Recompile Linux Kernel not to use specific CPU register - linux-kernel

I'm doing an experiment that write the index of loop into a CPU register R11, then building it with gcc -ffixed-r11 try to let compiler know do not use that reg, and finally using perf to measure it.
But when I check the report (using perf script), the R11 value of most record entry is not what I expected, it supposed to be the number sequence like 1..2..3 or 1..4..7, etc. But actually it just a few fixed value. (possibly affected by system call overwriting?)
How can I let perf records the value I set to the register in my program? Or I must to recompile the whole kernel with -ffixed-r11 to achieve?
Thanks everyone.

You should not try to recompile kernel when you just want to sample some register with perf. As I understand, kernel has its own set of registers and will not overwrite user R11. syscall interface uses some fixed registers which can't be changed (can you try different reg?) and there are often glibc gateways to syscall which may use some additional registers (they are not in kernel, they are user-space code; often generated or written in assembler). You may try using gdb to monitor the register to change to find who did it. It can do this (hmm, one more link to the same user on SO): gdb: breakpoint when register will have value 0xffaa like gdb ./program then gdb commands start; watch $r11; continue; where.
Two weeks age there was question perf-report show value of CPU register about register value sampling with perf:
I follow this document and using perf record with --intr-regs=ax,bx,r15, trying to log additional CPU register information with PEBS record.
While there was x86 & PEBS, ARM may have --intr-regs implemented too. Check output of perf record --intr-regs=\? (man perf-record: "To list the available registers use --intr-regs=\?") to find support status and register names.
To print registers, use perf script -F ip,sym,iregs command. There was example in some linux commits:
# perf record --intr-regs=AX,SP usleep 1
[ perf record: Woken up 1 times to write data ]
[ perf record: Captured and wrote 0.016 MB perf.data (8 samples) ]
# perf script -F ip,sym,iregs | tail -5
ffffffff8105f42a native_write_msr_safe AX:0xf SP:0xffff8802629c3c00
ffffffff8105f42a native_write_msr_safe AX:0xf SP:0xffff8802629c3c00
ffffffff81761ac0 _raw_spin_lock AX:0xffff8801bfcf8020 SP:0xffff8802629c3ce8
ffffffff81202bf8 __vma_adjust_trans_huge AX:0x7ffc75200000 SP:0xffff8802629c3b30
ffffffff8122b089 dput AX:0x101 SP:0xffff8802629c3c78
#

If you need cycle accurate profile of to the metal CPU activity then perf is not the right tool, as it is at best an approximation due to the fact it only samples the program at select points. See this video on perf by Clang developer Chandler Carruth.
Instead, you should single step through the program in order to monitor exactly what is happening to the registers. Or you could program your system bare metal without an OS, but that is probably outside the scope here.

Related

Reading performance registers from the kernel

I want to read certain performance counters. I know that there are tools like perf, that can do it for me in the user space itself, I want the code to be inside the Linux kernel.
I want to write a mechanism to monitor performance counters on Intel(R) Core(TM) i7-3770 CPU. On top of using I am using Ubuntu kernel 4.19.2. I have gotten the following method from easyperf
Here's part of my code to read instructions.
struct perf_event_attr *attr
memset (&pe, 0, sizeof (struct perf_event_attr));
pe.type = PERF_TYPE_HARDWARE;
pe.size = sizeof (struct perf_event_attr);
pe.config = PERF_COUNT_HW_INSTRUCTIONS;
pe.disabled = 0;
pe.exclude_kernel = 0;
pe.exclude_user = 0;
pe.exclude_hv = 0;
pe.exclude_idle = 0;
fd = syscall(__NR_perf_event_open, hw, pid, cpu, grp, flags);
uint64_t perf_read(int fd) {
uint64_t val;
int rc;
rc = read(fd, &val, sizeof(val));
assert(rc == sizeof(val));
return val;
}
I want to put the same lines in the kernel code (in the context switch function) and check the values being read.
My end goal is to figure out a way to read performance counters for a process, every time it switches to another, from the kernel(4.19.2) itself.
To achieve this I check out the code for the system call number __NR_perf_event_open. It can be found here
To make to usable I copied the code inside as a separate function, named it perf_event_open() in the same file and exported.
Now the problem is whenever I call perf_event_open() in the same way as above, the descriptor returned is -2. Checking with the error codes, I figured out that the error was ENOENT. In the perf_event_open() man page, the cause of this error is defined as wrong type field.
Since file descriptors are associated to the process that's opened them, how can one use them from the kernel? Is there an alternative way to configure the pmu to start counting without involving file descriptors?
You probably don't want the overhead of reprogramming a counter inside the context-switch function.
The easiest thing would be to make system calls from user-space to program the PMU (to count some event, probably setting it to count in kernel mode but not user-space, just so the counter overflows less often).
Then just use rdpmc twice (to get start/stop counts) in your custom kernel code. The counter will stay running, and I guess the kernel perf code will handle interrupts when it wraps around. (Or when its PEBS buffer is full.)
IDK if it's possible to program a counter so it just wraps without interrupting, for use-cases like this where you don't care about totals or sample-based profiling, and just want to use rdpmc. If so, do that.
Old answer, addressing your old question which was based on a buggy printf format string that was printing non-zero garbage even though you weren't counting anything in user-space either.
Your inline asm looks correct, so the question is what exactly that PMU counter is programmed to count in kernel mode in the context where your code runs.
perf virtualizes the PMU counters on context-switch, giving the illusion of perf stat counting a single process even when it migrates across CPUs. Unless you're using perf -a to get system-wide counts, the PMU might not be programmed to count anything, so multiple reads would all give 0 even if at other times it's programmed to count a fast-changing event like cycles or instructions.
Are you sure you have perf set to count user + kernel events, not just user-space events?
perf stat will show something like instructions:u instead of instructions if it's limiting itself to user-space. (This is the default for non-root if you haven't lowered sysctl kernel.perf_event_paranoid to 0 or something from the safe default that doesn't let user-space learn anything about the kernel.)
There's HW support for programming a counter to only count when CPL != 0 (i.e. not in ring 0 / kernel mode). Higher values for kernel.perf_event_paranoid restrict the perf API to not allow programming counters to count in kernel+user mode, but even with paranoid = -1 it's possible to program them this way. If that's how you programmed a counter, then that would explain everything.
We need to see your code that programs the counters. That doesn't happen automatically.
The kernel doesn't just leave the counters running all the time when no process has used a PAPI function to enable a per-process or system-wide counter; that would generate interrupts that slow the system down for no benefit.

