How SC_CTOR works in SystemC - c++11

In SystemC module constructor can be defined using SC_CTOR macro:
#define SC_MODULE(user_module_name) \
struct user_module_name : ::sc_core::sc_module
#define SC_CTOR(user_module_name) \
typedef user_module_name SC_CURRENT_USER_MODULE; \
user_module_name( ::sc_core::sc_module_name )
Need to understand use scope specifier operator before sc_core.
As per the macro user can generate constructor but it takes argument sc_module_name.
User module struct user module is inheriting class sc_module, In class sc_module there are different overloaded constructor like
sc_module();
sc_module( const sc_module_name& nm ); /* for those used to old style */
/* DEPRECATED */ sc_module( const char* nm );
/* DEPRECATED */ sc_module( const std::string& nm );
As per SC_CTOR it is declaring any object of type sc_moduke_name in constructor body if expanded the constructor will take form user_module(::sc_core::sc_module) { /*constructor body*/}.
To understand simulate same code but failed to create object of type struct B
class mname {
private:
char *name;
public:
mname() {
cout << "mname constructor invoked\n";
cout << "\t name\t" << name;
}
};
class A {
friend class mname;
private:
mname * mn;
public:
A() {
cout << "A constructor called\n";
}
A(const mname& m) {
cout << "freind class constructor of A\n";
}
A(const std:: string& s) {
cout << "string type construfctor\n";
}
};
struct B: A {
B(mname ) {
cout << "struct b cosntructor called\n";
}
};
int main() {
B obj(mname);
return 0;
}

A typical code to create a module is :
SC_MODULE(my_module)
{
SC_CTOR(my_module)
{
}
};
With macros, this code will expand to:
struct my_module : ::sc_core::sc_module
{
typedef my_module SC_CURRENT_USER_MODULE;
my_module( ::sc_core::sc_module_name )
{
}
};
If you want to create an instance of this module, you need to pass an instance of ::sc_core::sc_module_name in the constructor and not the class name as you did in your example code. You can also pass something to create implicitly an instance of ::sc_core::sc_module_name as a const char* (cf ::sc_core::sc_module_name constructors)
my_module a("name_of_my_module");
or
::sc_core::sc_module_name module_name("another_name");
my_module b(module_name);
In your example code, just replace the main with :
int main() {
mname name; // instance of mname
B obj(name);
return 0;
}

Related

copy constructor do not work in cpp template

I'm writing a test program about c++ type erasure, the code is put on the end.
when I run program , the test case 2 output as follow:
A default cstr...0x7ffe0fe5158f
obj_:0x7ffe0fe5158f objaaa 0x7ffe0fe5158f
Print A 0x7ffe0fe5158f
my machine: Linux x86-64, gcc 4.8
In my opinion, "Object obj2(a2);" makes a class Model by lvalue reference, so it should call A's copy constructor,
but actually it did not work, it makes me confused.
someone can give a explanation, thank you in advance.
the program is list as follow:
#include <memory>
#include <iostream>
class Object {
public:
template <typename T>
Object(T&& obj) : object_(std::make_shared<Model<T>>(std::forward<T>(obj))) {
}
void PrintName() {
object_->PrintName();
}
private:
class Concept {
public:
virtual void PrintName() = 0;
};
template <typename T>
class Model : public Concept {
public:
Model(T&& obj) : obj_(std::forward<T>(obj)) {
std::cout << "obj_:" << std::addressof(obj_) <<" objaaa " << std::addressof(obj) << std::endl;
}
void PrintName() {
obj_.PrintName();
}
private:
T obj_;
};
private:
std::shared_ptr<Concept> object_;
};
class A {
public:
A(A& a) {
std::cout<< "A copy cstr...a" << this << std::endl;
}
A(A&& a) {
std::cout << "A move cstr...." <<this<< std::endl;
}
A() {
std::cout << "A default cstr..." <<this<< std::endl;
}
void PrintName() {
std::cout << "Print A " << this << std::endl;
}
};
int main(void)
{
// test case 1
Object obj{A()};
obj.PrintName();
// test case 2
A a2;
Object obj2(a2);
obj2.PrintName();
return 0;
}
In Object obj2(a2);, no copy is made. T in the constructor of Object is deduced to be A&, so it instantiates Model<A&>, which stores a reference to the original a2 object as its obj_ member.
Observe that in your debug output, a2's constructor, Model's constructor and PrintName all print the same address. You can further confirm that this address is in fact &a2.

Can a method of an class (in a shared_ptr) be tied to a static function in a traits class?

