Sub-sequence of Vowels - algorithm

I was practicing for an interview and came across this question on a website:
A magical sub-sequence of a string S is a sub-sequence of S that
contains all five vowels in order. Find the length of largest magical sub-sequence of a string S.
For example, if S = aeeiooua, then aeiou and aeeioou are magical sub-sequences
but aeio and aeeioua are not.
I am a beginner in dynamic programming and am finding it hard to come up with a recursive formula for this.

I did it with an iterative approach rather than recursive one. I started building solution similar to LIS (Longest Increasing Subsequence) and then optimised it upto O(n).
#include<iostream>
#include<string>
#include<vector>
using namespace std;
string vowel = "aeiou";
int vpos(char c)
{
for (int i = 0; i < 5; ++i)
if (c == vowel[i])
return i;
return -1;
}
int magical(string s)
{
int l = s.length();
int previndex[5] = {-1, -1, -1, -1, -1}; // for each vowel
vector<int> len (l, 0);
int i = 0, maxlen = 0;
// finding first 'a'
while (s[i] != 'a')
{
++i;
if (i == l)
return 0;
}
previndex[0] = i; //prev index of 'a'
len[i] = 1;
for ( ++i; i < l; ++i)
{
if (vpos(s[i]) >= 0) // a vowel
{
/* Need to append to longest subsequence on its left, only for this vowel (for any vowels) and
* its previous vowel (if it is not 'a')
This important observation makes it O(n) -- differnet from typical LIS
*/
if (previndex[vpos(s[i])] >= 0)
len[i] = 1+len[previndex[vpos(s[i])]];
previndex[vpos(s[i])] = i;
if (s[i] != 'a')
{
if (previndex[vpos(s[i])-1] >= 0)
len[i] = max(len[i], 1+len[previndex[vpos(s[i])-1]]);
}
maxlen = max(maxlen, len[i]);
}
}
return maxlen;
}
int main()
{
string s = "aaejkioou";
cout << magical(s);
return 0;
}

O(input string length) runtime
import java.util.*;
public class Main {
/*
algo:
keep map of runningLongestSubsequence that ends in each letter. loop through String s. for each char, try appending
to runningLongestSubsequence for that char, as well as to runningLongestSubsequence for preceding char.
update map with whichever results in longer subsequence.
for String s = "ieaeiouiaooeeeaaeiou", final map is:
terminal letter in longest running subsequence-> longest running subsequence
a -> aaaa
e -> aeeeee
i -> aeeeeei
o -> aeeeeeio
u -> aeeeeeiou
naming:
precCharMap - precedingCharMap
runningLongestSubMap - runningLongestSubsequenceMap
*/
public static int longestSubsequence(String s) {
if (s.length() <= 0) throw new IllegalArgumentException();
Map<Character, Character> precCharMap = new HashMap<>();
precCharMap.put('u', 'o');
precCharMap.put('o', 'i');
precCharMap.put('i', 'e');
precCharMap.put('e', 'a');
Map<Character, String> runningLongestSubMap = new HashMap<>();
for (char currChar : s.toCharArray()) {
//get longest subs
String currCharLongestSub;
String precCharLongestSub = null;
if (currChar == 'a') {
currCharLongestSub = runningLongestSubMap.getOrDefault(currChar, "");
} else {
currCharLongestSub = runningLongestSubMap.get(currChar);
char precChar = precCharMap.get(currChar);
precCharLongestSub = runningLongestSubMap.get(precChar);
}
//update running longest subsequence map
if (precCharLongestSub == null && currCharLongestSub != null) {
updateRunningLongestSubMap(currCharLongestSub, currChar, runningLongestSubMap);
} else if (currCharLongestSub == null && precCharLongestSub != null) {
updateRunningLongestSubMap(precCharLongestSub, currChar, runningLongestSubMap);
} else if (currCharLongestSub != null && precCharLongestSub != null) {
//pick longer
if (currCharLongestSub.length() < precCharLongestSub.length()) {
updateRunningLongestSubMap(precCharLongestSub, currChar, runningLongestSubMap);
} else {
updateRunningLongestSubMap(currCharLongestSub, currChar, runningLongestSubMap);
}
}
}
if (runningLongestSubMap.get('u') == null) {
return 0;
}
return runningLongestSubMap.get('u').length();
}
private static void updateRunningLongestSubMap(String longestSub, char currChar,
Map<Character, String> runningLongestSubMap) {
String currCharLongestSub = longestSub + currChar;
runningLongestSubMap.put(currChar, currCharLongestSub);
}
public static void main(String[] args) {
//String s = "aeeiooua"; //7
//String s = "aeiaaioooaauuaeiou"; //10
String s = "ieaeiouiaooeeeaaeiou"; //9
//String s = "ieaeou"; //0
//String s = "ieaeoooo"; //0
//String s = "aeiou"; //5
//if u have String s beginning in "ao", it'll do nothing with o and
//continue on to index 2.
System.out.println(longestSubsequence(s));
}
}

#include <iostream>
#include<string>
#include<cstring>
using namespace std;
unsigned int getcount(string a, unsigned int l,unsigned int r );
int main()
{
std::string a("aaaaaeeeeaaaaiiioooeeeeuuuuuuiiiiiaaaaaaoo"
"oooeeeeiiioooouuuu");
//std::string a("aaaaaeeeeaaaaiiioooeeeeuuuuuuiiiiiaaaaaaoooooeeeeiiioooo");
//std::string a("aaaaaeeeeaaaaiiioooeeeeiiiiiaaaaaaoooooeeeeiiioooo"); //sol0
//std::string a{"aeiou"};
unsigned int len = a.length();
unsigned int i=0,cnt =0,countmax =0;
bool newstring = true;
while(i<len)
{
if(a.at(i) == 'a' && newstring == true)
{
newstring = false;
cnt = getcount(a,i,len);
if(cnt > countmax)
{
countmax = cnt;
cnt = 0;
}
}
else if(a.at(i)!='a')
{
newstring = true;
}
i++;
}
cout<<countmax;
return 0;
}
unsigned int getcount(string a, unsigned int l,unsigned int r )
{
std::string b("aeiou");
unsigned int seq=0,cnt =0;
unsigned int current =l;
bool compstr = false;
while(current<r)
{
if(a.at(current) == b.at(seq))
{
cnt++;
}
else if((seq <= (b.size()-2)) && (a.at(current) == b.at(seq+1)))
{
seq++;
cnt++;
if (seq == 4)
compstr =true;
}
current++;
}
if (compstr == true)
return cnt;
return 0;
}

you can use recursive approach here (this should work for string length upto max int (easily memorization can be used)
public class LMV {
static final int NOT_POSSIBLE = -1000000000;
// if out put is this i.e soln not possible
static int longestSubsequence(String s, char[] c) {
//exit conditions
if(s.length() ==0 || c.length ==0){
return 0;
}
if(s.length() < c.length){
return NOT_POSSIBLE;
}
if(s.length() == c.length){
for(int i=0; i<s.length(); i++){
if(s.charAt(i) !=c [i]){
return NOT_POSSIBLE;
}
}
return s.length();
}
if(s.charAt(0) < c[0]){
// ignore, go ahead with next item
return longestSubsequence(s.substring(1), c);
} else if (s.charAt(0) == c[0]){
// <case 1> include item and start search for next item in chars
// <case 2> include but search for same item again in chars
// <case 3> don't include item
return Math.max(
Math.max( ( 1+longestSubsequence(s.substring(1), Arrays.copyOfRange(c, 1, c.length) ) ),
( 1+longestSubsequence(s.substring(1), c ) ) ),
( longestSubsequence(s.substring(1), c )) );
} else {
//ignore
return longestSubsequence(s.substring(1), c);
}
}
public static void main(String[] args) {
char[] chars = {'a', 'e', 'i', 'o', 'u'};
String s1 = "aeio";
String s2 = "aaeeieou";
String s3 = "aaeeeieiioiiouu";
System.out.println(longestSubsequence(s1, chars));
System.out.println(longestSubsequence(s2, chars));
System.out.println(longestSubsequence(s3, chars));
}
}

int func( char *p)
{
char *temp = p;
char ae[] = {'a','e','i','o','u'};
int size = strlen(p), i = 0;
int chari = 0, count_aeiou=0;
for (i=0;i<=size; i++){
if (temp[i] == ae[chari]) {
count_aeiou++;
}
else if ( temp[i] == ae[chari+1]) {
count_aeiou++;
chari++;
}
}
if (chari == 4 ) {
printf ("Final count : %d ", count_aeiou);
} else {
count_aeiou = 0;
}
return count_aeiou;
}
The solution to retrun the VOWELS count as per the hackerrank challenge.

int findsubwithcontinuousvowel(string str){
int curr=0;
int start=0,len=0,maxlen=0,i=0;
for(i=0;i<str.size();i++){
if(str[i]=='u' && (current[curr]=='u' || (curr+1<5 && current[curr+1]=='u'))){
//len++;
maxlen=max(len+1,maxlen);
}
if(str[i]==current[curr]){
len++;
}
else if(curr+1<5 && str[i]==current[curr+1]){
len++;
curr++;
}
else{
len=0;
curr=0;
if(str[i]=='a'){
len=1;
}
}
}
return maxlen;
}

Check if vowels are available in sequence in isInSequence and process the result on processor.
public class one {
private char[] chars = {'a','e','i','o','u'};
private int a = 0;
private boolean isInSequence(char c){
// check if char is repeating
if (c == chars[a]){
return true;
}
// if vowels are in sequence and just passed by 'a' and so on...
if (c == 'e' && a == 0){
a++;
return true;
}
if (c == 'i' && a == 1){
a++;
return true;
}
if (c == 'o' && a == 2){
a++;
return true;
}
if (c == 'u' && a == 3){
a++;
return true;
}
return false;
}
private char[] processor(char[] arr){
int length = arr.length-1;
int start = 0;
// In case if all chars are vowels, keeping length == arr
char array[] = new char[length];
for (char a : arr){
if (isInSequence(a)){
array[start] = a;
start++;
}
}
return array;
}
public static void main(String args[]){
char[] arr = {'m','a','e','l','x','o','i','o','u','a'};
one o = new one();
System.out.print(o.processor(arr));
}
}

