Finding median in merged array of two sorted arrays - algorithm

Assume we have 2 sorted arrays of integers with sizes of n and m. What is the best way to find median of all m + n numbers?
It's easy to do this with log(n) * log(m) complexity. But i want to solve this problem in log(n) + log(m) time. So is there any suggestion to solve this problem?

Explanation
The key point of this problem is to ignore half part of A and B each step recursively by comparing the median of remaining A and B:
if (aMid < bMid) Keep [aMid +1 ... n] and [bLeft ... m]
else Keep [bMid + 1 ... m] and [aLeft ... n]
// where n and m are the length of array A and B
As the following: time complexity is O(log(m + n))
public double findMedianSortedArrays(int[] A, int[] B) {
int m = A.length, n = B.length;
int l = (m + n + 1) / 2;
int r = (m + n + 2) / 2;
return (getkth(A, 0, B, 0, l) + getkth(A, 0, B, 0, r)) / 2.0;
}
public double getkth(int[] A, int aStart, int[] B, int bStart, int k) {
if (aStart > A.length - 1) return B[bStart + k - 1];
if (bStart > B.length - 1) return A[aStart + k - 1];
if (k == 1) return Math.min(A[aStart], B[bStart]);
int aMid = Integer.MAX_VALUE, bMid = Integer.MAX_VALUE;
if (aStart + k/2 - 1 < A.length) aMid = A[aStart + k/2 - 1];
if (bStart + k/2 - 1 < B.length) bMid = B[bStart + k/2 - 1];
if (aMid < bMid)
return getkth(A, aStart + k / 2, B, bStart, k - k / 2); // Check: aRight + bLeft
else
return getkth(A, aStart, B, bStart + k / 2, k - k / 2); // Check: bRight + aLeft
}
Hope it helps! Let me know if you need more explanation on any part.

Here's a very good solution I found in Java on Stack Overflow. It's a method of finding the K and K+1 smallest items in the two arrays where K is the center of the merged array.
If you have a function for finding the Kth item of two arrays then finding the median of the two is easy;
Calculate the weighted average of the Kth and Kth+1 items of X and Y
But then you'll need a way to find the Kth item of two lists; (remember we're one indexing now)
If X contains zero items then the Kth smallest item of X and Y is the Kth smallest item of Y
Otherwise if K == 2 then the second smallest item of X and Y is the smallest of the smallest items of X and Y (min(X[0], Y[0]))
Otherwise;
i. Let A be min(length(X), K / 2)
ii. Let B be min(length(Y), K / 2)
iii. If the X[A] > Y[B] then recurse from step 1. with X, Y' with all elements of Y from B to the end of Y and K' = K - B, otherwise recurse with X' with all elements of X from A to the end of X, Y and K' = K - A
If I find the time tomorrow I will verify that this algorithm works in Python as stated and provide the example source code, it may have some off-by-one errors as-is.

Take the median element in list A and call it a. Compare a to the center elements in list B. Lets call them b1 and b2 (if B has odd length then exactly where you split b depends on your definition of the median of an even length list, but the procedure is almost identical regardless). if b1&leq;a&leq;b2 then a is the median of the merged array. This can be done in constant time since it requires exactly two comparisons.
If a is greater than b2 then we add the top half of A to the top of B and repeat. B will no longer be sorted, but it doesn't matter. If a is less than b1 then we add the bottom half of A to the bottom of B and repeat. These will iterate log(n) times at most (if the median is found sooner then stop, of course).
It is possible that this will not find the median. If this is the case then the median is in B. If so, perform the same algorithm with A and B reversed. This will require log(m) iterations. In total you will have performed at most 2*(log(n)+log(m)) iterations of a constant time operation, so you have solved the problem in order log(n)+log(m) time.
This is essentially the same answer as was given by iehrlich, but written out more explicitly.

