Missing query for nested property in ElasticSearch - elasticsearch

I am trying to write a query that returns all docs which don't have a particular field which is a nested property but it doesn't work.
I am using ES 5.4
{
"query": {
"bool": {
"must_not": [
{
"exists": {
"field": "shares"
}
}
]
}
}
}
What am I doing wrong?
This is my mapping
{
"test": {
"aliases": {},
"mappings": {
"vendor": {
"properties": {
"address": {
"type": "text",
"fields": {
"keyword": {
"type": "keyword",
"ignore_above": 256
}
}
},
"categories": {
"type": "text",
"fields": {
"keyword": {
"type": "keyword",
"ignore_above": 256
}
}
},
"city": {
"type": "text",
"fields": {
"keyword": {
"type": "keyword",
"ignore_above": 256
}
}
},
"displayTypes": {
"type": "text",
"fields": {
"keyword": {
"type": "keyword",
"ignore_above": 256
}
}
},
"emailId": {
"type": "text",
"fields": {
"keyword": {
"type": "keyword",
"ignore_above": 256
}
}
},
"facebookAppId": {
"type": "text",
"fields": {
"keyword": {
"type": "keyword",
"ignore_above": 256
}
}
},
"foursquareType": {
"type": "text",
"fields": {
"keyword": {
"type": "keyword",
"ignore_above": 256
}
}
},
"googleTypes": {
"type": "text",
"fields": {
"keyword": {
"type": "keyword",
"ignore_above": 256
}
}
},
"hours": {
"properties": {
"day": {
"type": "text",
"fields": {
"keyword": {
"type": "keyword",
"ignore_above": 256
}
}
},
"from": {
"type": "text",
"fields": {
"keyword": {
"type": "keyword",
"ignore_above": 256
}
}
},
"to": {
"type": "text",
"fields": {
"keyword": {
"type": "keyword",
"ignore_above": 256
}
}
}
}
},
"isOnBoarded": {
"type": "boolean"
},
"kiaskCategories": {
"type": "keyword"
},
"latitude": {
"type": "float"
},
"location": {
"type": "geo_point"
},
"longitude": {
"type": "float"
},
"name": {
"type": "text",
"fields": {
"keyword": {
"type": "keyword",
"ignore_above": 256
}
}
},
"phoneNumber": {
"type": "text",
"fields": {
"keyword": {
"type": "keyword",
"ignore_above": 256
}
}
},
"pictures": {
"type": "text",
"fields": {
"keyword": {
"type": "keyword",
"ignore_above": 256
}
}
},
"placeId": {
"type": "text",
"fields": {
"keyword": {
"type": "keyword",
"ignore_above": 256
}
}
},
"price": {
"type": "float"
},
"rating": {
"type": "float"
},
"shares": {
"type": "nested",
"properties": {
"_id": {
"type": "text",
"fields": {
"keyword": {
"type": "keyword",
"ignore_above": 256
}
}
},
"content": {
"type": "text",
"fields": {
"keyword": {
"type": "keyword",
"ignore_above": 256
}
}
},
"createdDate": {
"type": "date"
},
"endDate": {
"type": "date"
},
"facebookLikes": {
"type": "long"
},
"images": {
"type": "text",
"fields": {
"keyword": {
"type": "keyword",
"ignore_above": 256
}
}
},
"price": {
"type": "long"
},
"quantity": {
"type": "long"
},
"shareType": {
"type": "text",
"fields": {
"keyword": {
"type": "keyword",
"ignore_above": 256
}
}
},
"startDate": {
"type": "date"
},
"tags": {
"type": "text",
"fields": {
"keyword": {
"type": "keyword",
"ignore_above": 256
}
}
}
}
},
"source": {
"type": "text",
"fields": {
"keyword": {
"type": "keyword",
"ignore_above": 256
}
}
},
"state": {
"type": "text",
"fields": {
"keyword": {
"type": "keyword",
"ignore_above": 256
}
}
},
"timezone": {
"type": "float"
},
"url": {
"type": "text",
"fields": {
"keyword": {
"type": "keyword",
"ignore_above": 256
}
}
},
"website": {
"type": "text",
"fields": {
"keyword": {
"type": "keyword",
"ignore_above": 256
}
}
},
"yelpTypes": {
"type": "text",
"fields": {
"keyword": {
"type": "keyword",
"ignore_above": 256
}
}
}
}
}
},
"settings": {
"index": {
"creation_date": "1496319860700",
"number_of_shards": "5",
"number_of_replicas": "1",
"uuid": "0S0A9YN-S-SrW4eeOHX06w",
"version": {
"created": "5040099"
},
"provided_name": "test"
}
}
}
}

this should work
You have enforce nested data type mappings and use nested query.
{
"query" : {
"nested": {
"path": "shares",
"query": {
"bool": {
"must_not": [
{
"exists" : {
"field" : "shares._id"
}
}
]
}
}
}
}
}
Note: The following setup works for me.