#include <bits/stdc++.h>
#define ios ios::sync_with_stdio(NULL);cin.tie(NULL);cout.tie(NULL);
#define ll unsigned long long
using namespace std;
int main() {
// your code goes here
ios
string s;
cin>>s;
int n=s.length();
int dp[n+1][5]={0};
for(int i=1;i<=n;i++)
{
if(s[i-1]=='a')
{
dp[i][0]=1+dp[i-1][0];
dp[i][1]=dp[i-1][1];
dp[i][2]=dp[i-1][2];
dp[i][3]=dp[i-1][3];
dp[i][4]=dp[i-1][4];
}
else if(s[i-1]=='e')
{dp[i][0]=dp[i-1][0];
if(dp[i-1][0]>0)
{dp[i][1]=1+max(dp[i-1][1],dp[i-1][0]);}
else
dp[i-1][1]=0;
dp[i][2]=dp[i-1][2];
dp[i][3]=dp[i-1][3];
dp[i][4]=dp[i-1][4];
}
else if(s[i-1]=='i')
{dp[i][0]=dp[i-1][0];
if(dp[i-1][1]>0)
{dp[i][2]=1+max(dp[i-1][1],dp[i-1][2]);}
else
dp[i-1][2]=0;
dp[i][1]=dp[i-1][1];
dp[i][3]=dp[i-1][3];
dp[i][4]=dp[i-1][4];
}
else if(s[i-1]=='o')
{dp[i][0]=dp[i-1][0];
if(dp[i-1][2]>0)
{dp[i][3]=1+max(dp[i-1][3],dp[i-1][2]);}
else
dp[i-1][3]=0;
dp[i][2]=dp[i-1][2];
dp[i][1]=dp[i-1][1];
dp[i][4]=dp[i-1][4];
}
else if(s[i-1]=='u')
{dp[i][0]=dp[i-1][0];
if(dp[i-1][3]>0)
{dp[i][4]=1+max(dp[i-1][4],dp[i-1][3]);}
else
dp[i-1][4]=0;
dp[i][1]=dp[i-1][1];
dp[i][3]=dp[i-1][3];
dp[i][2]=dp[i-1][2];
}
else
{
dp[i][0]=dp[i-1][0];
dp[i][1]=dp[i-1][1];
dp[i][2]=dp[i-1][2];
dp[i][3]=dp[i-1][3];
dp[i][4]=dp[i-1][4];
}
}
cout<<dp[n][4];
return 0;
}

Related

my code creates undifined behaviour when I remove cout<<endl;

this is my header
/**
* Title: Trees
* Description: NgramTree class to count and store ngrams in a given string
*/
#ifndef NGRAMTREE_H
#define NGRAMTREE_H
#include <iostream>
#include <string>
using namespace std;
typedef string TreeItemType;
struct TreeNode {
TreeItemType item;
TreeNode *leftChildPtr, *rightChildPtr;
int count;
};
// NgramTree.h
class NgramTree {
public:
NgramTree();
~NgramTree();
void addNgram( string ngram );
int getTotalNgramCount();
bool isComplete();
bool isFull();
bool isFull(TreeNode* curr);
void generateTree( string fileName, int n );
ostream& print_recursive( ostream &out, TreeNode *curr );
ostream& print( ostream &out );
private:
// ...
TreeNode *root;
friend ostream& operator<<( ostream& out, NgramTree &tree );
void destroyTree(TreeNode *& treePtr);
int getTotalNgramCount(TreeNode *node);
};
#endif
this is the cpp
/**
* Title: Trees
* Assignment: 2
* Description: implementation of NgramTree class
*/
#include "NgramTree.h"
//empty constructor
NgramTree::NgramTree():root(NULL){};
//destructor
NgramTree::~NgramTree(){
destroyTree(root);
}
bool NgramTree::isFull(){
return isFull(root);
}
bool NgramTree::isFull(TreeNode* curr){
if(curr->leftChildPtr != NULL && curr->rightChildPtr != NULL ){
return isFull(curr->leftChildPtr) && isFull(curr->rightChildPtr);
}
// on leaf node
else if( curr->leftChildPtr == NULL && curr->rightChildPtr == NULL ){
return true;
}
else if( curr == NULL ){
return true;
}
//ever other condition
return false;
}
void NgramTree::addNgram( string ngram ){
if(root == NULL){
cout<<endl;
TreeNode *tmp = new TreeNode;
tmp->item = ngram;
tmp->count = 1;
root = tmp;
return;
}
for( TreeNode *curr = root; curr != NULL; ){
if( ngram.compare(curr->item) == 0){
curr->count++;
return;
}
else if( ngram.compare(curr->item) < 0 ){
// if the node is leaf or node has just right child we have to add ngram to the leftChildPtr
if( curr->leftChildPtr == NULL ){
TreeNode *tmp = new TreeNode;
tmp->item = ngram;
tmp->count = 1;
tmp->leftChildPtr = NULL;
tmp->rightChildPtr = NULL;
curr->leftChildPtr = tmp;
return;
}
else{
curr = curr->leftChildPtr;
}
}
else if( ngram.compare(curr->item) > 0 ){
// if the node is leaf or node has just left child we have to add ngram to //the leftChildPtr
if( curr->rightChildPtr == NULL ){
TreeNode *tmp = new TreeNode;
tmp->item = ngram;
tmp->count = 1;
tmp->leftChildPtr = NULL;
tmp->rightChildPtr = NULL;
curr->rightChildPtr = tmp;
return;
}
else{
curr = curr->rightChildPtr;
}
}
}
}
void NgramTree::generateTree( string fileName, int n ){
string s;
s = "";
//first loop to find words
for(size_t i = 0; i < fileName.length(); ++i){
if(fileName[i] != ' '){
s += fileName[i];
}
//after a word end there is a ' '
if(fileName[i] == ' ' || i == fileName.length()-1 ){
for(size_t j = 0; j <= s.length() - n; ++j ){
addNgram( s.substr(j,n) );
}
s = "";
}
}
}
int NgramTree::getTotalNgramCount(){
return getTotalNgramCount(root);
}
int NgramTree::getTotalNgramCount(TreeNode *node){
if( node != NULL){
// total count is node->count + count(leftSubTree) + count(rightSubTree)
return node->count
+ getTotalNgramCount(node->leftChildPtr)
+ getTotalNgramCount(node->rightChildPtr);
}
else{
return 0;
}
}
void NgramTree::destroyTree(TreeNode *&treePtr){
if (treePtr != NULL){
destroyTree(treePtr->leftChildPtr);
destroyTree(treePtr->rightChildPtr);
delete treePtr;
treePtr = NULL;
}
}
ostream& NgramTree::print_recursive( ostream &out, TreeNode *curr ) {
if( curr == NULL ) return out;
out<<endl;
out<<"item= "<<curr->item<<", frequency= "<<curr->count;
print_recursive(out, curr->leftChildPtr);
return print_recursive(out, curr->rightChildPtr);
}
ostream& NgramTree::print( ostream &out ){
TreeNode *tmp = root;
return print_recursive(out, tmp);
}
ostream& operator<<( ostream& out, NgramTree &tree ){
return tree.print(out);
}
int main(){
NgramTree t;
string s1 = "berkan naber";
int n1 = 3;
t.generateTree(s1, n1);
cout<<t.getTotalNgramCount();
cout<<t<<endl;
return 0;
}
when I remove cout<<endl from void NgramTree::addNgram( string ngram ) method I get undifined behaviour. I removed it and added in different line and it worked again. I also added it before the if statement and it worked again. What cout<<endl might change in method is it releated to function call stack may be? I am not even sure that the problem comes from this method? I am open to solutions that offering somthing to put instead of cout<<endl; which doesn't affect the terminal output unlike cout<<endl.