Yes, this can be done. Given two arrays, A and B, in the worst-case scenario you have to first perform a binary search in A, and then, if it fails, binary search in B looking for the median. On each step of a binary search, you check if the current element is actually a median of a merged A+B array. Such check takes constant time.
Let's see why such check is constant. For simplicity, let's assume that |A| + |B| is an odd number, and that all numbers in both arrays are different. You can remove these restrictions later by applying the usual median definition approach (i.e., how to calculate the median of an array containing duplicates, or of an array with even length). Anyway, given that, we know for sure, that in the merged array there will be (|A| + |B| - 1) / 2 elements to the right and to the left of an actual median. In the process of a binary search in A, we know the index of current element x in array A (let it be i). Now, if x satisfies the condition B[j] < x < B[j+1], where i + j == (|A| + |B| - 1) / 2, then x is your median.
The overall complexity is O(log(max(|A|, |B|)) time and O(1) memory.

Related

Fast algorithm for sum of steps taken by the Euclidean algorithm over pairs of numbers under an upper bound

Note: This may involve a good deal of number theory, but the formula I found online is only an approximation, so I believe an exact solution requires some sort of iterative calculation by a computer.
My goal is to find an efficient algorithm (in terms of time complexity) to solve the following problem for large values of n:
Let R(a,b) be the amount of steps that the Euclidean algorithm takes to find the GCD of nonnegative integers a and b. That is, R(a,b) = 1 + R(b,a%b), and R(a,0) = 0. Given a natural number n, find the sum of R(a,b) for all 1 <= a,b <= n.
For example, if n = 2, then the solution is R(1,1) + R(1,2) + R(2,1) + R(2,2) = 1 + 2 + 1 + 1 = 5.
Since there are n^2 pairs corresponding to the numbers to be added together, simply computing R(a,b) for every pair can do no better than O(n^2), regardless of the efficiency of R. Thus, to improve the efficiency of the algorithm, a faster method must somehow calculate the sum of R(a,b) over many values at once. There are a few properties that I suspect might be useful:
If a = b, then R(a,b) = 1
If a < b, then R(a,b) = 1 + R(b,a)
R(a,b) = R(ka,kb) where k is some natural number
If b <= a, then R(a,b) = R(a+b,b)
If b <= a < 2b, then R(a,b) = R(2a-b,a)
Because of the first two properties, it is only necessary to find the sum of R(a,b) over pairs where a > b. I tried using this in addition to the third property in a method that computes R(a,b) only for pairs where a and b are also coprime in addition to a being greater than b. The total sum is then n plus the sum of (n / a) * ((2 * R(a,b)) + 1) over all such pairs (using integer division for n / a). This algorithm still had time complexity O(n^2), I discovered, due to Euler's totient function being roughly linear.
I don't need any specific code solution, I just need to figure out the procedure for a more efficient algorithm. But if the programming language matters, my attempts to solve this problem have used C++.
Side note: I have found that a formula has been discovered that nearly solves this problem, but it is only an approximation. Note that the formula calculates the average rather than the sum, so it would just need to be multiplied by n^2. If the formula could be expanded to reduce the error, it might work, but from what I can tell, I'm not sure if this is possible.
Using Stern-Brocot, due to symmetry, we can look at just one of the four subtrees rooted at 1/3, 2/3, 3/2 or 3/1. The time complexity is still O(n^2) but obviously performs less calculations. The version below uses the subtree rooted at 2/3 (or at least that's the one I looked at to think through :). Also note, we only care about the denominators there since the numerators are lower. Also note the code relies on rules 2 and 3 as well.
C++ code (takes about a tenth of a second for n = 10,000):
#include <iostream>
using namespace std;
long g(int n, int l, int mid, int r, int fromL, int turns){
long right = 0;
long left = 0;
if (mid + r <= n)
right = g(n, mid, mid + r, r, 1, turns + (1^fromL));
if (mid + l <= n)
left = g(n, l, mid + l, mid, 0, turns + fromL);
// Multiples
int k = n / mid;
// This subtree is rooted at 2/3
return 4 * k * turns + left + right;
}
long f(int n) {
// 1/1, 2/2, 3/3 etc.
long total = n;
// 1/2, 2/4, 3/6 etc.
if (n > 1)
total += 3 * (n >> 1);
if (n > 2)
// Technically 3 turns for 2/3 but
// we can avoid a subtraction
// per call by starting with 2. (I
// guess that means it could be
// another subtree, but I haven't
// thought it through.)
total += g(n, 2, 3, 1, 1, 2);
return total;
}
int main() {
cout << f(10000);
return 0;
}
I think this is a hard problem. We can avoid division and reduce the space usage to linear at least via the Stern--Brocot tree.
def f(n, a, b, r):
return r if a + b > n else r + f(n, a + b, b, r) + f(n, a + b, a, r + 1)
def R_sum(n):
return sum(f(n, d, d, 1) for d in range(1, n + 1))
def R(a, b):
return 1 + R(b, a % b) if b else 0
def test(n):
print(R_sum(n))
print(sum(R(a, b) for a in range(1, n + 1) for b in range(1, n + 1)))
test(100)