PUT test_index
{
"mappings": {
"document_type" : {
"properties": {
"name" : {
"type": "text"
},
"shares" : {
"type": "nested"
}
}
}
}
}
POST test_index/document_type
{
"name" : "vicky"
}
POST test_index/_search
{
"query": {
"nested": {
"path": "shares",
"query": {
"bool": {
"must_not": [
{
"exists" : {
"field" : "shares.city"
}
}
]
}
}
}
}
}

Related

results not showing during indexing elastic search

I am performing elastic search full indexing using Bulk request. I have an issue during the indexing the results are coming as empty. As I am deleting the index during the full index, How I can handle this situation.
I have done the these steps:
delete index
Create index
Create Mapping
bulk request
Index properties and Mapping:
{
"products": {
"aliases": {},
"mappings": {
"properties": {
"assemblyrequired": {
"type": "boolean"
},
"australianmade": {
"type": "boolean"
},
"australiasellable": {
"type": "boolean"
},
"avgRating": {
"type": "float"
},
"category": {
"type": "text",
"fields": {
"keyword": {
"type": "keyword",
"ignore_above": 256
}
}
},
"categorylevel1": {
"type": "text",
"fields": {
"keyword": {
"type": "keyword",
"ignore_above": 256
}
}
},
"categorylevel2": {
"type": "text",
"fields": {
"keyword": {
"type": "keyword",
"ignore_above": 256
}
}
},
"categorylevel3": {
"type": "text",
"fields": {
"keyword": {
"type": "keyword",
"ignore_above": 256
}
}
},
"categoryname": {
"type": "text",
"fields": {
"keyword": {
"type": "keyword",
"ignore_above": 256
}
}
},
"categoryname_old": {
"type": "text",
"fields": {
"keyword": {
"type": "keyword",
"ignore_above": 256
}
}
},
"clearance": {
"type": "boolean"
},
"commercialuse": {
"type": "boolean"
},
"customisable": {
"type": "boolean"
},
"depth": {
"type": "float"
},
"freedelivery": {
"type": "boolean"
},
"genericcolourcode": {
"type": "text",
"fields": {
"keyword": {
"type": "keyword",
"ignore_above": 256
}
}
},
"height": {
"type": "float"
},
"hideprice": {
"type": "boolean"
},
"listprice": {
"type": "float"
},
"materialcode": {
"type": "text",
"fields": {
"keyword": {
"type": "keyword",
"ignore_above": 256
}
}
},
"moneybackguarantee": {
"type": "boolean"
},
"newrelease": {
"type": "boolean"
},
"numberOfRating": {
"type": "long"
},
"online": {
"type": "boolean"
},
"outdooruse": {
"type": "boolean"
},
"predictivecategorydata": {
"type": "text",
"fields": {
"keyword": {
"type": "keyword",
"ignore_above": 256
}
}
},
"pricematchguarantee": {
"type": "boolean"
},
"productcode": {
"type": "text",
"fields": {
"keyword": {
"type": "keyword",
"ignore_above": 256
}
}
},
"productid": {
"type": "text",
"fields": {
"keyword": {
"type": "keyword",
"ignore_above": 256
}
}
},
"productimageurl": {
"type": "text",
"fields": {
"keyword": {
"type": "keyword",
"ignore_above": 256
}
}
},
"productname": {
"type": "text",
"fields": {
"keyword": {
"type": "keyword",
"ignore_above": 256
}
}
},
"producttypecode": {
"type": "text",
"fields": {
"keyword": {
"type": "keyword",
"ignore_above": 256
}
}
},
"promotedprice": {
"type": "float"
},
"sale": {
"type": "integer"
},
"saleprice": {
"type": "float"
},
"sellable": {
"type": "boolean"
},
"sellercode": {
"type": "text",
"fields": {
"keyword": {
"type": "keyword",
"ignore_above": 256
}
}
},
"shortdescription": {
"type": "text",
"fields": {
"keyword": {
"type": "keyword",
"ignore_above": 256
}
}
},
"sku": {
"type": "text",
"fields": {
"keyword": {
"type": "keyword",
"ignore_above": 256
}
}
},
"sortweight": {
"type": "long"
},
"state": {
"type": "text",
"fields": {
"keyword": {
"type": "keyword",
"ignore_above": 256
}
}
},
"stylecode": {
"type": "text",
"fields": {
"keyword": {
"type": "keyword",
"ignore_above": 256
}
}
},
"warrantycode": {
"type": "text",
"fields": {
"keyword": {
"type": "keyword",
"ignore_above": 256
}
}
},
"weight": {
"type": "float"
},
"width": {
"type": "float"
}
}
},
"settings": {
"index": {
"number_of_shards": "1",
"provided_name": "products",
"max_result_window": "500000",
"creation_date": "1595814303422",
"number_of_replicas": "1",
"uuid": "sGJxwr73Rkyu7-JekWFYsw",
"version": {
"created": "7060199"
}
}
}
}
}
I have around 75k documents.
Thanks,
Sree.
If you want the full index to be available during the reindex, your only option is to not delete the original index until after the indexing is done. In that case, I would probably work with aliases. For example, let's assume products-2020.07.28 was your current index, you would then create a new index for today and change the alias as soon as the indexing is done.