How to efficiently compute weird numbers

I am trying to print n weird numbers where n is really big number (eg: 10000).
I found this site to check the algorithm for n 600 if I have some errors:
http://www.numbersaplenty.com/set/weird_number/more.php
However, my algorithm is really slow in bigger numbers:
import java.util.ArrayList;
import java.util.List;
public class Test {
public static void main(String[] args) {
int n = 2;
for ( int count = 1 ; count <= 15000 ; n += 2 ) {
if (n % 6 == 0) {
continue;
}
List<Integer> properDivisors = getProperDivisors(n);
int divisorSum = properDivisors.stream().mapToInt(i -> i.intValue()).sum();
if ( isDeficient(divisorSum, n) ) {
continue;
}
if ( isWeird(n, properDivisors, divisorSum) ) {
System.out.printf("w(%d) = %d%n", count, n);
count++;
}
}
}
private static boolean isWeird(int n, List<Integer> divisors, int divisorSum) {
return isAbundant(divisorSum, n) && ! isSemiPerfect(divisors, n);
}
private static boolean isDeficient(int divisorSum, int n) {
return divisorSum < n;
}
private static boolean isAbundant(int divisorSum, int n) {
return divisorSum > n;
}
private static boolean isSemiPerfect(List<Integer> divisors, int sum) {
int size = divisors.size();
// The value of subset[i][j] will be true if there is a subset of divisors[0..j-1] with sum equal to i
boolean subset[][] = new boolean[sum+1][size+1];
// If sum is 0, then answer is true
for (int i = 0; i <= size; i++) {
subset[0][i] = true;
}
// If sum is not 0 and set is empty, then answer is false
for (int i = 1; i <= sum; i++) {
subset[i][0] = false;
}
// Fill the subset table in bottom up manner
for ( int i = 1 ; i <= sum ; i++ ) {
for ( int j = 1 ; j <= size ; j++ ) {
subset[i][j] = subset[i][j-1];
int test = divisors.get(j-1);
if ( i >= test ) {
subset[i][j] = subset[i][j] || subset[i - test][j-1];
}
}
}
return subset[sum][size];
}
private static final List<Integer> getProperDivisors(int number) {
List<Integer> divisors = new ArrayList<Integer>();
long sqrt = (long) Math.sqrt(number);
for ( int i = 1 ; i <= sqrt ; i++ ) {
if ( number % i == 0 ) {
divisors.add(i);
int div = number / i;
if ( div != i && div != number ) {
divisors.add(div);
}
}
}
return divisors;
}
}
I have three easy breakouts:
If a number is divisable by 6 it is semiperfect which means it cannot be weird
If a number is deficient this means it cannot be weird
The above points are based on https://mathworld.wolfram.com/DeficientNumber.html
If a a number is odd it cannot be weird at least for 10^21 numbers (which is good for the numbers I am trying to obtain).
The other optimization that I used is the optimization for finding all the dividers of a number. Instead of looping to n, we loop to SQRT(n).
However, I still need to optimize:
1. isSemiPerfect because it is really slow
2. If I can optimize further getProperDivisors it will be good too.
Any suggestions are welcome, since I cannot find any more optimizations to find 10000 weird numbers in reasonable time.
PS: Any code in Java, C#, PHP and JavaScript are OK for me.
EDIT: I found this topic and modified isSemiPerfect to look like this. However, it looks like it does not optimize but slow down the calculations:
private static boolean isSemiPerfect(List<Integer> divisors, int n) {
BigInteger combinations = BigInteger.valueOf(2).pow(divisors.size());
for (BigInteger i = BigInteger.ZERO; i.compareTo(combinations) < 0; i = i.add(BigInteger.ONE)) {
int sum = 0;
for (int j = 0; j < i.bitLength(); j++) {
sum += i.testBit(j) ? divisors.get(j) : 0;
}
if (sum == n) {
return true;
}
}
return false;
}
The issue is indeed in function isSemiPerfect. I transposed your code in C++, it was still quite slow.
Then I modified this function by using backtracking. I now obtain the first 15000 weird values in about 15s. My interpretation is that in about all the cases, the value is semiperfect, and the backtracking function converges rapidly.
Note also that in my backtracking implementation, I sort the divisors, which allow to reduce the number of cases to be examined.
Edit 1: an error was corrected in getProperDivisors. Final results did not seem to be modified !
#include <iostream>
#include <vector>
#include <cmath>
#include <numeric>
#include <algorithm>
// return true if sum is obtained
bool test_sum (std::vector<int>& arr, int amount) {
int n = arr.size();
std::sort(arr.begin(), arr.end(), std::greater<int>());
std::vector<int> bound (n);
std::vector<int> select (n);
bound[n-1] = arr[n-1];
for (int i = n-2; i >= 0; --i) {
bound[i] = bound[i+1] + arr[i];
}
int sum = 0; // current sum
int i = 0; // index of the coin being examined
bool up_down = true;
while (true) {
if (up_down) {
if (i == n || sum + bound[i] < amount) {
up_down = false;
i--;
continue;
}
sum += arr[i];
select[i] = 1;
if (sum == amount) return true;
if (sum < amount) {
i++;
continue;
}
up_down = false;
if (select[i] == 0) i--;
} else { // DOWN
if (i < 0) break;
if (select[i] == 0) {
i--;
} else {
sum -= arr[i];
select[i] = 0;
i++;
up_down = true;
}
}
}
return false;
}
bool isDeficient(int divisorSum, int n) {
return divisorSum < n;
}
bool isAbundant(int divisorSum, int n) {
return divisorSum > n;
}
bool isSemiPerfect(std::vector<int> &divisors, int sum) {
int size = divisors.size();
// The value of subset[i][j] will be true if there is a subset of divisors[0..j-1] with sum equal to i
//bool subset[sum+1][size+1];
std::vector<std::vector<bool>> subset(sum+1, std::vector<bool> (size+1));
// If sum is 0, then answer is true
for (int i = 0; i <= size; i++) {
subset[0][i] = true;
}
// If sum is not 0 and set is empty, then answer is false
for (int i = 1; i <= sum; i++) {
subset[i][0] = false;
}
// Fill the subset table in bottom up manner
for ( int i = 1 ; i <= sum ; i++ ) {
for ( int j = 1 ; j <= size ; j++ ) {
subset[i][j] = subset[i][j-1];
int test = divisors[j-1];
if ( i >= test ) {
subset[i][j] = subset[i][j] || subset[i - test][j-1];
}
}
}
return subset[sum][size];
}
bool isWeird(int n, std::vector<int> &divisors, int divisorSum) {
//return isAbundant(divisorSum, n) && !isSemiPerfect(divisors, n);
return isAbundant(divisorSum, n) && !test_sum(divisors, n);
}
std::vector<int> getProperDivisors_old(int number) {
std::vector<int> divisors;
long sqrtn = sqrt(number);
for ( int i = 1 ; i <= sqrtn ; i++ ) {
if ( number % i == 0 ) {
divisors.push_back(i);
int div = number / i;
if (div != i && div != number) {
divisors.push_back(div);
}
}
}
return divisors;
}
std::vector<int> getProperDivisors(int number) {
std::vector<int> divisors;
long sqrtn = sqrt(number);
divisors.push_back(1);
for ( int i = 2 ; i <= sqrtn ; i++ ) {
if (number % i == 0) {
divisors.push_back(i);
int div = number/i;
if (div != i) divisors.push_back(div);
}
}
return divisors;
}
int main() {
int n = 2, count;
std::vector<int> weird;
int Nweird = 15000;
for (count = 0; count < Nweird; n += 2) {
if (n % 6 == 0) continue;
auto properDivisors = getProperDivisors(n);
int divisorSum = std::accumulate (properDivisors.begin(), properDivisors.end(), 0);
if (isDeficient(divisorSum, n) ) {
continue;
}
if (isWeird(n, properDivisors, divisorSum)) {
//std::cout << count << " " << n << "\n";
weird.push_back (n);
count++;
}
}
for (int i = Nweird - 10; i < Nweird; ++i) {
std::cout << weird.at(i) << " ";
}
std::cout << "\n";
}
EDIT 2 The generation of Divisors were completely redefined. It uses now prime decomposition. Much more complex, but global time divided by 7.5. Generation of weird numbers take now 2s on my PC.
#include <iostream>
#include <vector>
#include <cmath>
#include <numeric>
#include <algorithm>
template <typename T>
struct factor {T val = 0; T mult = 0;};
template <typename T>
class decompo {
private:
std::vector<T> memory = {2, 3, 5, 7, 11, 13, 17, 19, 23, 31, 37, 39, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97};
T index = 0;
public:
decompo () {};
void reset () {index = 0;};
T pop () {index = memory.size() - 1; return memory[index];};
T get_next ();
std::vector<T> find_all_primes (T n);
std::vector<factor<T>> decomp (T n);
std::vector<T> GetDivisors (T n);
void complete (T n);
};
template <typename T>
T decompo<T>::get_next () {
++index;
if (index <= memory.size()) {
return memory[index-1];
}
T n = memory.size();
T candidate = memory[n-1] + 2;
while (1) {
bool found = true;
for (T i = 1; memory[i] * memory[i] <= candidate; ++i) {
if (candidate % memory[i] == 0) {
found = false;
break;
}
}
if (found) {
memory.push_back (candidate);
return candidate;
}
candidate += 2;
}
}
template <typename T>
std::vector<T> decompo<T>::find_all_primes (T n) {
reset();
std::vector<T> result;
while (1) {
T candidate = get_next();
if (candidate <= n) {
result.push_back (candidate);
} else {
return result;
}
}
}
template <typename T>
void decompo<T>::complete (T n) {
T last = pop();
while (last < n) {
last = get_next();
}
return;
}
template <typename T>
std::vector<factor<T>> decompo<T>::decomp (T n) {
reset();
std::vector<factor<T>> result;
if (n < 2) return result;
T candidate = get_next();
T last_prime = 0;
while (candidate*candidate <= n) {
if (n % candidate == 0) {
if (candidate == last_prime) {
result[result.size()-1].mult ++;
} else {
result.push_back ({candidate, 1});
last_prime = candidate;
}
n /= candidate;
} else {
candidate = get_next();
}
}
if (n > 1) {
if (n != last_prime) result.push_back ({n, 1});
else result[result.size()-1].mult ++;
}
return result;
}
template <typename T>
std::vector<T> decompo<T>::GetDivisors (T n) {
std::vector<T> div;
auto primes = decomp (n);
int n_primes = primes.size();
std::vector<int> exponent (n_primes, 0);
div.push_back(1);
int current_index = 0;
int product = 1;
std::vector<int> product_partial(n_primes, 1);;
while (true) {
current_index = 0;
while (current_index < n_primes && exponent[current_index] == primes[current_index].mult) current_index++;
if (current_index == n_primes) break;
for (int index = 0; index < current_index; ++index) {
exponent[index] = 0;
product /= product_partial[index];
product_partial[index] = 1;
}
exponent[current_index]++;
product *= primes[current_index].val;
product_partial[current_index] *= primes[current_index].val;
if (product != n && product != 1) div.push_back (product);
}
return div;
}
// return true if sum is obtained
bool test_sum (std::vector<int>& arr, int amount) {
int n = arr.size();
std::sort(arr.begin(), arr.end(), std::greater<int>());
std::vector<int> bound (n);
std::vector<int> select (n);
bound[n-1] = arr[n-1];
for (int i = n-2; i >= 0; --i) {
bound[i] = bound[i+1] + arr[i];
}
int sum = 0; // current sum
int i = 0; // index of the coin being examined
bool up_down = true;
while (true) {
if (up_down) {
if (i == n || sum + bound[i] < amount) {
up_down = false;
i--;
continue;
}
sum += arr[i];
select[i] = 1;
if (sum == amount) return true;
if (sum < amount) {
i++;
continue;
}
up_down = false;
if (select[i] == 0) i--;
} else { // DOWN
if (i < 0) break;
if (select[i] == 0) {
i--;
} else {
sum -= arr[i];
select[i] = 0;
i++;
up_down = true;
}
}
}
return false;
}
bool isDeficient(int divisorSum, int n) {
return divisorSum < n;
}
bool isAbundant(int divisorSum, int n) {
return divisorSum > n;
}
bool isSemiPerfect(std::vector<int> &divisors, int sum) {
int size = divisors.size();
// The value of subset[i][j] will be true if there is a subset of divisors[0..j-1] with sum equal to i
//bool subset[sum+1][size+1];
std::vector<std::vector<bool>> subset(sum+1, std::vector<bool> (size+1));
// If sum is 0, then answer is true
for (int i = 0; i <= size; i++) {
subset[0][i] = true;
}
// If sum is not 0 and set is empty, then answer is false
for (int i = 1; i <= sum; i++) {
subset[i][0] = false;
}
// Fill the subset table in bottom up manner
for ( int i = 1 ; i <= sum ; i++ ) {
for ( int j = 1 ; j <= size ; j++ ) {
subset[i][j] = subset[i][j-1];
int test = divisors[j-1];
if ( i >= test ) {
subset[i][j] = subset[i][j] || subset[i - test][j-1];
}
}
}
return subset[sum][size];
}
bool isWeird(int n, std::vector<int> &divisors, int divisorSum) {
//return isAbundant(divisorSum, n) && !isSemiPerfect(divisors, n);
return isAbundant(divisorSum, n) && !test_sum(divisors, n);
}
std::vector<int> getProperDivisors(int number) {
std::vector<int> divisors;
long sqrtn = sqrt(number);
divisors.push_back(1);
for ( int i = 2 ; i <= sqrtn ; i++ ) {
if (number % i == 0) {
divisors.push_back(i);
int div = number/i;
if (div != i) divisors.push_back(div);
}
}
return divisors;
}
int main() {
decompo <int> decomposition;
decomposition.complete (1e3); // not relly useful
int n = 2, count;
std::vector<int> weird;
int Nweird = 15000;
for (count = 0; count < Nweird; n += 2) {
if (n % 6 == 0) continue;
//auto properDivisors = getProperDivisors(n);
auto properDivisors = decomposition.GetDivisors(n);
int divisorSum = std::accumulate (properDivisors.begin(), properDivisors.end(), 0);
if (isDeficient(divisorSum, n) ) {
continue;
}
if (isWeird(n, properDivisors, divisorSum)) {
//std::cout << count << " " << n << "\n";
weird.push_back (n);
count++;
}
}
for (int i = Nweird - 10; i < Nweird; ++i) {
std::cout << weird.at(i) << " ";
}
std::cout << "\n";
}