What is the fastest algorithm for intersection of two sorted lists?

Say that there are two sorted lists: A and B.
The number of entries in A and B can vary. (They can be very small/huge. They can be similar to each other/significantly different).
What is the known to be the fastest algorithm for this functionality?
Can any one give me an idea or reference?
Assume that A has m elements and B has n elements, with m ≥ n. Information theoretically, the best we can do is
(m + n)!
lg -------- = n lg (m/n) + O(n)
m! n!
comparisons, since in order to verify an empty intersection, we essentially have to perform a sorted merge. We can get within a constant factor of this bound by iterating through B and keeping a "cursor" in A indicating the position at which the most recent element of B should be inserted to maintain sorted order. We use exponential search to advance the cursor, for a total cost that is on the order of
lg x_1 + lg x_2 + ... + lg x_n,
where x_1 + x_2 + ... + x_n = m + n is some integer partition of m. This sum is O(n lg (m/n)) by the concavity of lg.
I don't know if this is the fastest option but here's one that runs in O(n+m) where n and m are the sizes of your lists:
Loop over both lists until one of them is empty in the following way:
Advance by one on one list.
Advance on the other list until you find a value that is either equal or greater than the current value of the other list.
If it is equal, the element belongs to the intersection and you can append it to another list
If it is greater that the other element, advance on the other list until you find a value equal or greater than this value
as said, repeat this until one of the lists is empty
Here is a simple and tested Python implementation that uses bisect search to advance pointers of both lists.
It assumes both input lists are sorted and contain no duplicates.
import bisect
def compute_intersection_list(l1, l2):
# A is the smaller list
A, B = (l1, l2) if len(l1) < len(l2) else (l2, l1)
i = 0
j = 0
intersection_list = []
while i < len(A) and j < len(B):
if A[i] == B[j]:
intersection_list.append(A[i])
i += 1
j += 1
elif A[i] < B[j]:
i = bisect.bisect_left(A, B[j], lo=i+1)
else:
j = bisect.bisect_left(B, A[i], lo=j+1)
return intersection_list
# test on many random cases
import random
MM = 100 # max value
for _ in range(10000):
M1 = random.randint(0, MM) # random max value
N1 = random.randint(0, M1) # random number of values
M2 = random.randint(0, MM) # random max value
N2 = random.randint(0, M2) # random number of values
a = sorted(random.sample(range(M1), N1)) # sampling without replacement to have no duplicates
b = sorted(random.sample(range(M2), N2))
assert compute_intersection_list(a, b) == sorted(set(a).intersection(b))

Given k sorted numbers, what is the minimum cost to turn them into consecutive numbers?

