projections that aggregates multiple event streams can only guarantee ordering between events originating from the same stream. It is usually more than enough. (btw you could reorder the messages based on some field on the consumer side if necessary.)
If you are using Event sourcing:
Then the coupling should not exist. The Event store is generic, it doesn't care about the internal state of your Aggregates. You are in the worst case coupled with the internal structure of the Event store itself but this is not specific to a particular Microservice.
If you are not using Event sourcing:
In this case there is a coupling between the internal structure of the Aggregates and the CDC component (that captures the data change and publish the event to an Message queue or similar). In order to limit the effects of this coupling to the Microservice itself, the CDC component should be part of it. In this way when the internal structure of the Aggregates in the Microservice changes then the CDC component is also changed and the outside world doesn't notice. Both changes are deployed at the same time.
So is using the DB CDC as an event source a good idea?
"Is it a good idea?" is a question that is going to depend on your context, the costs and benefits of the different trade offs that you need to make.
That said, it's not an idea that is consistent with the heritage of event sourcing as I learned it.
Event sourcing - the idea that our book of record is a ledger of state changes - has been around a long long time. After all, when we talk about "ledger", we are in fact alluding to those documents written centuries ago that kept track of commerce.
But a lot of the discussion of event sourcing in software is heavily influenced by domain driven design; DDD advocates (among other things) aligning your code concepts with the concepts in the domain you are modeling.
So here's the problem: unless you are in some extreme edge case, your database is probably some general purpose application that you are customizing/configuring to meet your needs. Change data capture is going to be limited by the fact that it is implemented using general purpose mechanisms. So the events that are produced are going to look like general purpose patch documents (here's the diff between before and after).
But if we trying to align our events with our domain concepts (ie, what does this change to our persisted state mean), then patch documents are a step in the wrong direction.
For example, our domain might have multiple "events" that make changes to the same, or very similar, sets of fields in our model. Trying to rediscover the motivation for a change by reverse engineering the diff is kind of a dumb problem to have; especially when we have already fought with the same sort of problem learning user interface design.
In some domains, a general purpose change is good enough. In some contexts, a general purpose change is good enough for now. Horses for courses.
But it's not really the sort of implementation that the "event sourcing" community is talking about.
Besides Constantin Galbenu mentioned CDC component side, you can also do it in event storage side like Kafka stream API.
What is Kafka stream API? Input is read from one or more topics in order to generate output to one or more topics, effectively transforming the input streams to output streams.
After transfer detailed data to abstract data, your DB schema is only bind with the transformation now and can release the tightly relation between DB and subscribers.
If your data schema need to change a lot, maybe you should add a new topic for it.

Event sourcing, CQRS and database in Microservice

I am quite new in context of Micro-service architecture and reading this post : http://microservices.io/patterns/data/event-sourcing.html to get familiar with Event sourcing and data storage in Microservice architecture.
I have read many documents about 3 important aspect of system :
Using event sourcing instead of a simply shared DB and ORM and
row update
Events are JAVA objects.
In case of saving data permanently
, we need to use DB (either relational or noSQL)
Here are my questions :
How database comes along with event sourcing? I have read CQRS
pattern, but I can not understand how CQRS pattern is related to
event store and event objects ?
Can any body provide me a
complete picture and set of operations happens with all players to
gather: CQRS pattern , Event sourcing (including event storage
module) and finally different microservices?
In a system
composed of many microservices, should we have one event storage or
each microservice has its own ? or both possible ?
same
question about CQRS. This pattern is implemented in all
microservices or only in one ?
Finally, in case of using
microservice architecture, it is mandatory to have only one DB or
each Microserivce should have its own ?
As you can see, I have understood all small pieces of game , but I can not relate them together to compose a whole image. Specially relevance between CQRS and event sourcing and storing data in DB.
I read many articles for example :
https://ookami86.github.io/event-sourcing-in-practice/
https://msdn.microsoft.com/en-us/library/jj591577.aspx
But in all of them small players are discussed. Even a hand drawing piece of image will be appreciated.
How database comes along with event sourcing? I have read CQRS pattern, but I can not understand how CQRS pattern is related to event store and event objects ?
"Query" part of CQRS instructs you how to create a projection of events, which is applicable in some "bounded context", where the database could be used as a means to persist that projection. "Command" part allows you to isolate data transformation logic and decouple it from the "query" and "persistence" aspects of your app. To simply put it - you just project your event stream into the database in many ways (projection could be relational as well), depending on the task. In this model "query" and "command" have their own way of projecting and storing events data, optimised for the needs of that specific part of the application. Same data will be stored in events and in projections, this will allow achieving simplicity and loose coupling among subdomains (bounded contexts, microservices).
Can any body provide me a complete picture and set of operations happens with all players to gather: CQRS pattern , Event sourcing (including event storage module) and finally different microservices?
Have you seen Greg Young's attempt to provide simplest possible implementation? If you still confused, consider creating more specific question about his example.
In a system composed of many microservices, should we have one event storage or each microservice has its own ? or both possible ?
It is usually one common event storage, but there definitely could be some exceptions, edge cases where you really will need multiple storages for different microservices here and there. It all depends on the business case. If you not sure - most likely you just need a single storage for now.
same question about CQRS. This pattern is implemented in all microservices or only in one ?
It could be implemented in most performance-demanding microservices. It all depends on how complex your implementation becomes when you are introducing CQRS into it. If it gets simpler - why not implement it everywhere? But if people in your team become more and more confused by the need to perform more explicit synchronisation between commands and queries parts - maybe cqrs is too much for you. It all depends on your team, on your domain ... there is no single simple answer, unfortunately.
Finally, in case of using microservice architecture, it is mandatory to have only one DB or each Microservice should have its own ?
If same microservices sharing same tables - this is usually considered as an antipattern, as it increases coupling, the system becomes more fragile. You can still share the same database, but there should be no shared tables. Also, tables from one microservice better not have FK's to tables in another microservice. Same reason - to reduce coupling.
PS: consider not to ask coarse-grained questions, as it will be harder to get a response from people. Several smaller, more specific questions will have better chance to be answered.

Solution for composite events with Apache Kafka?

Architecture question: We have an Apache Kafka based eventing system and multiple systems producing / sending events. Each event has some data including an ID and I need to implement a "ID is complete"-event. Example:
Event_A(id)
Event_B(id)
Event_C(id)
are received asynchonrously, and only once all 3 events are received, I need to send a Event_Complete(id). The problem is that we have multiple clusters of consumers and our database is eventual consistent.
A simple way would be to use the eventually consistent DB to store which events we have for each ID and add a "cron" job to catch race conditions eventually.
It feels like a problem that might have been solved out there already. So my question is, is there a better way to do it (without introducing a consistent datastore to the picture)?
Thanks a bunch!

Resources