Add two big numbers represented as linked lists without reversing the linked lists

Suppose you have 2 big numbers represented as linked lists, how do you add them and store the result in a separate linked list.
eg
a = 2 -> 1 -> 7
b = 3 -> 4
result = 2 -> 5 -> 1
Can you add them without reversing the linked lists
Pseudocode:
Step 1. Traverse the linked lists and push the elements in two different stacks
Step 2. Pop the top elements from both the stacks
Step 3. Add the elements (+ any carry from previous additions) and store the carry in a temp variable
Step 4. Create a node with the sum and insert it into beginning of the result list
I think this's something beyond context but can be very performance incentive for the person who originally posted this question.
So here's a recommendation:
instead of using every node as a single digit of the number, use each node to store a large number(close to the size of integer) and if the highest possible number you chose to store in each node be x(your case 9) then you can view your number as a representation in base x+1.
where each digit is a number between 0 and x.
This would give you significant performance gain as the algorithm would run in O(log n) time and require the same number of nodes as against O(n) in your case , n being the number of decimal digits of the larger of two addends.
Typically for the ease of your algorithm, you can choose a power of 10 as the base which fits in the range of your integer.
For example if your number be 1234567890987654321 and you want to store it in linked list choosing the base to be 10^8 then your representation should look like:
87654321-> 4567890 -> 123(little endian)
Here's my hacky attempt in Java that runs in about O(max(len(a),len(b))). I've provided a complete sample with a very simple singly linked list implementation. It's quite late here so the code is not as nice as I'd like - sorry!
This code assumes:
That the length of the lists is known
Singly linked list
Dealing with integer data
It uses recursion to propagate the sums and carry for each digit, and sums left to right. The lists are never reversed - sums are performed left to right, and carry propagates up the recursive stack. It could be unrolled in an iterative solution, but I won't worry about that.
public class LinkedListSum {
static class LLNode {
int value;
LLNode next;
public LLNode(int value){
this.value = value;
}
public int length(){
LLNode node = this;
int count = 0;
do {
count++;
} while((node = node.next) != null);
return count;
}
public List<Integer> toList(){
List<Integer> res = new ArrayList<Integer>();
LLNode node = this;
while(node != null){
res.add(node.value);
node = node.next;
}
return res;
}
}
public static void main(String[] argc){
LLNode list_a = fromArray(new int[]{4,7,4,7});
LLNode list_b = fromArray(new int[]{5,3,7,4,7,4});
System.out.println("Sum: " + sum(list_a, list_b).toList());
}
private static LLNode fromArray(int[] arr){
LLNode res = new LLNode(0);
LLNode current = res;
for(int i = 0; i < arr.length; i++){
LLNode node = new LLNode(arr[i]);
current.next = node;
current = node;
}
return res.next;
}
private static LLNode sum(LLNode list_1, LLNode list_2){
LLNode longer;
LLNode shorter;
if(list_1.length() >= list_2.length()){
longer = list_1;
shorter = list_2;
} else {
longer = list_2;
shorter = list_1;
}
// Pad short to same length as long
int diff = longer.length() - shorter.length();
for(int i = 0; i < diff; i++){
LLNode temp = new LLNode(0);
temp.next = shorter;
shorter = temp;
}
System.out.println("Longer: " + longer.toList());
System.out.println("Shorter: " + shorter.toList());
return sum_same_length(new LLNode(0), null, longer, shorter);
}
private static LLNode sum_same_length(LLNode current, LLNode previous, LLNode longerList, LLNode shorterList){
LLNode result = current;
if(longerList == null){
previous.next = null;
return result;
}
int sum = longerList.value + shorterList.value;
int first_value = sum % 10;
int first_carry = sum / 10;
current.value = first_value;
// Propagate the carry backwards - increase next multiple of 10 if necessary
LLNode root = propagateCarry(current,previous,first_carry);
current.next = new LLNode(0);
sum_same_length(current.next, current, longerList.next, shorterList.next);
// Propagate the carry backwards - increase next multiple of 10 if necessary:
// The current value could have been increased during the recursive call
int second_value = current.value % 10;
int second_carry = current.value / 10;
current.value = second_value;
root = propagateCarry(current,previous,second_carry);
if(root != null) result = root;
return result;
}
// Returns the new root of the linked list if one had to be added (due to carry)
private static LLNode propagateCarry(LLNode current, LLNode previous, int carry){
LLNode result = null;
if(carry != 0){
if(previous != null){
previous.value += carry;
} else {
LLNode first = new LLNode(carry);
first.next = current;
result = first;
}
}
return result;
}
}
Here is a pseudo code.
list *add (list *l1, list *l2)
{
node *l3, l3_old;
while (l1 != NULL)
{
stack1.push (l1);
l1 = l1->next;
}
while (l2 != NULL)
{
stack2.push (l2);
l2 = l2->next;
}
l3_old = NULL;
while (!stack1.isempty () && !stack2.isempty ()) // at least one stack is not empty
{
l3 = get_new_node ();
l1 = stack1.pop ();
l2 = stack2.pop ();
l3->val = l1->val + l2->val;
if (l3_old != NULL)
{
l3->val = l3->val + (int)l3_old/10;
l3_old->val %= 10;
}
l3->next = l3_old;
l3_old = l3;
}
while (!stack1.isempty ())
{
l1 = stack1.pop ();
l3 = get_new_node ();
l3->val = l1->val + (int)l3_old->val/10;
l3_old->val %= 10;
l3->next = l3_old;
l3_old = l3;
}
while (!stack2.isempty ())
{
l2 = stack2.pop ();
l3 = get_new_node ();
l3->val = l2->val + (int)l3_old->val/10;
l3_old->val %= 10;
l3->next = l3_old;
l3_old = l3;
}
return l3;
}
Here is my attempt, using the two linked lists and returning the sum as a new list using recursion.
public class SumList {
int[] a1= {7,3,2,8};
int[] a2= {4,6,8,4};
LinkedList l1= new LinkedList(a1);
LinkedList l2= new LinkedList(a2);
Node num1= l1.createList();
Node num2= l2.createList();
Node result;
public static void main(String[] args) {
SumList sl= new SumList();
int c= sl.sum(sl.num1, sl.num2);
if(c>0) {
Node temp= new Node(c);
temp.next= sl.result;
sl.result= temp;
}
while(sl.result != null){
System.out.print(sl.result.data);
sl.result= sl.result.next;
}
}
int sum(Node n1, Node n2) {
if(n1==null || n2==null)
return 0;
int a1= this.getSize(n1);
int a2= this.getSize(n2);
int carry, s= 0;
if(a1>a2) {
carry= sum(n1.next, n2);
s= n1.data+carry;
}
else if(a2>a1) {
carry= sum(n1, n2.next);
s= n2.data+carry;
}
else {
carry= sum(n1.next, n2.next);
s= n1.data+n2.data+carry;
}
carry= s/10;
s=s%10;
Node temp= new Node(s);
temp.next= result;
result= temp;
return carry;
}
int getSize(Node n) {
int count =0;
while(n!=null) {
n=n.next;
count++;
}
return count;
}
}
// A recursive program to add two linked lists
#include <stdio.h>
#include <stdlib.h>
// A linked List Node
struct node
{
int data;
struct node* next;
};
typedef struct node node;
/* A utility function to insert a node at the beginning of linked list */
void push(struct node** head_ref, int new_data)
{
/* allocate node */
struct node* new_node = (struct node*) malloc(sizeof(struct node));
/* put in the data */
new_node->data = new_data;
/* link the old list off the new node */
new_node->next = (*head_ref);
/* move the head to point to the new node */
(*head_ref) = new_node;
}
/* A utility function to print linked list */
void printList(struct node *node)
{
while (node != NULL)
{
printf("%d ", node->data);
node = node->next;
}
printf("\n");
}
// A utility function to swap two pointers
void swapPointer( node** a, node** b )
{
node* t = *a;
*a = *b;
*b = t;
}
/* A utility function to get size of linked list */
int getSize(struct node *node)
{
int size = 0;
while (node != NULL)
{
node = node->next;
size++;
}
return size;
}
// Adds two linked lists of same size represented by head1 and head2 and returns
// head of the resultant linked list. Carry is propagated while returning from
// the recursion
node* addSameSize(node* head1, node* head2, int* carry)
{
// Since the function assumes linked lists are of same size,
// check any of the two head pointers
if (head1 == NULL)
return NULL;
int sum;
// Allocate memory for sum node of current two nodes
node* result = (node *)malloc(sizeof(node));
// Recursively add remaining nodes and get the carry
result->next = addSameSize(head1->next, head2->next, carry);
// add digits of current nodes and propagated carry
sum = head1->data + head2->data + *carry;
*carry = sum / 10;
sum = sum % 10;
// Assigne the sum to current node of resultant list
result->data = sum;
return result;
}
// This function is called after the smaller list is added to the bigger
// lists's sublist of same size. Once the right sublist is added, the carry
// must be added toe left side of larger list to get the final result.
void addCarryToRemaining(node* head1, node* cur, int* carry, node** result)
{
int sum;
// If diff. number of nodes are not traversed, add carry
if (head1 != cur)
{
addCarryToRemaining(head1->next, cur, carry, result);
sum = head1->data + *carry;
*carry = sum/10;
sum %= 10;
// add this node to the front of the result
push(result, sum);
}
}
// The main function that adds two linked lists represented by head1 and head2.
// The sum of two lists is stored in a list referred by result
void addList(node* head1, node* head2, node** result)
{
node *cur;
// first list is empty
if (head1 == NULL)
{
*result = head2;
return;
}
// second list is empty
else if (head2 == NULL)
{
*result = head1;
return;
}
int size1 = getSize(head1);
int size2 = getSize(head2) ;
int carry = 0;
// Add same size lists
if (size1 == size2)
*result = addSameSize(head1, head2, &carry);
else
{
int diff = abs(size1 - size2);
// First list should always be larger than second list.
// If not, swap pointers
if (size1 < size2)
swapPointer(&head1, &head2);
// move diff. number of nodes in first list
for (cur = head1; diff--; cur = cur->next);
// get addition of same size lists
*result = addSameSize(cur, head2, &carry);
// get addition of remaining first list and carry
addCarryToRemaining(head1, cur, &carry, result);
}
// if some carry is still there, add a new node to the fron of
// the result list. e.g. 999 and 87
if (carry)
push(result, carry);
}
// Driver program to test above functions
int main()
{
node *head1 = NULL, *head2 = NULL, *result = NULL;
int arr1[] = {9, 9, 9};
int arr2[] = {1, 8};
int size1 = sizeof(arr1) / sizeof(arr1[0]);
int size2 = sizeof(arr2) / sizeof(arr2[0]);
// Create first list as 9->9->9
int i;
for (i = size1-1; i >= 0; --i)
push(&head1, arr1[i]);
// Create second list as 1->8
for (i = size2-1; i >= 0; --i)
push(&head2, arr2[i]);
addList(head1, head2, &result);
printList(result);
return 0;
}
1.First traverse the two lists and find the lengths of the two lists(Let m,n be the lengths).
2.Traverse n-m nodes in the longer list and set 'prt1' to the current node and 'ptr2' to beginning of the other list.
3.Now call the following recursive function with flag set to zero:
void add(node* ptr1,node* ptr2){
if(ptr1==NULL)
return;
add(ptr1->next,ptr2->next);
insertAtBegin(ptr1->data+ptr2->data+flag);
flag=(ptr1->data+ptr2->data)%10;
}
4.Now you need to add the remaining n-m nodes at the beginning of your target list, you can do it directly using a loop. Please note that for the last element in the loop you need to add the flag returned by the add() function as there might be a carry.
If your question is without using recursion:
1.Repeat the first two steps, then create your target list initalising every elements with '0'(make sure that the length of the list is accurate).
2.Traverse the two lists along with your target list(a step behind).If you find sum of two nodes greater than 10, make the value in the target list as '1'.
3.With the above step you took care of the carry. Now in one more pass just add the two nodes modulo 10 and add this value in the corresponding node of the target list.
without using stack .....
simply store the content of link list in array and perform addition and and then again put addition into link list
code :
#include<stdio.h>
#include<malloc.h>
typedef struct node
{
int value;
struct node *next;
}node;
int main()
{
printf("\nEnter the number 1 : ");
int ch;
node *p=NULL;
node *k=NULL;
printf("\nEnter the number of digit : ");
scanf("%d",&ch);
int i=0;
while(ch!=i)
{
i++;
node *q=NULL;