Create Index
PUT /products-2020.07.28
{
"settings": {
... your settings ...
},
"mappings": {
... your mappings ...
}
}
Bulk Index Request
Change Alias to new Index
POST /_aliases
{
"actions" : [
{ "remove" : { "index" : "products-2020.07.27", "alias" : "products" } },
{ "add" : { "index" : "products-2020.07.28", "alias" : "products" } }
]
}
Delete old Index
DELETE /products-2020.07.27
Any requests can then go directly to the alias, instead of the index.
GET /products/_search
That way you can reindex without the user noticing anything.

unique records in elastic search

how to find all the unique records in elastic search based on an attribute in it..
Is there a way?
GET questiondetails/question/_search
{
"size": 0,
"aggs" : {
"Name" : {
"terms" : {
"field" : "owner.user_id.keyword"
}
}
}
}
I tried this way.. But I want it to give all the docs wherever user id is present in the whole record.
Whether it is in inner loop also....
Is there a way to get this in a single query instead of making in multiple queries..
Here is my sample record.
{
"_index": "questiondetails",
"_type": "question",
"_id": "BOktPnABW1evGoA0CqDZ",
"_score": 1,
"_source": {
"tags": [
"android",
"kotlin"
],
"owner": {
"user_id": "10633771"
},
"reply_count": "1",
"reply": [
{
"owner": {
"user_id": "12632101",
"user_type": "registered",
}
}
]
}
}
Index
{
"questiondetails": {
"aliases": {},
"mappings": {
"question": {
"properties": {
"accepted_answer_id": {
"type": "text",
"fields": {
"keyword": {
"type": "keyword",
"ignore_above": 256
}
}
},
"answer_count": {
"type": "text",
"fields": {
"keyword": {
"type": "keyword",
"ignore_above": 256
}
}
},
"answers": {
"properties": {
"answer_id": {
"type": "long"
},
"body": {
"type": "text",
"fields": {
"keyword": {
"type": "keyword",
"ignore_above": 256
}
}
},
"body_markdown": {
"type": "text",
"fields": {
"keyword": {
"type": "keyword",
"ignore_above": 256
}
}
},
"comment_count": {
"type": "long"
},
"comments": {
"properties": {
"comment_id": {
"type": "long"
},
"creation_date": {
"type": "long"
},
"edited": {
"type": "boolean"
},
"owner": {
"properties": {
"accept_rate": {
"type": "text",
"fields": {
"keyword": {
"type": "keyword",
"ignore_above": 256
}
}
},
"display_name": {
"type": "text",
"fields": {
"keyword": {
"type": "keyword",
"ignore_above": 256
}
}
},
"link": {
"type": "text",
"fields": {
"keyword": {
"type": "keyword",
"ignore_above": 256
}
}
},
"profile_image": {
"type": "text",
"fields": {
"keyword": {
"type": "keyword",
"ignore_above": 256
}
}
},
"reputation": {
"type": "text",
"fields": {
"keyword": {
"type": "keyword",
"ignore_above": 256
}
}
},
"user_id": {
"type": "text",
"fields": {
"keyword": {
"type": "keyword",
"ignore_above": 256
}
}
},
"user_type": {
"type": "text",
"fields": {
"keyword": {
"type": "keyword",
"ignore_above": 256
}
}
}
}
},
"post_id": {
"type": "long"
},
"reply_to_user": {
"properties": {
"display_name": {
"type": "text",
"fields": {
"keyword": {
"type": "keyword",
"ignore_above": 256
}
}
},
"link": {
"type": "text",
"fields": {
"keyword": {
"type": "keyword",
"ignore_above": 256
}
}
},
"profile_image": {
"type": "text",
"fields": {
"keyword": {
"type": "keyword",
"ignore_above": 256
}
}
},
"reputation": {
"type": "text",
"fields": {
"keyword": {
"type": "keyword",
"ignore_above": 256
}
}
},
"user_id": {
"type": "text",
"fields": {
"keyword": {
"type": "keyword",
"ignore_above": 256
}
}
},
"user_type": {
"type": "text",
"fields": {
"keyword": {
"type": "keyword",
"ignore_above": 256
}
}
}
}
},
"score": {
"type": "long"
}
}
},
"creation_date": {
"type": "long"
},
"down_vote_count": {
"type": "long"
},
"is_accepted": {
"type": "boolean"
},
"last_activity_date": {
"type": "long"
},
"last_edit_date": {
"type": "long"
},
"link": {
"type": "text",
"fields": {
"keyword": {
"type": "keyword",
"ignore_above": 256
}
}
},
"owner": {
"properties": {
"accept_rate": {
"type": "text",
"fields": {
"keyword": {
"type": "keyword",
"ignore_above": 256
}
}
},
"display_name": {
"type": "text",
"fields": {
"keyword": {
"type": "keyword",
"ignore_above": 256
}
}
},
"link": {
"type": "text",
"fields": {
"keyword": {
"type": "keyword",
"ignore_above": 256
}
}
},
"profile_image": {
"type": "text",
"fields": {
"keyword": {
"type": "keyword",
"ignore_above": 256
}
}
},
"reputation": {
"type": "text",
"fields": {
"keyword": {
"type": "keyword",
"ignore_above": 256