How can I capture combined kernel and userspace stacks with perf

I'm trying to capture combined user and kernel stacks with perf, so I can see which user space code produces are particular kernel call chain.
Basically I want to create a flamegraph looking like this:
Unfortunately all my kernel stacks end at entry_SYSCALL_64_fastpath and there is no connection to the userspace stacks.
I'm using perf record -g --call-graph dwarf -F 99 --pid 12345 to capture. I have debug symbols for the kernel, libc and my program.
This is kernel 4.8.14 on a Fedora 25 system.
Try bcc utilities that use BPF technology. Take a look at profile util.
https://github.com/iovisor/bcc/blob/master/docs/tutorial.md

Retrieve RISC-V processor context after execution in FPGA

I'm loading RISC-V into a Zedboard and I'm running a benchmark (provided in riscv-tools) without booting riscv-linux, in this case:
./fesvr-zynq median.riscv
It finishes without errors, giving as result the number of cycles and instret.
My problem is that I want more information, I would like to know the processor context after the execution (register bank values and memory) as well as the result given by the algorithm. Is there any way to know this from the FPGA execution? I know that it can be done with the simulator but I need to run it on FPGA.
Thank you.
Do it the same way it gives you the cycles and instret data. Check out riscv-tests/benchmarks/common/*. The code is running bare metal so you can write whatever code you want and access any of the CSRs, registers or memory, and then you can use a basic version of printf to display the information.

getting system time in Vxworks

is there anyways to get the system time in VxWorks besides tickGet() and tickAnnounce? I want to measure the time between the task switches of a specified task but I think the precision of tickGet() is not good enough because the the two tickGet() values at the beggining and the end of taskSwitchHookAdd function is always the same!
If you are looking to try and time task switches, I would assume you need a timer at least at the microsecond (us) level.
Usually, timers/clocks this fine grained are only provided by the platform you are running on. If you are working on an embedded system, you can try and read thru the manuals for your board support package (if there is one) to see if there are any functions provided to access various timers on a board.
A more low level solution would be to figure out the processor that is running on your system and then write some simple assembly code to poll the processor's internal timebase register (TBR). This might require a bit of research on the processor you are running on, but could be easily done.
If you are running on a PPC based processor, you can use the code below to read the TBR:
loop: mftbu rx #load most significant half from TBU
mftbl ry #load least significant half from TBL
mftbu rz #load from TBU again
cmpw rz,rx #see if 'old' = 'new'
bne loop #repeat if two values read from TBU are unequal
On an x86 based processor, you might consider using the RDTSC assembly instruction to read the Time Stamp Counter (TSC). On vxWorks, pentiumALib has some library functions (pentiumTscGet64() and pentiumTscGet32()) that will make reading the TSC easier using C.
source: http://www-inteng.fnal.gov/Integrated_Eng/GoodwinDocs/pdf/Sys%20docs/PowerPC/PowerPC%20Elapsed%20Time.pdf
Good luck!
It depends on what platform you are on, but if it is x86 then you can use:
pentiumTscGet64();

Can I dump/modify the content of x86 CPU cache/TLB

any apps or the system kernel can access or even modify the content of CPU cahce and/or TLB?
I found a short description about the CPU cache from this webiste:
"No programming language has direct access to CPU cache. Reading and writing the cache is something done automatically by the hardware; there's NO way to write instructions which treat the cache as any kind of separate entity. Reads and writes to the cache happen as side-effect to all instructions that touch memory."
From this message, it seems there is no way to read/write the content of CPU cahce/TLB.
However, I also got another information that conflicts with the above one. That information implies that a debug tool may be able to dump/show the content of CPU cache.
Currently I'm confused. so please help me.
I got some answers from another post: dump the contents of TLB buffer of x86 CPU. Thanks adamdunson.
People could read this document about test registers, but it is only available on very old x86 machines test registers
Another descriptions from wiki https://en.wikipedia.org/wiki/Test_register:
A test register, in the Intel 80486 processor, was a register used by
the processor, usually to do a self-test. Most of these registers were
undocumented, and used by specialized software. The test registers
were named TR3 to TR7. Regular programs don't usually require these
registers to work. With the Pentium, the test registers were replaced
by a variety of model-specific registers (MSRs).
Two test registers, TR6 and TR7, were provided for the purpose of
testing. TR6 was the test command register, and TR7 was the test data
register. These registers were accessed by variants of the MOV
instruction. A test register may either be the source operand or the
destination operand. The MOV instructions are defined in both
real-address mode and protected mode. The test registers are
privileged resources. In protected mode, the MOV instructions that
access them can only be executed at privilege level 0. An attempt to
read or write the test registers when executing at any other privilege
level causes a general protection exception. Also, those instructions
generate invalid opcode exception on any CPU newer than 80486.
In fact, I'm still expecting some similar functions on Intel i7 or i5. Unfortunately, I do not find any related document about that. If anyone has such information, please let me know.

Resources