int a=0;
q=(node *)malloc(sizeof(node));
printf("\nEnter value : ");
scanf("%d",&a);
q->value=a;
if(p==NULL)
{
q->next=NULL;
p=q;
k=p;
}
else
{
q->next=NULL;
p->next=q;
p=q;
}
}
printf("\nEnter the number 2 : ");
int ch1;
node *p1=NULL;
node *k1=NULL;
int i1=0;
printf("\nEnter the number of digit : ");
scanf("%d",&ch1);
while(ch1!=i1)
{
i1++;
node *q1=NULL;
int a1=0;
q1=(node *)malloc(sizeof(node));
printf("\nEnter value : ");
scanf("%d",&a1);
q1->value=a1;
if(p1==NULL)
{
q1->next=NULL;
p1=q1;
k1=p1;
}
else
{
q1->next=NULL;
p1->next=q1;
p1=q1;
}
}
printf("\n\t");
int arr1[100];
int arr1_ptr=0;
while(k != NULL )
{
printf("%d\t",k->value);
arr1[arr1_ptr++]=k->value;
k=k->next;
}
printf("\n\t");
int arr2[100];
int arr2_ptr=0;
while(k1 != NULL )
{
printf("%d\t",k1->value);
arr2[arr2_ptr++]=k1->value;
k1=k1->next;
}
//addition logic ...
int result[100]={0};
int result_ptr=0;
int loop_ptr=0;
int carry=0;
arr1_ptr--;
arr2_ptr--;
if(arr1_ptr>arr2_ptr)
loop_ptr=arr1_ptr+1;
else
loop_ptr=arr2_ptr+1;
for(int i = loop_ptr ; i >= 0;i--)
{
if(arr1_ptr >= 0 && arr2_ptr >= 0)
{
if( (arr1[arr1_ptr] + arr2[arr2_ptr] + carry ) > 9 )
{
result[i]=((arr1[arr1_ptr] + arr2[arr2_ptr]+carry) % 10 );
carry = ((arr1[arr1_ptr--] + arr2[arr2_ptr--]+carry ) / 10 ) ;
}
else
{
result[i]=(arr1[arr1_ptr--] + arr2[arr2_ptr--] + carry );
carry = 0 ;
}
}
else if( !(arr1_ptr < 0 ) || !( arr2_ptr < 0 ) )
{
if( arr1_ptr < 0)
result[i]=arr2[arr2_ptr--]+carry;
else
result[i]=arr1[arr1_ptr--]+carry;
}
else
result[i]=carry;
}
/*printf("\n");
for(int i=0;i<loop_ptr+1;i++)
printf("%d\t",result[i]);
*/
node *k2=NULL,*p2=NULL;
for(int i=0;i<loop_ptr+1;i++)
{
node *q2=NULL;
q2=(node *)malloc(sizeof(node));
q2->value=result[i];
if(p2==NULL)
{
q2->next=NULL;
p2=q2;
k2=p2;
}
else
{
q2->next=NULL;
p2->next=q2;
p2=q2;
}
}
printf("\n");
while(k2 != NULL )
{
printf("%d\t",k2->value);
k2=k2->next;
}
return 0;
}
We can add them by using recursion. Assume the question is defined as follows: we have lists l1 and l2 and we want to add them by storing the result in l1. For simplicity assume that both lists have the same length (the code can be easily modified to work for different lengths). Here is my working Java solution:
private static ListNode add(ListNode l1, ListNode l2){
if(l1 == null)
return l2;
if(l2 == null)
return l1;
int[] carry = new int[1];
add(l1, l2, carry);
if(carry[0] != 0){
ListNode newHead = new ListNode(carry[0]);
newHead.next = l1;
return newHead;
}
return l1;
}
private static void add(ListNode l1, ListNode l2, int[] carry) {
if(l1.next == null && l2.next == null){
carry[0] = l1.val + l2.val;
l1.val = carry[0]%10;
carry[0] /= 10;
return;
}
add(l1.next, l2.next, carry);
carry[0] += l1.val + l2.val;
l1.val = carry[0]%10;
carry[0] /= 10;
}
Input : List a , List b
Output : List c
Most approaches here require extra space for List a and List b. This can be removed.
Reverse List a and List b so that they are represented in the reverse order (i.e., tail as head and all the links reversed) with constant space of O(1).
Then add the lists efficiently by traversing through both of them simultaneously and maintaining a carry.
Reverse List a and List b if required
Try this
/* No Recursion, No Reversal - Java */
import java.util.*;
class LinkedListAddMSB
{
static LinkedList<Integer> addList(LinkedList<Integer> num1, LinkedList<Integer> num2)
{
LinkedList<Integer> res = new LinkedList<Integer>();
LinkedList<Integer> shorter = new LinkedList<Integer>();
LinkedList<Integer> longer = new LinkedList<Integer>();
int carry = 0;
int maxlen,minlen;
if(num1.size() >= num2.size())
{
maxlen = num1.size();
minlen = num2.size();
shorter = num2;
longer = num1;
}
else
{
maxlen = num2.size();
minlen = num1.size();
shorter = num1;
longer = num2;
}
//Pad shorter list to same length by adding preceeding 0
int diff = maxlen - minlen;
for(int i=0; i<diff; i++)
{
shorter.addFirst(0);
}
for(int i=maxlen-1; i>=0; i--)
{
int temp1 = longer.get(i);
int temp2 = shorter.get(i);
int temp3 = temp1 + temp2 + carry;
carry = 0;
if(temp3 >= 10)
{
carry = (temp3/10)%10;
temp3 = temp3%10;
}
res.addFirst(temp3);
}
if(carry > 0)
res.addFirst(carry);
return res;
}
public static void main(String args[])
{
LinkedList<Integer> num1 = new LinkedList<Integer>();
LinkedList<Integer> num2 = new LinkedList<Integer>();
LinkedList<Integer> res = new LinkedList<Integer>();
//64957
num1.add(6);
num1.add(4);
num1.add(9);
num1.add(5);
num1.add(7);
System.out.println("First Number: " + num1);
//48
num2.add(4);
num2.add(8);
System.out.println("First Number: " + num2);
res = addList(num1,num2);
System.out.println("Result: " + res);
}
}
/* this baby does not reverse the list
** , it does use recursion, and it uses a scratch array */
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
struct list {
struct list *next;
unsigned value;
};
unsigned recurse( char target[], struct list *lp);
struct list * grab ( char buff[], size_t len);
unsigned recurse( char target[], struct list *lp)
{
unsigned pos;
if (!lp) return 0;
pos = recurse (target, lp->next);
/* We should do a bounds check target[] here */
target[pos] += lp->value;
if (target[pos] >= 10) {
target[pos+1] += target[pos] / 10;
target[pos] %= 10;
}
return 1+pos;
}
struct list * grab ( char *buff, size_t len)
{
size_t idx;
struct list *ret, **hnd;
/* Skip prefix of all zeros. */
for (idx=len; idx--; ) {
if (buff [idx] ) break;
}
if (idx >= len) return NULL;
/* Build the result chain. Buffer has it's LSB at index=0,
** but we just found the MSB at index=idx.
*/
ret = NULL; hnd = &ret;
do {
*hnd = malloc (sizeof **hnd);
(*hnd)->value = buff[idx];
(*hnd)->next = NULL;
hnd = &(*hnd)->next;
} while (idx--);
return ret;
}
int main (void)
{
char array[10];
struct list a[] = { {NULL, 2} , {NULL, 1} , {NULL, 7} };
struct list b[] = { {NULL, 3} , {NULL, 4} };
struct list *result;
a[0].next = &a[1]; a[1].next = &a[2];
b[0].next = &b[1];
memset(array, 0 , sizeof array );
(void) recurse ( array, a);
(void) recurse ( array, b);
result = grab ( array, sizeof array );
for ( ; result; result = result->next ) {
printf( "-> %u" , result->value );
}
printf( "\n" );
return 0;
}
Final version (no list reversal, no recursion):
#include <stdio.h>
#include <stdlib.h>
struct list {
struct list *nxt;
unsigned val;
};
struct list *sumlist(struct list *l, struct list *r);
int difflen(struct list *l, struct list *r);
struct list *sumlist(struct list *l, struct list *r)
{
int carry,diff;
struct list *result= NULL, **pp = &result;
/* If the lists have different lengths,
** the sum will start with the prefix of the longest list
*/
for (diff = difflen(l, r); diff; diff += (diff > 0) ? -1 : 1) {
*pp = malloc (sizeof **pp) ;
(*pp)->nxt = NULL;
if (diff > 0) { (*pp)->val = l->val; l= l->nxt; }
else { (*pp)->val = r->val; r= r->nxt; }
pp = &(*pp)->nxt ;
}
/* Do the summing.
** whenever the sum is ten or larger we increment a carry counter
*/
for (carry=0; l && r; l=l->nxt, r=r->nxt) {
*pp = malloc (sizeof **pp) ;
(*pp)->nxt = NULL;
(*pp)->val = l->val + r->val;
if ((*pp)->val > 9) carry++;
pp = &(*pp)->nxt ;
}
/* While there are any carries, we will need to propagate them.
** Because we cannot reverse the list (or walk it backward),
** this has to be done iteratively.
** Special case: if the first digit needs a carry,
** we have to insert a node in front of it
*/
for (diff =0 ;carry; carry = diff) {
struct list *tmp;
if (result && result->val > 9) {
tmp = malloc(sizeof *tmp);
tmp->nxt = result;
tmp->val = 0;
result = tmp;
}
diff=0;
for (tmp=result; tmp ; tmp= tmp->nxt) {
if (tmp->nxt && tmp->nxt->val > 9) {
tmp->val += tmp->nxt->val/10;
tmp->nxt->val %= 10; }
if (tmp->val > 9) diff++;
}
}
return result;
}
int difflen(struct list *l, struct list *r)
{
int diff;
for (diff=0; l || r; l = (l)?l->nxt:l, r = (r)?r->nxt:r ) {
if (l && r) continue;
if (l) diff++; else diff--;
}
return diff;
}
int main (void)
{
struct list one[] = { {one+1, 2} , {one+2, 6} , {NULL, 7} };
struct list two[] = { {two+1, 7} , {two+2, 3} , {NULL, 4} };
struct list *result;
result = sumlist(one, two);
for ( ; result; result = result->nxt ) {
printf( "-> %u" , result->val );
}
printf( ";\n" );
return 0;
}
In java i will do it this way
public class LLSum {
public static void main(String[] args) {
LinkedList<Integer> ll1 = new LinkedList<Integer>();
LinkedList<Integer> ll2 = new LinkedList<Integer>();
ll1.add(7);
ll1.add(5);
ll1.add(9);
ll1.add(4);
ll1.add(6);
ll2.add(8);
ll2.add(4);
System.out.println(addLists(ll1,ll2));
}
public static LinkedList<Integer> addLists(LinkedList<Integer> ll1, LinkedList<Integer> ll2){
LinkedList<Integer> finalList = null;
int num1 = makeNum(ll1);
int num2 = makeNum(ll2);
finalList = makeList(num1+num2);
return finalList;
}
private static LinkedList<Integer> makeList(int num) {
LinkedList<Integer> newList = new LinkedList<Integer>();
int temp=1;
while(num!=0){
temp = num%10;
newList.add(temp);
num = num/10;
}
return newList;
}
private static int makeNum(LinkedList<Integer> ll) {
int finalNum = 0;
for(int i=0;i<ll.size();i++){
finalNum += ll.get(i) * Math.pow(10,i);
}
return finalNum;
}
}
Here is my first try:
public class addTwo {
public static void main(String args[]){
LinkedListNode m =new LinkedListNode(3);
LinkedListNode n = new LinkedListNode(5);
m.appendNew(1);
m.appendNew(5);
m.appendNew(5);
n.appendNew(9);
n.appendNew(2);
n.appendNew(5);
n.appendNew(9);
n.appendNew(9 );
m.print();
n.print();
LinkedListNode add=addTwo(m,n);
add.print();
}
static LinkedListNode addTwo(LinkedListNode m,LinkedListNode n){
LinkedListNode result;
boolean flag =false;
int num;
num=m.data+n.data+(flag?1:0);
flag=false;
if(num>9){
flag=true;
}
result = new LinkedListNode(num%10);
while(m.link!=null && n.link!=null){
m=m.link;
n=n.link;
num=m.data+n.data+(flag?1:0);
flag=false;
if(num>9){
flag=true;
}
result.appendNew(num%10);
}
if(m.link==null && n.link==null){
if(flag)
result.appendNew(1);
flag=false;
}else if(m.link!=null){
while(m.link !=null){
m=m.link;
num=m.data;
num=m.data+(flag?1:0);
flag=false;
if(num>9){
flag=true;
}
result.appendNew(num%10);
}
}else{
while(n.link !=null){
n=n.link;
num=n.data;
num=n.data+(flag?1:0);
flag=false;
if(num>9){
flag=true;
}
result.appendNew(num%10);
}
}
if(flag){
result.appendNew(1);
}
return result;
}
class LinkedListNode {
public int data;
public LinkedListNode link;
public LinkedListNode(){System.out.println(this+":"+this.link+":"+this.data);}
public LinkedListNode(int data){
this.data=data;
}
void appendNew(int data){
if(this==null){
System.out.println("this is null");
LinkedListNode newNode = new LinkedListNode(data);
}
LinkedListNode newNode = new LinkedListNode(data);
LinkedListNode prev =this;
while(prev.link!=null){
prev = prev.link;
}
prev.link=newNode;
}
void print(){
LinkedListNode n=this;
while(n.link!=null){
System.out.print(n.data +"->");
n = n.link;
}
System.out.println(n.data);
}
}
result is:
3->1->5->5
5->9->2->5->9->9
8->0->8->0->0->0->1
My recursive Java implementation:
/**
* Definition for singly-linked list.
* public class ListNode {
* int val;
* ListNode next;
* ListNode(int x) { val = x; }
* }
*/
class Solution {
public ListNode addTwoNumbers(ListNode l1, ListNode l2) {
return addTwoNumbers(l1, l2, 0);
}
public ListNode addTwoNumbers(ListNode l1, ListNode l2, int carryOver) {
int result;
ListNode next = null;
if (l1 == null && l2 == null) {
if (carryOver > 0) {
return new ListNode(carryOver);
} else {
return null;
}
} else if (l1 == null && l2 != null) {
result = l2.val + carryOver;
next = addTwoNumbers(null, l2.next, result / 10);
} else if (l1 != null && l2 == null){
result = l1.val + carryOver;
next = addTwoNumbers(l1.next, null, result / 10);
} else {
result = l1.val + l2.val + carryOver;
next = addTwoNumbers(l1.next, l2.next, result / 10);
}
ListNode node = new ListNode(result % 10);
node.next = next;
return node;
}
}
Hope that helps.
/* spoiler: just plain recursion will do */
#include <stdio.h>
struct list {
struct list *next;
unsigned value;
};
struct list a[] = { {NULL, 2} , {NULL, 1} , {NULL, 7} };
struct list b[] = { {NULL, 3} , {NULL, 4} };
unsigned recurse( unsigned * target, struct list *lp);
unsigned recurse( unsigned * target, struct list *lp)
{
unsigned fact;
if (!lp) return 1;
fact = recurse (target, lp->next);
*target += fact * lp->value;
return 10*fact;
}
int main (void)
{
unsigned result=0;
/* set up the links */
a[0].next = &a[1];
a[1].next = &a[2];
b[0].next = &b[1];
(void) recurse ( &result, a);
(void) recurse ( &result, b);
printf( "Result = %u\n" , result );
return 0;
}

