setting up autotools to link single system library statically - gcc

I have a project, where I want to link one of system libraries statically. The project uses GNU build system.
In configure.ac I have:
AC_CHECK_LIB(foobar, foobar_init)
On development machine this library is installed in /usr/lib/x86_64-linux-gnu. It is detected, but it is linked dynamically, which causes issues, as it is not present on some machines. Linking it statically (-Wl,-Bstatic etc.) works fine, but I don't know how to set this up in autotools. I tried forcing this into Makefile.am link flags for the project, but it still gives a preference to dynamic library.
I also tried using --enable-static with ./configure, but it seems to have no effect on system libraries.

If you want to link the whole program statically, then you should pass the --disable-shared option to configure. You might or might not need also to pass --enable-static, depending on the default value for that option (which you can influence via your configure.ac file). You really should consider doing this.
You should also consider making this the installer's problem, not the build system's. Let it be the installer's responsibility to ensure that all the shared libraries needed by the program are provided by the systems where it is installed. This is very common; in fact, it is one of the inspirations for package-management systems such as yum / dnf and apt, and their underlying packaging formats.
If you insist on linking only one library statically, while linking everything else dynamically, then you'll need to jump through a few more hoops. The objective will be to emit link options that cause just that library to be linked statically, without changing other libraries' linking. With the GNU toolchain, and supposing that the program is otherwise being linked dynamically, that would be this combination of options:
-Wl,-Bstatic -lfoobar -Wl,-Bdynamic
Now consider the documentation of the AC_CHECK_LIB() macro:
Macro: AC_CHECK_LIB (library, function, [action-if-found],
[action-if-not-found], [other-libraries])
[...] action-if-found is a list of shell commands to run if the link with the library succeeds; action-if-not-found is a list of shell
commands to run if the link fails. If action-if-found is not
specified, the default action prepends -llibrary to LIBS and defines
'HAVE_LIBlibrary' (in all capitals). [...]
Note in particular the default behavior in the event that the optional arguments are not provided (your present case) -- that's not quite what you want, at least not by itself. I suggest providing at least an alternative behavior for action-if-found case, and you could consider also making configure fail in the action-if-not-found case. The latter is left as an exercise; implementing just the former might look like this:
AC_CHECK_LIB([foobar], [foobar_init], [
LIBS="-Wl,-Bstatic -lfoobar -Wl,-Bdynamic $LIBS"
AC_DEFINE([HAVE_LIBFOOBAR], [1], [Define to 1 if you have libfoobar.])
])
You should also pay attention to the order of your AC_CHECK_LIB() invocations. As its docs go on to say:
This macro is intended to support building LIBS in a right-to-left
(least-dependent to most-dependent) fashion such that library
dependencies are satisfied as a natural side effect of consecutive
tests. Linkers are sensitive to library ordering so the order in which
LIBS is generated is important to reliable detection of libraries.
If you find that you still aren't getting what you want, then have a look at the link commands that make actually executes. You need to understand what's wrong about them before you can determine how to fix the problem.
With all that said, I observe that the above treatment is basically a hack, and it makes your build system much less resilient. It introduces dependencies on GNU toolchain options (which some other toolchains may nevertheless accept), and it assumes dynamic linking is being performed overall. It may be possible to resolve those issues with additional Autoconf code, but I urge you to instead go with one of the first two alternatives I described.