Suppose, we are given a sorted list of k numbers. Now, we want to convert this sorted list into a list having consecutive numbers. The only operation allowed is that we can increase/decrease a number by one. Performing every such operation will result in increasing the total cost by one.
Now, how to minimize the total cost while converting the list as mentioned?
One idea that I have is to get the median of the sorted list and arrange the numbers around the median. After that just add the absolute difference between the corresponding numbers in the newly created list and the original list. But, this is just an intuitive method. I don't have any proof of it.
P.S.:
Here's an example-
Sorted list: -96, -75, -53, -24.
We can convert this list into a consecutive list by various methods.
The optimal one is: -58, -59, -60, -61
Cost: 90
This is a sub-part of a problem from Topcoder.
Let's assume that the solution is in increasing order and m, M are the minimum and maximum value of the sorted list. The other case will be handled the same way.
Each solution is defined by the number assigned to the first element. If this number is very small then increasing it by one will reduce the cost. We can continue increasing this number until the cost grows. From this point the cost will continuously grow. So the optimum will be a local minimum and we can find it by using binary search. The range we are going to search will be [m - n, M + n] where n is the number of elements:
l = [-96, -75, -53, -24]
# Cost if initial value is x
def cost(l, x):
return sum(abs(i - v) for i, v in enumerate(l, x))
def find(l):
a, b = l[0] - len(l), l[-1] + len(l)
while a < b:
m = (a + b) / 2
if cost(l, m + 1) >= cost(l, m) <= cost(l, m - 1): # Local minimum
return m
if cost(l, m + 1) < cost(l, m):
a = m + 1
else:
b = m - 1
return b
Testing:
>>> initial = find(l)
>>> range(initial, initial + len(l))
[-60, -59, -58, -57]
>>> cost(l, initial)
90
Here is a simple solution:
Let's assume that these numbers are x, x + 1, x + n - 1. Then the cost is sum i = 0 ... n - 1 of abs(a[i] - (x + i)). Let's call it f(x).
f(x) is piece-wise linear and it approaches infinity as x approaches +infinity or -infinity. It means that its minimum is reached in one of the end points.
The end points are a[0], a[1] - 1, a[2] - 2, ..., a[n - 1] - (n - 1). So we can just try all of them and pick the best.

How can I find a faster algorithm for this special case of Longest Common Sub-sequence (LCS)?

I know the LCS problem need time ~ O(mn) where m and n are length of two sequence X and Y respectively. But my problem is a little bit easier so I expect a faster algorithm than ~O(mn).
Here is my problem:
Input:
a positive integer Q, two sequence X=x1,x2,x3.....xn and Y=y1,y2,y3...yn, both of length n.
Output:
True, if the length of the LCS of X and Y is at least n - Q;
False, otherwise.
The well-known algorithm costs O(n^2) here, but actually we can do better than that. Because whenever we eliminate as many as Q elements in either sequence without finding a common element, the result returns False. Someone said there should be an algorithm as good as O(Q*n), but I cannot figure out.
UPDATE:
Already found an answer!
I was told I can just calculate the diagonal block of the table c[i,j], because if |i-j|>Q, means there are already more than Q unmatched elements in both sequences. So we only need to calculate the c[i,j] when |i-j|<=Q.
Here is one possible way to do it:
1. Let's assume that f(prefix_len, deleted_cnt) is the leftmost position in Y such that prefix_len elements of X were already processed and exactly deleted_cnt of them were deleted. Obviously, there are only O(N * Q) states because deleted_cnt cannot exceed Q.
2. The base case is f(0, 0) = 0(nothing was processed, thus nothing was deleted).
3. Transitions:
a) Remove the current element: f(i + 1, j + 1) = min(f(i + 1, j + 1), f(i, j)).
b) Match the current element with the leftmost possible element from Y that is equal to it and located after f(i, j)(let's assume that it has index pos): f(i + 1, j) = min(f(i + 1, j), pos).
4. So the only question remaining is how to get the leftmost matching element located to the right from a given position. Let's precompute the following pairs: (position in Y, element of X) -> the leftmost occurrence of the element of Y equal to this element of X to the right from this position in Y and put them into a hash table. It looks like O(n^2). But is not. For a fixed position in Y, we never need to go further to the right from it than by Q + 1 positions. Why? If we go further, we skip more than Q elements! So we can use this fact to examine only O(N * Q) pairs and get desired time complexity. When we have this hash table, finding pos during the step 3 is just one hash table lookup. Here is a pseudo code for this step:
map = EmptyHashMap()
for i = 0 ... n - 1:
for j = i + 1 ... min(n - 1, i + q + 1)
map[(i, Y[j])] = min(map[(i, Y[j])], j)
Unfortunately, this solution uses hash tables so it has O(N * Q) time complexity on average, not in the worst case, but it should be feasible.
You can also say cost of the process to make the string equal must not be greater than Q.if it greater than Q than answer must be false.(EDIT DISTANCE PROBLEM)
Suppose of the of string x is m, and the size of string y is n, then we create a two dimensional array d[0..m][0..n], where d[i][j] denotes the edit distance between the i-length prefix of x and j-length prefix of y.
The computation of array d is done using dynamic programming, which uses the following recurrence:
d[i][0] = i , for i <= m
d[0][j] = j , for j <= n
d[i][j] = d[i - 1][j - 1], if s[i] == w[j],
d[i][j] = min(d[i - 1][j] + 1, d[i][j - 1] + 1, d[i - 1][j - 1] + 1), otherwise.
answer of LCS if m>n, m-dp[m][m-n]