different results in visual studio and linux(eclipse)

my code works perfectly in visual studio yet i encounter a problem running it in eclipse.
in the function:
City* Gps::FindCity(const char* city)
{
if(city != NULL)
{
City *tmp = NULL;
if (! m_gpsCities.empty())
{
for (list<City*>::iterator iter = m_gpsCities.begin(); iter != m_gpsCities.end(); iter++)
{
tmp = (City*)(*iter);
if(Vehicle::StringCompare(tmp->GetCityName(),city)==0)
return tmp;
}
}
}
return NULL;
}
the problem is, that after the first iteration, and while the list has more then 1 elements, it exits the loop, and doesn't go over the other elements in the list.
stringcompare:
int Vehicle::StringCompare(const char* str1, const char* str2)//assuming all not null
{
string s1, s2;
char *st1 = OrgName(str1),*st2 = OrgName(str2);
s1.assign(st1);
s2.assign(st2);
int size1 = s1.size(), size2 = s2.size(), min = 0, index =0;
if(str1[size1 - 1] == '\r' || str1[size1 - 1] == '\0' || str1[size1 - 1] == '\n')
size1--;
if(str2[size2 - 1] == '\r' || str2[size2 - 1] == '\0' || str2[size2 - 1] == '\n')
size2--;
if(size1>size2)
min=size2;
else
min=size1;
bool bigger1 = true;
for(index=0;index<min;index++)
{
if(st1[index]>st2[index])
return 1;
if(st1[index]<st2[index])
return (-1);
}
delete[] st1;
delete[] st2;
if(size1==size2)
return 0;
if(min==size1)
return (-1);
else
return 1;
}
You just want to achieve find_if for your specific predicate, which is indeed a variant of strcmp with less specific integer output. Try this:
City* Gps::FindCity(const char* MyCityName)
{
if((MyCityName!= NULL)&&(!m_gpsCities.empty())
{
for (list<City*>::const_iterator iter=m_gpsCities.begin(); iter!=m_gpsCities.end(); ++iter)
{
const char* MyCityTempNameChar = iter->GetCityName();
const char * st1 = OrgName(MyCityName),
const char * st2 = OrgName(MyCityTempName);
const int predicate = strcmp(st1, st2);
if(predicate==0)
{
return (*iter);
}
}
}
return NULL;
}
Or adapt the predicate according to the following:
int Vehicle::StringCompare(const char* str1, const char* str2)
{
const char * st1 = OrgName(str1),
const char * st2 = OrgName(str2);
const int predicate = strcmp(st1, st2);
return predicate;
}