}
}
},
"user_id": {
"type": "text",
"fields": {
"keyword": {
"type": "keyword",
"ignore_above": 256
}
}
},
"user_type": {
"type": "text",
"fields": {
"keyword": {
"type": "keyword",
"ignore_above": 256
}
}
}
}
},
"question_id": {
"type": "long"
},
"score": {
"type": "long"
},
"share_link": {
"type": "text",
"fields": {
"keyword": {
"type": "keyword",
"ignore_above": 256
}
}
},
"title": {
"type": "text",
"fields": {
"keyword": {
"type": "keyword",
"ignore_above": 256
}
}
},
"up_vote_count": {
"type": "long"
}
}
},
"body": {
"type": "text",
"fields": {
"keyword": {
"type": "keyword",
"ignore_above": 256
}
}
},
"body_markdown": {
"type": "text",
"fields": {
"keyword": {
"type": "keyword",
"ignore_above": 256
}
}
},
"close_vote_count": {
"type": "long"
},
"comment_count": {
"type": "long"
},
"comments": {
"properties": {
"body": {
"type": "text",
"fields": {
"keyword": {
"type": "keyword",
"ignore_above": 256
}
}
},
"body_markdown": {
"type": "text",
"fields": {
"keyword": {
"type": "keyword",
"ignore_above": 256
}
}
},
"comment_id": {
"type": "long"
},
"creation_date": {
"type": "long"
},
"edited": {
"type": "boolean"
},
"owner": {
"properties": {
"accept_rate": {
"type": "text",
"fields": {
"keyword": {
"type": "keyword",
"ignore_above": 256
}
}
},
"display_name": {
"type": "text",
"fields": {
"keyword": {
"type": "keyword",
"ignore_above": 256
}
}
},
"link": {
"type": "text",
"fields": {
"keyword": {
"type": "keyword",
"ignore_above": 256
}
}
},
"profile_image": {
"type": "text",
"fields": {
"keyword": {
"type": "keyword",
"ignore_above": 256
}
}
},
"reputation": {
"type": "text",
"fields": {
"keyword": {
"type": "keyword",
"ignore_above": 256
}
}
},
"user_id": {
"type": "text",
"fields": {
"keyword": {
"type": "keyword",
"ignore_above": 256
}
}
},
"user_type": {
"type": "text",
"fields": {
"keyword": {
"type": "keyword",
"ignore_above": 256
}
}
}
}
},
"post_id": {
"type": "long"
},
"reply_to_user": {
"properties": {
"accept_rate": {
"type": "text",
"fields": {
"keyword": {
"type": "keyword",
"ignore_above": 256
}
}
},
"display_name": {
"type": "text",
"fields": {
"keyword": {
"type": "keyword",
"ignore_above": 256
}
}
},
"link": {
"type": "text",
"fields": {
"keyword": {
"type": "keyword",
"ignore_above": 256
}
}
},
"profile_image": {
"type": "text",
"fields": {
"keyword": {
"type": "keyword",
"ignore_above": 256
}
}
},
"reputation": {
"type": "text",
"fields": {
"keyword": {
"type": "keyword",
"ignore_above": 256
}
}
},
"user_id": {
"type": "text",
"fields": {
"keyword": {
"type": "keyword",
"ignore_above": 256
}
}
},
"user_type": {
"type": "text",
"fields": {
"keyword": {
"type": "keyword",
"ignore_above": 256
}
}
}
}
},
"score": {
"type": "long"
}
}
},
"creation_date": {
"type": "text",
"fields": {
"keyword": {
"type": "keyword",
"ignore_above": 256
}
}
},
"delete_vote_count": {
"type": "long"
},
"down_vote_count": {
"type": "long"
},
"is_answered": {
"type": "boolean"
},
"last_activity_date": {
"type": "text",
"fields": {
"keyword": {
"type": "keyword",
"ignore_above": 256
}
}
},
"last_edit_date": {
"type": "long"
},
"last_editor": {
"properties": {
"accept_rate": {
"type": "text",
"fields": {
"keyword": {
"type": "keyword",
"ignore_above": 256
}
}
},
"display_name": {
"type": "text",
"fields": {
"keyword": {
"type": "keyword",
"ignore_above": 256
}
}
},
"link": {
"type": "text",
"fields": {
"keyword": {
"type": "keyword",
"ignore_above": 256
}
}
},
"profile_image": {
"type": "text",
"fields": {
"keyword": {
"type": "keyword",
"ignore_above": 256
}
}
},
"reputation": {
"type": "text",
"fields": {
"keyword": {
"type": "keyword",
"ignore_above": 256
}
}
},
"user_id": {
"type": "text",
"fields": {
"keyword": {
"type": "keyword",
"ignore_above": 256
}
}
},
"user_type": {
"type": "text",
"fields": {
"keyword": {
"type": "keyword",
"ignore_above": 256
}
}
}
}
},
"link": {
"type": "text",
"fields": {
"keyword": {
"type": "keyword",
"ignore_above": 256
}
}
},
"owner": {
"properties": {
"accept_rate": {
"type": "text",
"fields": {
"keyword": {
"type": "keyword",
"ignore_above": 256
}
}
},
"display_name": {
"type": "text",
"fields": {
"keyword": {
"type": "keyword",
"ignore_above": 256
}
}
},
"link": {
"type": "text",
"fields": {
"keyword": {
"type": "keyword",
"ignore_above": 256
}
}
},
"profile_image": {
"type": "text",
"fields": {
"keyword": {
"type": "keyword",