Related

Compile single static library for Cortex M3, M4, M23 and M33

I'm currently working on a rather generic communication stack. It gets bytes in on one end, parses the packet and calls a callback.
I want to have this stack in a static library (i.e. libcommstack.a).
The library is aimed towards embedded ARM Cortex-M devices. At the moment we have specified that at least a Cortex-M3 should be used (but it should also work for an M4 or M33).
Right now I'm integrating it into another application to verify that linking it is possible. In the future the idea is that we will ship this .a file to customers so they can build their application around it, without having direct access to our sources (to encapsulate our IP).
We are using GCC ARM v7.2.1 to compile both the library and the application that is linked to it.
The application I'm trying to integrate it with is compiled for a Cortex M33 with -mfloat-abi=hard -mfpu-fpv6-sp-d16.
The code for the library does not use any floating points and is compiled using -march=archv7-m (both have the -mthumb flag).
Linking seemed to all go well, until I actually called a function from the lib. At that point the linker starts to complain:
application.elf uses VFP register arguments, libcommstack.a(somefile.c.obj) does not
failed to merge target specific data of file libcommstack.a(somefile.c.obj)
Since I'm not using floating points in the library and I don't know (upfront) if the target application does or does not have an FPU (or even uses floats), I'm not sure how to approach this.
I figured there would be two approaches:
Compile a single version of the lib, using an instruction set that all of the microcontrollers understand. I was hoping that this would be the case with ARMv7 (although I'm not yet 100% confident that the M23/M33 also support this).
Compile a lot of different libs for the different flavors based on the different architectures, FPU, etc.
As you can imagine, I would prefer to keep it simple and go for option 1, but I'm not sure how to "convince" the linker to link these two (or perhaps how to convince the compiler NOT to care about floating points for the lib).
Does anyone know if option 1 is feasible and how it can be achieved?
If it is not feasible, what would be the variables to keep in mind to determine the different build flavors?
Does anyone know if option 1 is feasible
Well, feasible, probably.
how it can be achieved?
Get all the processors you want to support and determine the instructions sets available on all these processors. Then compile for that instruction set.
But, please don't, that is a workaround.
If it is not feasible, what would be the variables to keep in mind to determine the different build flavors?
Gcc has something like "multilib profiles". See arm-none-eabi-gcc --print-multi-lib output. If you have newlib installed, you can go to /usr/arm-none-eabi/lib/thumb/ and see the directories there - newlib is compiled for each profile and installs separate library for it and different library is picked up depending on configuration. Compile for each of those profiles, and package your library by putting libraries in proper /usr/arm-none-eabi/lib/proper/directory/here and compiler will pick them up by itself (see gcc -v output for library search paths). For an example search newlib sources where it happens, can't find it. (Here's my example). With cmake as a backend as a example you could compile and install as follows:
arm-none-eabi-gcc --print-multi-lib |
while IFS=';' read -r dir opts; do
cmake -B builddir CMAKE_C_FLAGS="$opts" CMAKE_INSTALL_LIBDIR="$dir"
cmake --build builddir
cmake --install builddir --prefix "/usr/arm-none-eabi/"
done

Using dynamic library

When I would like to compile a program which uses a dynamic library, do I have to install (i.e. copy to a specific place, say, /usr/share/lib) this library? Or is it ok, if I put this library to any place somewhere and later during linking I point the linker to it, e.g. '-L ./thelibfolder'?
do I have to install (i.e. copy to a specific place, say, /usr/share/lib) this library?
No.
For a UNIX shared library, you need to arrange for two things:
You have to make the library known to the static linker, while linking main executable. Usually this is achieved by adding -L/path/to/directory -lfoo link flags to the link line.
You have to make runtime loader search /path/to/directory as well. This is system-specific. On many systems, setting LD_LIBRARY_PATH environment variable achieves the desired result, though this is usually not the preferred method. Another method is to encode this path into the application itself, e.g. on Linux one would add -Wl,-rpath=/path/to/directory to the application link line.