Reverse the ordering of words in a string

I have this string s1 = "My name is X Y Z" and I want to reverse the order of the words so that s1 = "Z Y X is name My".
I can do it using an additional array. I thought hard but is it possible to do it inplace (without using additional data structures) and with the time complexity being O(n)?
Reverse the entire string, then reverse the letters of each individual word.
After the first pass the string will be
s1 = "Z Y X si eman yM"
and after the second pass it will be
s1 = "Z Y X is name My"
reverse the string and then, in a second pass, reverse each word...
in c#, completely in-place without additional arrays:
static char[] ReverseAllWords(char[] in_text)
{
int lindex = 0;
int rindex = in_text.Length - 1;
if (rindex > 1)
{
//reverse complete phrase
in_text = ReverseString(in_text, 0, rindex);
//reverse each word in resultant reversed phrase
for (rindex = 0; rindex <= in_text.Length; rindex++)
{
if (rindex == in_text.Length || in_text[rindex] == ' ')
{
in_text = ReverseString(in_text, lindex, rindex - 1);
lindex = rindex + 1;
}
}
}
return in_text;
}
static char[] ReverseString(char[] intext, int lindex, int rindex)
{
char tempc;
while (lindex < rindex)
{
tempc = intext[lindex];
intext[lindex++] = intext[rindex];
intext[rindex--] = tempc;
}
return intext;
}
Not exactly in place, but anyway: Python:
>>> a = "These pretzels are making me thirsty"
>>> " ".join(a.split()[::-1])
'thirsty me making are pretzels These'
In Smalltalk:
'These pretzels are making me thirsty' subStrings reduce: [:a :b| b, ' ', a]
I know noone cares about Smalltalk, but it's so beautiful to me.
You cannot do the reversal without at least some extra data structure. I think the smallest structure would be a single character as a buffer while you swap letters. It can still be considered "in place", but it's not completely "extra data structure free".
Below is code implementing what Bill the Lizard describes:
string words = "this is a test";
// Reverse the entire string
for(int i = 0; i < strlen(words) / 2; ++i) {
char temp = words[i];
words[i] = words[strlen(words) - i];
words[strlen(words) - i] = temp;
}
// Reverse each word
for(int i = 0; i < strlen(words); ++i) {
int wordstart = -1;
int wordend = -1;
if(words[i] != ' ') {
wordstart = i;
for(int j = wordstart; j < strlen(words); ++j) {
if(words[j] == ' ') {
wordend = j - 1;
break;
}
}
if(wordend == -1)
wordend = strlen(words);
for(int j = wordstart ; j <= (wordend + wordstart) / 2 ; ++j) {
char temp = words[j];
words[j] = words[wordend - (j - wordstart)];
words[wordend - (j - wordstart)] = temp;
}
i = wordend;
}
}
What language?
If PHP, you can explode on space, then pass the result to array_reverse.
If its not PHP, you'll have to do something slightly more complex like:
words = aString.split(" ");
for (i = 0; i < words.length; i++) {
words[i] = words[words.length-i];
}
public static String ReverseString(String str)
{
int word_length = 0;
String result = "";
for (int i=0; i<str.Length; i++)
{
if (str[i] == ' ')
{
result = " " + result;
word_length = 0;
} else
{
result = result.Insert(word_length, str[i].ToString());
word_length++;
}
}
return result;
}
This is C# code.
In Python...
ip = "My name is X Y Z"
words = ip.split()
words.reverse()
print ' '.join(words)
Anyway cookamunga provided good inline solution using python!
This is assuming all words are separated by spaces:
#include <stdio.h>
#include <string.h>
int main()
{
char string[] = "What are you looking at";
int i, n = strlen(string);
int tail = n-1;
for(i=n-1;i>=0;i--)
{
if(string[i] == ' ' || i == 0)
{
int cursor = (i==0? i: i+1);
while(cursor <= tail)
printf("%c", string[cursor++]);
printf(" ");
tail = i-1;
}
}
return 0;
}
class Program
{
static void Main(string[] args)
{
string s1 =" My Name varma:;
string[] arr = s1.Split(' ');
Array.Reverse(arr);
string str = string.Join(" ", arr);
Console.WriteLine(str);
Console.ReadLine();
}
}
This is not perfect but it works for me right now. I don't know if it has O(n) running time btw (still studying it ^^) but it uses one additional array to fulfill the task.
It is probably not the best answer to your problem because i use a dest string to save the reversed version instead of replacing each words in the source string. The problem is that i use a local stack variable named buf to copy all the words in and i can not copy but into the source string as this would lead to a crash if the source string is const char * type.
But it was my first attempt to write s.th. like this :) Ok enough blablub. here is code:
#include <iostream>
using namespace std;
void reverse(char *des, char * const s);
int main (int argc, const char * argv[])
{
char* s = (char*)"reservered. rights All Saints. The 2011 (c) Copyright 11/10/11 on Pfundstein Markus by Created";
char *x = (char*)"Dogfish! White-spotted Shark, Bullhead";
printf("Before: |%s|\n", x);
printf("Before: |%s|\n", s);
char *d = (char*)malloc((strlen(s)+1)*sizeof(char));
char *i = (char*)malloc((strlen(x)+1)*sizeof(char));
reverse(d,s);
reverse(i,x);
printf("After: |%s|\n", i);
printf("After: |%s|\n", d);
free (i);
free (d);
return 0;
}
void reverse(char *dest, char *const s) {
// create a temporary pointer
if (strlen(s)==0) return;
unsigned long offset = strlen(s)+1;
char *buf = (char*)malloc((offset)*sizeof(char));
memset(buf, 0, offset);
char *p;
// iterate from end to begin and count how much words we have
for (unsigned long i = offset; i != 0; i--) {
p = s+i;
// if we discover a whitespace we know that we have a whole word
if (*p == ' ' || *p == '\0') {
// we increment the counter
if (*p != '\0') {
// we write the word into the buffer
++p;
int d = (int)(strlen(p)-strlen(buf));
strncat(buf, p, d);
strcat(buf, " ");
}
}
}
// copy the last word
p -= 1;
int d = (int)(strlen(p)-strlen(buf));
strncat(buf, p, d);
strcat(buf, "\0");
// copy stuff to destination string
for (int i = 0; i < offset; ++i) {
*(dest+i)=*(buf+i);
}
free(buf);
}
We can insert the string in a stack and when we extract the words, they will be in reverse order.
void ReverseWords(char Arr[])
{
std::stack<std::string> s;
char *str;
int length = strlen(Arr);
str = new char[length+1];
std::string ReversedArr;
str = strtok(Arr," ");
while(str!= NULL)
{
s.push(str);
str = strtok(NULL," ");
}
while(!s.empty())
{
ReversedArr = s.top();
cout << " " << ReversedArr;
s.pop();
}
}
This quick program works..not checks the corner cases though.
#include <stdio.h>
#include <stdlib.h>
struct node
{
char word[50];
struct node *next;
};
struct stack
{
struct node *top;
};
void print (struct stack *stk);
void func (struct stack **stk, char *str);
main()
{
struct stack *stk = NULL;
char string[500] = "the sun is yellow and the sky is blue";
printf("\n%s\n", string);
func (&stk, string);
print (stk);
}
void func (struct stack **stk, char *str)
{
char *p1 = str;
struct node *new = NULL, *list = NULL;
int i, j;
if (*stk == NULL)
{
*stk = (struct stack*)malloc(sizeof(struct stack));
if (*stk == NULL)
printf("\n####### stack is not allocated #####\n");
(*stk)->top = NULL;
}
i = 0;
while (*(p1+i) != '\0')
{
if (*(p1+i) != ' ')
{
new = (struct node*)malloc(sizeof(struct node));
if (new == NULL)
printf("\n####### new is not allocated #####\n");
j = 0;
while (*(p1+i) != ' ' && *(p1+i) != '\0')
{
new->word[j] = *(p1 + i);
i++;
j++;
}
new->word[j++] = ' ';
new->word[j] = '\0';
new->next = (*stk)->top;
(*stk)->top = new;
}
i++;
}
}
void print (struct stack *stk)
{
struct node *tmp = stk->top;
int i;
while (tmp != NULL)
{
i = 0;
while (tmp->word[i] != '\0')
{
printf ("%c" , tmp->word[i]);
i++;
}
tmp = tmp->next;
}
printf("\n");
}
Most of these answers fail to account for leading and/or trailing spaces in the input string. Consider the case of str=" Hello world"... The simple algo of reversing the whole string and reversing individual words winds up flipping delimiters resulting in f(str) == "world Hello ".
The OP said "I want to reverse the order of the words" and did not mention that leading and trailing spaces should also be flipped! So, although there are a ton of answers already, I'll provide a [hopefully] more correct one in C++:
#include <string>
#include <algorithm>
void strReverseWords_inPlace(std::string &str)
{
const char delim = ' ';
std::string::iterator w_begin, w_end;
if (str.size() == 0)
return;
w_begin = str.begin();
w_end = str.begin();
while (w_begin != str.end()) {
if (w_end == str.end() || *w_end == delim) {
if (w_begin != w_end)
std::reverse(w_begin, w_end);
if (w_end == str.end())
break;
else
w_begin = ++w_end;
} else {
++w_end;
}
}
// instead of reversing str.begin() to str.end(), use two iterators that
// ...represent the *logical* begin and end, ignoring leading/traling delims
std::string::iterator str_begin = str.begin(), str_end = str.end();
while (str_begin != str_end && *str_begin == delim)
++str_begin;
--str_end;
while (str_end != str_begin && *str_end == delim)
--str_end;
++str_end;
std::reverse(str_begin, str_end);
}
My version of using stack:
public class Solution {
public String reverseWords(String s) {
StringBuilder sb = new StringBuilder();
String ns= s.trim();
Stack<Character> reverse = new Stack<Character>();
boolean hadspace=false;
//first pass
for (int i=0; i< ns.length();i++){
char c = ns.charAt(i);
if (c==' '){
if (!hadspace){
reverse.push(c);
hadspace=true;
}
}else{
hadspace=false;
reverse.push(c);
}
}
Stack<Character> t = new Stack<Character>();
while (!reverse.empty()){
char temp =reverse.pop();
if(temp==' '){
//get the stack content out append to StringBuilder
while (!t.empty()){
char c =t.pop();
sb.append(c);
}
sb.append(' ');
}else{
//push to stack
t.push(temp);
}
}
while (!t.empty()){
char c =t.pop();
sb.append(c);
}
return sb.toString();
}
}
Store Each word as a string in array then print from end
public void rev2() {
String str = "my name is ABCD";
String A[] = str.split(" ");
for (int i = A.length - 1; i >= 0; i--) {