The expected number of inversions--From Introduction to Algorithms by Cormen

Let A[1 .. n] be an array of n distinct numbers. If i < j and A[i] > A[j], then the pair (i, j) is called an inversion of A. (See Problem 2-4 for more on inversions.) Suppose that each element of A is chosen randomly, independently, and uniformly from the range 1 through n. Use indicator random variables to compute the expected number of inversions.
The problem is from exercise 5.2-5 in Introduction to Algorithms by Cormen. Here is my recursive solution:
Suppose x(i) is the number of inversions in a[1..i], and E(i) is the expected value of x(i), then E(i+1) can be computed as following:
Image we have i+1 positions to place all the numbers, if we place i+1 on the first position, then x(i+1) = i + x(i); if we place i+1 on the second position, then x(i+1) = i-1 + x(i),..., so E(i+1) = 1/(i+1)* sum(k) + E(i), where k = [0,i]. Finally we get E(i+1) = i/2 + E(i).
Because we know that E(2) = 0.5, so recursively we get: E(n) = (n-1 + n-2 + ... + 2)/2 + 0.5 = n* (n-1)/4.
Although the deduction above seems to be right, but I am still not very sure of that. So I share it here.
If there is something wrong, please correct me.
All the solutions seem to be correct, but the problem says that we should use indicator random variables. So here is my solution using the same:
Let Eij be the event that i < j and A[i] > A[j].
Let Xij = I{Eij} = {1 if (i, j) is an inversion of A
0 if (i, j) is not an inversion of A}
Let X = Σ(i=1 to n)Σ(j=1 to n)(Xij) = No. of inversions of A.
E[X] = E[Σ(i=1 to n)Σ(j=1 to n)(Xij)]
= Σ(i=1 to n)Σ(j=1 to n)(E[Xij])
= Σ(i=1 to n)Σ(j=1 to n)(P(Eij))
= Σ(i=1 to n)Σ(j=i + 1 to n)(P(Eij)) (as we must have i < j)
= Σ(i=1 to n)Σ(j=i + 1 to n)(1/2) (we can choose the two numbers in
C(n, 2) ways and arrange them
as required. So P(Eij) = C(n, 2) / n(n-1))
= Σ(i=1 to n)((n - i)/2)
= n(n - 1)/4
Another solution is even simpler, IMO, although it does not use "indicator random variables".
Since all of the numbers are distinct, every pair of elements is either an inversion (i < j with A[i] > A[j]) or a non-inversion (i < j with A[i] < A[j]). Put another way, every pair of numbers is either in order or out of order.
So for any given permutation, the total number of inversions plus non-inversions is just the total number of pairs, or n*(n-1)/2.
By symmetry of "less than" and "greater than", the expected number of inversions equals the expected number of non-inversions.
Since the expectation of their sum is n*(n-1)/2 (constant for all permutations), and they are equal, they are each half of that or n*(n-1)/4.
[Update 1]
Apparently my "symmetry of 'less than' and 'greater than'" statement requires some elaboration.
For any array of numbers A in the range 1 through n, define ~A as the array you get when you subtract each number from n+1. For example, if A is [2,3,1], then ~A is [2,1,3].
Now, observe that for any pair of numbers in A that are in order, the corresponding elements of ~A are out of order. (Easy to show because negating two numbers exchanges their ordering.) This mapping explicitly shows the symmetry (duality) between less-than and greater-than in this context.