"ignore_above": 256
}
}
},
"reputation": {
"type": "text",
"fields": {
"keyword": {
"type": "keyword",
"ignore_above": 256
}
}
},
"user_id": {
"type": "text",
"fields": {
"keyword": {
"type": "keyword",
"ignore_above": 256
}
}
},
"user_type": {
"type": "text",
"fields": {
"keyword": {
"type": "keyword",
"ignore_above": 256
}
}
}
}
},
"question_id": {
"type": "long"
},
"reopen_vote_count": {
"type": "long"
},
"score": {
"type": "text",
"fields": {
"keyword": {
"type": "keyword",
"ignore_above": 256
}
}
},
"share_link": {
"type": "text",
"fields": {
"keyword": {
"type": "keyword",
"ignore_above": 256
}
}
},
"tags": {
"type": "text",
"fields": {
"keyword": {
"type": "keyword",
"ignore_above": 256
}
}
},
"title": {
"type": "text",
"fields": {
"keyword": {
"type": "keyword",
"ignore_above": 256
}
}
},
"up_vote_count": {
"type": "long"
},
"view_count": {
"type": "text",
"fields": {
"keyword": {
"type": "keyword",
"ignore_above": 256
}
}
}
}
}
},
"settings": {
"index": {
"creation_date": "1581585452123",
"number_of_shards": "5",
"number_of_replicas": "1",
"uuid": "_nvo_G7ZRvqMIwLmddUXPw",
"version": {
"created": "6020399"
},
"provided_name": "questiondetails"
}
}
}
}
You can achieve what you want with a scripted terms aggregation, like this:
POST questions/_search
{
"size": 0,
"aggs": {
"ids": {
"terms": {
"script": "[doc['owner.user_id.keyword'].value, doc['reply.owner.user_id.keyword'].value]",
"size": 10
}
}
}
}

Unable to search by word "company"

Both the below questions are related to same index
1) I am using Elastic search. My text contains word "companies"
For example: John has worked with companies like Bharat Electronics
and Gillette in senior management positions, wherein he has  set up
new units, managed talent acquisition, systems, processes and laying
out SOP for Human Resources
When I search using following query, I don't find any result however it should have returned data:
{
"query": {
"bool": {
"should": [
{ "match":
{
"fields.bio": "company"
}
}
]
}
}
}
I get zero records however it should have found above record.
2) While creating an index I used english stop words but it still returns records bases on words like an.
The code I used to create an index:
{
"settings": {
"analysis": {
"filter": {
"my_stop": {
"type": "stop",
"stopwords": "_english_"
}
}
}
}
}
So, it should not return any record even though the text contain an word But in reality it is returning records if it finds an word in records.
The index mapping is as follows:
{
"experts": {
"mappings": {
"properties": {
"categories": {
"type": "text",
"fields": {
"keyword": {
"type": "keyword",
"ignore_above": 256
}
}
},
"expertise": {
"type": "text",
"fields": {
"keyword": {
"type": "keyword",
"ignore_above": 256
}
}
},
"fields": {
"properties": {
"annual_income": {
"type": "text",
"fields": {
"keyword": {
"type": "keyword",
"ignore_above": 256
}
}
},
"avg_rating": {
"type": "long"
},
"bio": {
"type": "text",
"fields": {
"keyword": {
"type": "keyword",
"ignore_above": 256
}
}
},
"calls": {
"type": "long"
},
"current_company": {
"type": "text",
"fields": {
"keyword": {
"type": "keyword",
"ignore_above": 256
}
}
},
"current_country_id": {
"type": "long"
},
"current_position": {
"type": "text",
"fields": {
"keyword": {
"type": "keyword",
"ignore_above": 256
}
}
},
"email": {
"type": "text",
"fields": {
"keyword": {
"type": "keyword",
"ignore_above": 256
}
}
},
"id": {
"type": "long"
},
"linkedin_url": {
"type": "text",
"fields": {
"keyword": {
"type": "keyword",
"ignore_above": 256
}
}
},
"mobileno": {
"type": "text",
"fields": {
"keyword": {
"type": "keyword",
"ignore_above": 256
}
}
},
"profile_photo_url": {
"type": "text",
"fields": {
"keyword": {
"type": "keyword",
"ignore_above": 256
}
}
},
"review_count": {
"type": "long"
},
"total_experience": {
"type": "long"
},
"username": {
"type": "text",
"fields": {
"keyword": {
"type": "keyword",
"ignore_above": 256
}
}
},
"users": {
"type": "long"
}
}
},
"functions": {
"type": "text",
"fields": {
"keyword": {
"type": "keyword",
"ignore_above": 256
}
}
},
"id": {
"type": "text",
"fields": {
"keyword": {
"type": "keyword",
"ignore_above": 256
}
}
},
"industries": {
"type": "text",
"fields": {
"keyword": {
"type": "keyword",
"ignore_above": 256
}
}
},
"qualifications": {
"type": "text",
"fields": {
"keyword": {
"type": "keyword",
"ignore_above": 256
}
}
}
}
}
}
}
Kindly help.