if (i != 0) {
System.out.print(A[i] + " ");
} else {
System.out.print(A[i]);
}
}
}
In Python, if you can't use [::-1] or reversed(), here is the simple way:
def reverse(text):
r_text = text.split(" ")
res = []
for word in range(len(r_text) - 1, -1, -1):
res.append(r_text[word])
return " ".join(res)
print (reverse("Hello World"))
>> World Hello
[Finished in 0.1s]
Printing words in reverse order of a given statement using C#:
void ReverseWords(string str)
{
int j = 0;
for (int i = (str.Length - 1); i >= 0; i--)
{
if (str[i] == ' ' || i == 0)
{
j = i == 0 ? i : i + 1;
while (j < str.Length && str[j] != ' ')
Console.Write(str[j++]);
Console.Write(' ');
}
}
}
Here is the Java Implementation:
public static String reverseAllWords(String given_string)
{
if(given_string == null || given_string.isBlank())
return given_string;
char[] str = given_string.toCharArray();
int start = 0;
// Reverse the entire string
reverseString(str, start, given_string.length() - 1);
// Reverse the letters of each individual word
for(int end = 0; end <= given_string.length(); end++)
{
if(end == given_string.length() || str[end] == ' ')
{
reverseString(str, start, end-1);
start = end + 1;
}
}
return new String(str);
}
// In-place reverse string method
public static void reverseString(char[] str, int start, int end)
{
while(start < end)
{
char temp = str[start];
str[start++] = str[end];
str[end--] = temp;
}
}
Actually, the first answer:
words = aString.split(" ");
for (i = 0; i < words.length; i++) {
words[i] = words[words.length-i];
}
does not work because it undoes in the second half of the loop the work it did in the first half. So, i < words.length/2 would work, but a clearer example is this:
words = aString.split(" "); // make up a list
i = 0; j = words.length - 1; // find the first and last elements
while (i < j) {
temp = words[i]; words[i] = words[j]; words[j] = temp; //i.e. swap the elements
i++;
j--;
}
Note: I am not familiar with the PHP syntax, and I have guessed incrementer and decrementer syntax since it seems to be similar to Perl.
How about ...
var words = "My name is X Y Z";
var wr = String.Join( " ", words.Split(' ').Reverse().ToArray() );
I guess that's not in-line tho.
In c, this is how you might do it, O(N) and only using O(1) data structures (i.e. a char).
#include<stdio.h>
#include<stdlib.h>
main(){
char* a = malloc(1000);
fscanf(stdin, "%[^\0\n]", a);
int x = 0, y;
while(a[x]!='\0')
{
if (a[x]==' ' || a[x]=='\n')
{
x++;
}
else
{
y=x;
while(a[y]!='\0' && a[y]!=' ' && a[y]!='\n')
{
y++;
}
int z=y;
while(x<y)
{
y--;
char c=a[x];a[x]=a[y];a[y]=c;
x++;
}
x=z;
}
}
fprintf(stdout,a);
return 0;
}
It can be done more simple using sscanf:
void revertWords(char *s);
void revertString(char *s, int start, int n);
void revertWordsInString(char *s);
void revertString(char *s, int start, int end)
{
while(start<end)
{
char temp = s[start];
s[start] = s[end];
s[end]=temp;
start++;
end --;
}
}
void revertWords(char *s)
{
int start = 0;
char *temp = (char *)malloc(strlen(s) + 1);
int numCharacters = 0;
while(sscanf(&s[start], "%s", temp) !=EOF)
{
numCharacters = strlen(temp);
revertString(s, start, start+numCharacters -1);
start = start+numCharacters + 1;
if(s[start-1] == 0)
return;
}
free (temp);
}
void revertWordsInString(char *s)
{
revertString(s,0, strlen(s)-1);
revertWords(s);
}
int main()
{
char *s= new char [strlen("abc deff gh1 jkl")+1];
strcpy(s,"abc deff gh1 jkl");
revertWordsInString(s);
printf("%s",s);
return 0;
}
import java.util.Scanner;
public class revString {
static char[] str;
public static void main(String[] args) {
//Initialize string
//str = new char[] { 'h', 'e', 'l', 'l', 'o', ' ', 'a', ' ', 'w', 'o',
//'r', 'l', 'd' };
getInput();
// reverse entire string
reverse(0, str.length - 1);
// reverse the words (delimeted by space) back to normal
int i = 0, j = 0;
while (j < str.length) {
if (str[j] == ' ' || j == str.length - 1) {
int m = i;
int n;
//dont include space in the swap.
//(special case is end of line)
if (j == str.length - 1)
n = j;
else
n = j -1;
//reuse reverse
reverse(m, n);
i = j + 1;
}
j++;
}
displayArray();
}
private static void reverse(int i, int j) {
while (i < j) {
char temp;
temp = str[i];
str[i] = str[j];
str[j] = temp;
i++;
j--;
}
}
private static void getInput() {
System.out.print("Enter string to reverse: ");
Scanner scan = new Scanner(System.in);
str = scan.nextLine().trim().toCharArray();
}
private static void displayArray() {
//Print the array
for (int i = 0; i < str.length; i++) {
System.out.print(str[i]);
}
}
}
In Java using an additional String (with StringBuilder):
public static final String reverseWordsWithAdditionalStorage(String string) {
StringBuilder builder = new StringBuilder();
char c = 0;
int index = 0;
int last = string.length();
int length = string.length()-1;
StringBuilder temp = new StringBuilder();
for (int i=length; i>=0; i--) {
c = string.charAt(i);
if (c == SPACE || i==0) {
index = (i==0)?0:i+1;
temp.append(string.substring(index, last));
if (index!=0) temp.append(c);
builder.append(temp);
temp.delete(0, temp.length());
last = i;
}
}
return builder.toString();
}
In Java in-place:
public static final String reverseWordsInPlace(String string) {
char[] chars = string.toCharArray();
int lengthI = 0;
int lastI = 0;
int lengthJ = 0;
int lastJ = chars.length-1;
int i = 0;
char iChar = 0;
char jChar = 0;
while (i<chars.length && i<=lastJ) {
iChar = chars[i];
if (iChar == SPACE) {
lengthI = i-lastI;
for (int j=lastJ; j>=i; j--) {
jChar = chars[j];
if (jChar == SPACE) {
lengthJ = lastJ-j;
swapWords(lastI, i-1, j+1, lastJ, chars);
lastJ = lastJ-lengthI-1;
break;
}
}
lastI = lastI+lengthJ+1;
i = lastI;
} else {
i++;
}
}
return String.valueOf(chars);
}
private static final void swapWords(int startA, int endA, int startB, int endB, char[] array) {
int lengthA = endA-startA+1;
int lengthB = endB-startB+1;
int length = lengthA;
if (lengthA>lengthB) length = lengthB;
int indexA = 0;
int indexB = 0;
char c = 0;
for (int i=0; i<length; i++) {
indexA = startA+i;
indexB = startB+i;
c = array[indexB];
array[indexB] = array[indexA];
array[indexA] = c;
}
if (lengthB>lengthA) {
length = lengthB-lengthA;
int end = 0;
for (int i=0; i<length; i++) {
end = endB-((length-1)-i);
c = array[end];
shiftRight(endA+i,end,array);
array[endA+1+i] = c;
}
} else if (lengthA>lengthB) {
length = lengthA-lengthB;
for (int i=0; i<length; i++) {
c = array[endA];
shiftLeft(endA,endB,array);
array[endB+i] = c;
}
}
}
private static final void shiftRight(int start, int end, char[] array) {
for (int i=end; i>start; i--) {
array[i] = array[i-1];
}
}
private static final void shiftLeft(int start, int end, char[] array) {
for (int i=start; i<end; i++) {
array[i] = array[i+1];
}
}
Here is a C implementation that is doing the word reversing inlace, and it has O(n) complexity.
char* reverse(char *str, char wordend=0)
{
char c;
size_t len = 0;
if (wordend==0) {
len = strlen(str);
}
else {
for(size_t i=0;str[i]!=wordend && str[i]!=0;i++)
len = i+1;
}
for(size_t i=0;i<len/2;i++) {
c = str[i];
str[i] = str[len-i-1];
str[len-i-1] = c;
}
return str;
}
char* inplace_reverse_words(char *w)
{
reverse(w); // reverse all letters first
bool is_word_start = (w[0]!=0x20);
for(size_t i=0;i<strlen(w);i++){
if(w[i]!=0x20 && is_word_start) {
reverse(&w[i], 0x20); // reverse one word only
is_word_start = false;
}
if (!is_word_start && w[i]==0x20) // found new word
is_word_start = true;
}
return w;
}
c# solution to reverse words in a sentence
using System;
class helloworld {
public void ReverseString(String[] words) {
int end = words.Length-1;
for (int start = 0; start < end; start++) {
String tempc;
if (start < end ) {
tempc = words[start];
words[start] = words[end];
words[end--] = tempc;
}
}
foreach (String s1 in words) {
Console.Write("{0} ",s1);
}
}
}
class reverse {
static void Main() {
string s= "beauty lies in the heart of the peaople";
String[] sent_char=s.Split(' ');
helloworld h1 = new helloworld();
h1.ReverseString(sent_char);
}
}
output:
peaople the of heart the in lies beauty Press any key to continue . . .
Better version
Check my blog http://bamaracoulibaly.blogspot.co.uk/2012/04/19-reverse-order-of-words-in-text.html
public string reverseTheWords(string description)
{
if(!(string.IsNullOrEmpty(description)) && (description.IndexOf(" ") > 1))
{
string[] words= description.Split(' ');
Array.Reverse(words);
foreach (string word in words)
{
string phrase = string.Join(" ", words);
Console.WriteLine(phrase);
}
return phrase;
}
return description;
}
public class manip{
public static char[] rev(char[] a,int left,int right) {
char temp;
for (int i=0;i<(right - left)/2;i++) {
temp = a[i + left];
a[i + left] = a[right -i -1];
a[right -i -1] = temp;
}
return a;
}
public static void main(String[] args) throws IOException {
String s= "i think this works";
char[] str = s.toCharArray();
int i=0;
rev(str,i,s.length());
int j=0;
while(j < str.length) {
if (str[j] != ' ' && j != str.length -1) {
j++;
} else
{
if (j == (str.length -1)) {
j++;
}
rev(str,i,j);
i=j+1;
j=i;
}
}
System.out.println(str);
}
I know there are several correct answers. Here is the one in C that I came up with.
This is an implementation of the excepted answer. Time complexity is O(n) and no extra string is used.
#include<stdio.h>
char * strRev(char *str, char tok)
{
int len = 0, i;
char *temp = str;
char swap;
while(*temp != tok && *temp != '\0') {
len++; temp++;
}
len--;
for(i = 0; i < len/2; i++) {
swap = str[i];
str[i] = str[len - i];
str[len - i] = swap;
}
// Return pointer to the next token.
return str + len + 1;
}
int main(void)
{
char a[] = "Reverse this string.";
char *temp = a;
if (a == NULL)
return -1;
// Reverse whole string character by character.
strRev(a, '\0');
// Reverse every word in the string again.
while(1) {
temp = strRev(temp, ' ');
if (*temp == '\0')
break;
temp++;
}
printf("Reversed string: %s\n", a);
return 0;
}

Resources