linking and executable by hand without alternatives

I use gcc more than any other compiler, so I will shape my example with this compiler suite, but i have experienced this problem with almost all the suite that i have tried like gcc, mingw, clang and msvc.
gcc offers this flags:
-l you write the name foo, gcc will find a corrisponding library named libfoo
-L you append the path where the libs lives and gcc tries to match the required libraries to the ones that it finds in that path
-rpath basically a pool of different path for the same lib so the executable is "smart" enough to look for alternatives if he needs one.
the problem is big for me, no one of this solves my problem and each one of this flags suffer the same problem: ambiguity.
if I just want to link a library that i know there is no way to do this without including a dose of ambiguity in the best case scenario, what i want is:
linking 1 specific library only, and only the 1 that I specify with a precise name and path
avoid auto-completion mechanism like the one on the name given to -l because my libs are named foo.so not libfoo.so
relative path for the linked libs
only consider the explicitly given set of libraries, no other automation of any kind should be involved, no pool of libs, no search-paths, no nothing else, I prefer list of errors instead of an executable linked to a random library
I often deal with different libs in different releases, they often share the same name for historical and compatibility reasons, it's a nightmare compiling and linking with gcc because I never got the one that I want linked to my executable.
Thanks.
The easiest way to do this is to simply specify the library.
gcc -o test test.o /path/my_library.so /path/to_other_library.a
The obvious downside to this approach if of course that if you move that library then your application won't work anymore but since you state that you have the libraries at fixed locations it should work in your case.

How do I tell ld to ignore a missing library?

I'd like to define a Makefile with implicit rules for a bunch of executables, some of which require linking against a custom-built library (let's call it libedich.a).
My problem is that I'd like to be able to build those executables that do not require libedich.a when the latter hasn't been built yet. If I simply add -ledich to the LDLIBS variable, I get errors when libedich.a doesn't exist:
/usr/bin/ld: cannot find -ledich
How do I tell ld that it's okay to continue linking when a given library doesn't exist?
A common solution is to create a dummy archive so that GCC will find it. Since the executable doesn't need any symbols from the library, it won't error out. Like this,
# create an empty archive.
ar cru libedich.a
or even simpler,
echo '!<arch>' >libedich.a
This is the downside of using one LDLIBS variable to hold all of the library dependencies and re-using it for every target, even though you know some targets only need a subset of the libraries. You have several options:
There are probably fancy IDE's and build tools out there that try to infer library dependencies from context, saving you from manually specifying them for each target.
Switch to using shared libraries.
Fix the target in your Makefile so that it depends on libedich.a (even if it doesn't need to). This will work if you are building everything anyway and don't care what order the targets proceed in.
Manually specify the library dependencies for each target in your Makefile.
The last option is my recommendation; it is more work, but eliminating the false dependencies in your Makefile will enable you to build (perhaps most of) your targets even if one of the dependencies is broken. One convenient way to do this is with target-specific variables:
targetname::LDLIBS+=-ledich
You probably also want to be aware of make --keep-going (make -k)

How to specify preference for compilers when using enable_language [cmake]

When using enable_language in cmake, it always search for compilers in a certain default sequence. I wonder how I can change this sequence. For example, if my system has both ifort (icc) and gfortran (g++) installed, and I want to use ifort (icc) instead of the gfortran (g++), how could I set up this?
CLARIFICATION: I know we can switch the compiler explicitly by changing the variable CMAKE_Fortran_Compiler, but what I want to do is rather to modify the default sequence that cmake searches for available compilers if the user does not specify such a preference.
From what I currently found, a work-around is to set CMAKE_Fortran_Compiler before project(xxx), so that this variable can never gets overridden later, but clearly this is not the best way, since I will need gfortran if there turns out to be no ifort available.
By the way, what's the best place to look for this kind of information? The documentation does not seem to be very complete..
Thanks!
The right place to look is the CMake FAQ, which answers your question.
Omegaice's answer will work, as will CC=/path/to/icc cmake ..., see also this discussion thread.
Setting CMAKE_Fortran_Compiler before the project call is strongly discouraged (as the FAQ will tell you).
Note that manually calling enable_language is no different from specifying the languages with the project call (or indeed not specifying them, in which case they default to C and CXX), since that calls enable_language internally.
You can probably specify which compiler to use by doing ccmake .. -DCMAKE_Fortran_Compiler=<executable> (where <executable> is either the name of the compiler or the full path to the compiler) instead of setting it in the CMakeLists.txt.

Resources