How to find objects with inner objects having multiple fields by specific values in Elastic Search

I have an index with objects named "DynamicFields" and each of them have inner objects named "Fields" like this:
{
"DynamicFields": [
{
"Fields": [
{
"DFieldVal": "Value1",
"Owned": 0,
"DFieldRelCode": 181254,
"DFieldCode": 1835
},
{
"DFieldVal": "Value2",
"Owned": 0,
"DFieldRelCode": 181255,
"DFieldCode": 1836
},
{
"DFieldVal": "Value3",
"Owned": 1,
"DFieldRelCode": 181256,
"DFieldCode": 1837
},
{
"DFieldVal": "Value4",
"Owned": 0,
"DFieldRelCode": 181257,
"DFieldCode": 1838
}
]
}
]
}
I need to find objects "DynamicFields" that has inner objects "Fields" with this exact values:
"DFieldCode": 1837
and
"Owned": 0
Im using this query for it, but it gives me wrong result, it should return an empty result because there isn't any inner object "Fields" having both of the values:
{
"from":0,
"size":10,
"query": {
"bool":{
"must":[
{ "terms": { "DynamicFields.Fields.Owned" : [0] } },
{ "terms": { "DynamicFields.Fields.DFieldCode" : [1837] } }
]
}
}
}
I think the problem is that Elastic search sees the inner objects properties as normal property for the Root Object so it returns the objects that have the mentioned fields in all inner objects no matter in the same inner object.
EDIT:
i have summarized the data to make it simpler
the mapping is full map of the data:
{
"marketplace": {
"mappings": {
"object": {
"properties": {
"Addresses": {
"properties": {
"AddrID": {
"type": "long"
},
"AddressText": {
"type": "text",
"fields": {
"keyword": {
"type": "keyword",
"ignore_above": 256
}
}
},
"AddressTree": {
"properties": {
"AddrFieldRelID": {
"type": "long"
},
"AddrTitleName": {
"type": "text",
"fields": {
"keyword": {
"type": "keyword",
"ignore_above": 256
}
}
},
"AddrTitlePersianName": {
"type": "text",
"fields": {
"keyword": {
"type": "keyword",
"ignore_above": 256
}
}
},
"AddrValName": {
"type": "text",
"fields": {
"keyword": {
"type": "keyword",
"ignore_above": 256
}
}
},
"Latitude": {
"type": "float"
},
"Longitude": {
"type": "float"
}
}
},
"Latitude": {
"type": "float"
},
"Longitude": {
"type": "float"
},
"Tel": {
"type": "text",
"fields": {
"keyword": {
"type": "keyword",
"ignore_above": 256
}
}
}
}
},
"DelFlag": {
"type": "long"
},
"DynamicFields": {
"properties": {
"DynamicDefCode": {
"type": "long"
},
"DynamicDefDataTypeName": {
"type": "text",
"fields": {
"keyword": {
"type": "keyword",
"ignore_above": 256
}
}
},
"DynamicDefName": {
"type": "text",
"fields": {
"keyword": {
"type": "keyword",
"ignore_above": 256
}
}
},
"DynamicValKind": {
"type": "text",
"fields": {
"keyword": {
"type": "keyword",
"ignore_above": 256
}
}
},
"Fields": {
"properties": {
"DFieldCode": {
"type": "long"
},
"DFieldRelCode": {
"type": "long"
},
"DFieldVal": {
"type": "text",
"fields": {
"keyword": {
"type": "keyword",
"ignore_above": 256
}
}
},
"Owned": {
"type": "boolean"
}
}
}
}
},
"GFRefCode": {
"type": "long"
},
"GoodsDesc": {
"properties": {
"FName": {
"type": "text",
"fields": {
"keyword": {
"type": "keyword",
"ignore_above": 256
}
}
},
"GoodsFullName": {
"type": "text",
"fields": {
"keyword": {
"type": "keyword",
"ignore_above": 256
}
}
},
"Supplier": {
"properties": {
"Barcode": {
"type": "text",
"fields": {
"keyword": {
"type": "keyword",
"ignore_above": 256
}
}
},
"GPackDayPrice": {
"type": "long"
},
"GoodsEnterDate": {
"type": "date"
},
"GoodsFinalCode": {
"type": "long"
},
"GoodsFullName": {
"type": "text",
"fields": {
"keyword": {
"type": "keyword",
"ignore_above": 256
}
}
},
"GoodsWHStock": {
"type": "long"
},
"StoreName": {
"type": "text",
"fields": {
"keyword": {
"type": "keyword",
"ignore_above": 256
}
}
},
"UserName": {
"type": "text",
"fields": {
"keyword": {
"type": "keyword",
"ignore_above": 256
}
}
},
"WHName": {
"type": "text",
"fields": {
"keyword": {
"type": "keyword",
"ignore_above": 256
}
}
},
"WareHouseCode": {
"type": "long"
}
}
},
"UserName": {
"type": "text",
"fields": {
"keyword": {
"type": "keyword",
"ignore_above": 256
}
}
}
}
},
"GoodsFinalCode": {
"type": "long"
},
"Images": {
"type": "text",