So, for any A, the number of inversions equals the number of non-inversions in ~A. But for every possible A, there corresponds exactly one ~A; when the numbers are chosen uniformly, both A and ~A are equally likely. Therefore the expected number of inversions in A equals the expected number of inversions in ~A, because these expectations are being calculated over the exact same space.
Therefore the expected number of inversions in A equals the expected number of non-inversions. The sum of these expectations is the expectation of the sum, which is the constant n*(n-1)/2, or the total number of pairs.
[Update 2]
A simpler symmetry: For any array A of n elements, define ~A as the same elements but in reverse order. Associate the element at position i in A with the element at position n+1-i in ~A. (That is, associate each element with itself in the reversed array.)
Now any inversion in A is associated with a non-inversion in ~A, just as with the construction in Update 1 above. So the same argument applies: The number of inversions in A equals the number of inversions in ~A; both A and ~A are equally likely sequences; etc.
The point of the intuition here is that the "less than" and "greater than" operators are just mirror images of each other, which you can see either by negating the arguments (as in Update 1) or by swapping them (as in Update 2). So the expected number of inversions and non-inversions is the same, since you cannot tell whether you are looking at any particular array through a mirror or not.
Even simpler (similar to Aman's answer above, but perhaps clearer) ...
Let Xij be a random variable with Xij=1 if A[i] > A[j] and Xij=0 otherwise.
Let X=sum(Xij) over i, j where i < j
Number of pairs (ij)*: n(n-1)/2
Probability that Xij=1 (Pr(Xij=1))): 1/2
By linearity of expectation**: E(X) = E(sum(Xij))
= sum(E(Xij))
= sum(Pr(Xij=1))
= n(n-1)/2 * 1/2
= n(n-1)/4
* I think of this as the size of the upper triangle of a square matrix.
** All sums here are over i, j, where i < j.
I think it's right, but I think the proper way to prove it is to use conditionnal expectations :
for all X and Y we have : E[X] =E [E [X|Y]]
then in your case :
E(i+1) = E[x(i+1)] = E[E[x(i+1) | x(i)]] = E[SUM(k)/(1+i) + x(i)] = i/2 + E[x(i)] = i/2 + E(i)
about the second statement :
if :
E(n) = n* (n-1)/4.
then E(n+1) = (n+1)*n/4 = (n-1)*n/4 + 2*n/4 = (n-1)*n/4 + n/2 = E(n) +n/2
So n* (n-1)/4. verify the recursion relation for all n >=2 and it verifies it for n=2
So E(n) = n*(n-1)/4
Hope I understood your problem and it helps
Using indicator random variables:
Let X = random variable which is equal to the number of inversions.
Let Xij = 1 if A[i] and A[j] form an inversion pair, and Xij = 0 otherwise.
Number of inversion pairs = Sum over 1 <= i < j <= n of (Xij)
Now P[Xij = 1] = P[A[i] > A[j]] = (n choose 2) / (2! * n choose 2) = 1/2
E[X] = E[sum over all ij pairs such that i < j of Xij] = sum over all ij pairs such that i < j of E[Xij] = n(n - 1) / 4

Resources