"fields": {
"keyword": {
"type": "keyword",
"ignore_above": 256
}
}
},
"IsMainObject": {
"type": "boolean"
},
"ObjectDetailPackID": {
"type": "long"
},
"ObjectKind": {
"type": "long"
},
"Prices": {
"properties": {
"Barcode": {
"type": "text",
"fields": {
"keyword": {
"type": "keyword",
"ignore_above": 256
}
}
},
"GPWeight": {
"type": "float"
},
"GpackDayPrice": {
"type": "long"
},
"PackingName": {
"type": "text",
"fields": {
"keyword": {
"type": "keyword",
"ignore_above": 256
}
}
}
}
},
"RefGoodsFinalCode": {
"type": "long"
},
"TreePath": {
"properties": {
"DFieldCode": {
"type": "long"
},
"DFieldRelCode": {
"type": "long"
},
"DFieldVal": {
"type": "text",
"fields": {
"keyword": {
"type": "keyword",
"ignore_above": 256
}
}
}
}
}
}
}
}
}
}
thanks.
As your index shows you saved your array as an object,
read more about this here
Basically unless specified otherwise elasticsearch flattens arrays when being saved, making objects in arrays lose their structure.
you should define the type of Fields as nested to avoid this.

Elasticsearch - using nested object value in Function Score

I currently have a nested object interest_scores in ES that looks like this:
[{
username: 'Somebody',
interest_scores: [
{ name: 'Running', score: 10 }
{ name: 'Food and drinks', score: 21 }
]
},
{
username: 'SomebodyElse',
interest_scores: [
{ name: 'Running', score: 7 }
{ name: 'Food and drinks', score: 29 }
]
}]
When I enter the search term Running I would like the user with the highest score for Running to get returned first.
I know the way to do this is to use a Function Score Query but I am not sure how to use the matching search term in the function / script. What I think is that the query will return all documents that have the interest "Running" and then I could use something like interest_scores.{match}.score to add to or multiply by the document score.
Any help with this would be greatly appreciated!
As requested, here is the mapping:
{
"influencers": {
"mappings": {
"influencer": {
"properties": {
"email": {
"type": "text",
"fields": {
"keyword": {
"type": "keyword",
"ignore_above": 256
}
}
},
"gender": {
"type": "text",
"fields": {
"keyword": {
"type": "keyword",
"ignore_above": 256
}
}
},
"geo": {
"type": "geo_point"
},
"hashtags": {
"type": "text",
"fields": {
"keyword": {
"type": "keyword",
"ignore_above": 256
}
}
},
"id": {
"type": "text",
"fields": {
"keyword": {
"type": "keyword",
"ignore_above": 256
}
}
},
"interest_scores": {
"type": "nested",
"properties": {
"name": {
"type": "text",
"fields": {
"keyword": {
"type": "keyword",
"ignore_above": 256
}
}
},
"score": {
"type": "long"
}
}
},
"interests": {
"type": "text",
"fields": {
"keyword": {
"type": "keyword",
"ignore_above": 256
}
}
},
"language": {
"type": "text",
"fields": {
"keyword": {
"type": "keyword",
"ignore_above": 256
}
}
},
"location": {
"properties": {
"city": {
"type": "text",
"fields": {
"keyword": {
"type": "keyword",
"ignore_above": 256
}
}
},
"country": {
"type": "text",
"fields": {
"keyword": {
"type": "keyword",
"ignore_above": 256
}
}
},
"country_code": {
"type": "text",
"fields": {
"keyword": {
"type": "keyword",
"ignore_above": 256
}
}
},
"lat": {
"type": "float"
},
"lng": {
"type": "float"
},
"state_code": {
"type": "text",
"fields": {
"keyword": {
"type": "keyword",
"ignore_above": 256
}
}
},
"subdivision": {
"type": "text",
"fields": {
"keyword": {
"type": "keyword",
"ignore_above": 256
}
}
}
}
},
"network_data": {
"properties": {
"facebook": {
"properties": {
"url": {
"type": "text",
"fields": {
"keyword": {
"type": "keyword",
"ignore_above": 256
}
}
},
"username": {
"type": "text",
"fields": {
"keyword": {
"type": "keyword",
"ignore_above": 256
}
}
}
}
},
"instagram": {
"properties": {
"bio": {
"type": "text",
"fields": {
"keyword": {
"type": "keyword",
"ignore_above": 256
}
}
},
"engagement": {
"type": "float"
},
"id": {
"type": "text",
"fields": {
"keyword": {
"type": "keyword",
"ignore_above": 256
}
}
},
"picture": {
"type": "text",
"fields": {
"keyword": {
"type": "keyword",
"ignore_above": 256
}
}
},
"reach": {
"type": "long"
},
"url": {
"type": "text",
"fields": {
"keyword": {
"type": "keyword",
"ignore_above": 256
}
}
},
"username": {
"type": "text",
"fields": {
"keyword": {
"type": "keyword",
"ignore_above": 256
}
}
}
}
},
"pinterest": {
"properties": {
"url": {
"type": "text",
"fields": {
"keyword": {
"type": "keyword",
"ignore_above": 256
}
}
},
"username": {
"type": "text",
"fields": {
"keyword": {
"type": "keyword",
"ignore_above": 256
}
}
}
}
},
"twitter": {
"properties": {
"bio": {
"type": "text",
"fields": {
"keyword": {
"type": "keyword",
"ignore_above": 256
}
}
},
"engagement": {
"type": "float"
},
"id": {
"type": "text",
"fields": {
"keyword": {
"type": "keyword",
"ignore_above": 256
}
}
},
"picture": {
"type": "text",
"fields": {
"keyword": {
"type": "keyword",
"ignore_above": 256
}
}
},
"reach": {
"type": "long"
},
"url": {
"type": "text",
"fields": {
"keyword": {
"type": "keyword",
"ignore_above": 256
}
}
},
"username": {
"type": "text",
"fields": {
"keyword": {
"type": "keyword",
"ignore_above": 256
}
}
}
}
},
"youtube": {
"properties": {
"bio": {
"type": "text",
"fields": {
"keyword": {
"type": "keyword",
"ignore_above": 256
}
}
},
"engagement": {
"type": "float"
},
"id": {
"type": "text",
"fields": {
"keyword": {
"type": "keyword",
"ignore_above": 256
}
}
},
"picture": {
"type": "text",
"fields": {
"keyword": {
"type": "keyword",
"ignore_above": 256
}
}
},
"reach": {
"type": "long"
},
"url": {
"type": "text",
"fields": {
"keyword": {
"type": "keyword",
"ignore_above": 256
}
}
},
"username": {
"type": "text",
"fields": {
"keyword": {
"type": "keyword",
"ignore_above": 256
}
}
},
"videos": {
"type": "long"
},
"views": {
"type": "long"
},
"views_per_video": {
"type": "float"
}
}
}
}
},
"networks": {
"type": "text",
"fields": {
"keyword": {
"type": "keyword",
"ignore_above": 256
}
}
},
"picture": {
"type": "text",
"fields": {
"keyword": {
"type": "keyword",
"ignore_above": 256
}
}
},
"total_reach": {
"type": "long"
},
"username": {
"type": "text",
"fields": {
"keyword": {
"type": "keyword",
"ignore_above": 256
}
}
}
}
}
}
}
}
I do not have a function score query yet, I am only testing in the Dev Tools of Kibana - I do have all of the other filters working correctly though. I am just looking to say "If the search term matches a interest_scores.name then sort the hits by the interest_scores.score of that interest_scores.name
Update
The following seems to be working when I test it in Kibana dev tools:
{
"query": {
"nested": {
"path": "interest_scores",
"score_mode": "sum",
"query": {
"function_score": {
"query": {
"match": { "interest_scores.name": "Running" }
},
"script_score": {
"script": "_score + doc['interest_scores.score'].value"
}
}
}
}
}
}
I have tested it with a few different search terms and it always returns the highest score first, but what is weird is that I get the same results when I remove the script_score function. Can anyone tell me if this is a good solution, or why it works without the script_score?
As described here, you can sort by nested fields:
{
"_source": false, # for inner hits - you can remove it
"query": {
"nested": {
"path": "interest_scores",
"filter": {
"range": {
"interest_scores.score": {
"gte": "0"
}
}
},
"inner_hits": {} # for inner hits - you can remove it
}
},
"sort": {
"interest_scores.score": {
"order": "desc",
"mode": "max",
"nested_filter": {
"range": {
"interest_scores.score": {
"gte": "0"
}
}
}
}
}
}
*Pay attention that, you can use the inner_hits ability to show only relevant nested documents. If all inner hits documents are relevant - please remove the marked lines.
**Use the filter on score field or on any other field (e.g: name you would like to filter by).
EDIT 1:
If you want to get the sorted scores of specific name, try:
{
"_source": false,
"query": {
"nested": {
"path": "interest_scores",
"filter": {
"term": {
"interest_scores.name": "SCORE_NAME"
}
},
"inner_hits": {}
}
},
"sort": {
"interest_scores.score": {
"order": "desc",
"mode": "max",
"nested_filter": {
"range": {
"interest_scores.score": {
"gte": "0"
}
}
}
}
}
}
Put the desired score name instead SCORE_NAME.

Resources