Historically, I've been using trait classes to hold information and apply that into a "generic" function that runs the same "algorithm." Only differed by the trait class. For example: https://onlinegdb.com/ryUo7WRmN
enum selector { SELECTOR1, SELECTOR2, SELECTOR3, };
// declaration
template < selector T> struct example_trait;
template<> struct example_trait<SELECTOR1> {
static constexpr size_t member_var = 3;
static size_t do_something() { return 0; }
};
template<> struct example_trait<SELECTOR2> {
static constexpr size_t member_var = 5;
static size_t do_something() { return 0; }
};
// pretend this is doing something useful but common
template < selector T, typename TT = example_trait<T> >
void function() {
std::cout << TT::member_var << std::endl;
std::cout << TT::do_something() << std::endl;
}
int main()
{
function<SELECTOR1>();
function<SELECTOR2>();
return 0;
}
I'm not sure how to create "generic" algorithms this when dealing with polymorphic classes.
For example: https://onlinegdb.com/S1hFLGC7V
Below I have created an inherited class hierarchy. In this example I have a base catch-all example that defaults all the parameters to something (0 in this case). And then each derived class sets overrides specific methods.
#include <iostream>
#include <memory>
#include <type_traits>
#include <assert.h>
using namespace std;
struct Base {
virtual int get_thing_one() {
return 0;
}
virtual int get_thing_two() {
return 0;
}
virtual int get_thing_three() {
return 0;
}
virtual int get_thing_four() {
return 0;
}
};
struct A : public Base {
virtual int get_thing_one() override {
return 1;
}
virtual int get_thing_three() override {
return 3;
}
};
struct B : public Base {
virtual int get_thing_one() override {
return 2;
}
virtual int get_thing_four() override{
return 4;
}
};
Here I created a simple factory, not elegant but for illustrative purposes
// example simple factory
std::shared_ptr<Base> get_class(const int input) {
switch(input)
{
case 0:
return std::shared_ptr<Base>(std::make_shared<A>());
break;
case 1:
return std::shared_ptr<Base>(std::make_shared<B>());
break;
default:
assert(false);
break;
}
}
So this is the class of interest. It is a class does "something" with the data from the classes above. The methods below are a simple addition example but imagine a more complicated algorithm that is very similar for every method.
// class that uses the shared_ptr
class setter {
private:
std::shared_ptr<Base> l_ptr;
public:
setter(const std::shared_ptr<Base>& input):l_ptr(input)
{}
int get_thing_a()
{
return l_ptr->get_thing_one() + l_ptr->get_thing_two();
}
int get_thing_b()
{
return l_ptr->get_thing_three() + l_ptr->get_thing_four();
}
};
int main()
{
constexpr int select = 0;
std::shared_ptr<Base> example = get_class(select);
setter l_setter(example);
std::cout << l_setter.get_thing_a() << std::endl;
std::cout << l_setter.get_thing_b() << std::endl;
return 0;
}
How can I make the "boilerplate" inside the setter class more generic? I can't use traits as I did in the example above because I can't tie static functions with an object. So is there a way to make the boilerplate example more common?
Somewhere along the lines of having a selector, say
enum thing_select { THINGA, THINGB, };
template < thing_select T >
struct thing_traits;
template <>
struct thing_traits<THINGA>
{
static int first_function() --> somehow tied to shared_ptr<Base> 'thing_one' method
static int second_function() --> somehow tied to shared_ptr<Base> 'thing_two' method
}
template <>
struct thing_traits<THINGB>
{
static int first_function() --> somehow tied to shared_ptr<Base> 'thing_three' method
static int second_function() --> somehow tied to shared_ptr<Base> 'thing_four' method
}
// generic function I'd like to create
template < thing_select T, typename TT = thing_traits<T> >
int perform_action(...)
{
return TT::first_function(..) + TT::second_function(..);
}
I ideally would like to modify the class above to something along the lines of
// Inside setter class further above
int get_thing_a()
{
return perform_action<THINGA>(...);
}
int get_thing_b()
{
return perform_action<THINGB>(...);
}
The answer is, maybe I can't, and I need to pass int the shared_ptr as a parameter and call the specific methods I need instead of trying to tie a shared_ptr method to a static function (in hindsight, that doesn't sound like a good idea...but I wanted to bounce my idea)
Whoever makes the actual call will need a reference of the object, one way or the other. Therefore, assuming you want perform_action to perform the actual call, you will have to pass the parameter.
Now, if you really want to store which function of Base to call as a static in thing_traits without passing a parameter, you can leverage pointer to member functions:
template <>
struct thing_traits<THINGA>
{
static constexpr int (Base::*first_function)() = &Base::get_thing_one;
...
}
template < thing_select T, typename TT = thing_traits<T>>
int perform_action(Base & b)
{
return (b.*TT::first_function)() + ...;
}
You can also play instead with returning a function object that does the call for you (and the inner function takes the parameter).
It all depends on who you need to make the call and what information/dependencies you assume you have available in each class/template.

Getting weak pointer to derived class

I have a bunch of derived classes stored as shared pointers, I was wondering if there is any way of getting a weak_ptr to the object from inside the object?
I've tried using the shared_from_this() function but the problem is that since it's a derived class, when I make the base class inherit from enable_shared_from_this, when the derived class calls shared_from_this() it gets a shared_ptr of the base class not the derived class which I can't turn into a shared_ptr of the derived class
Any suggestions?
Usign CRTP you can achieve it:
#include <memory>
template<typename T>
struct B: std::enable_shared_from_this<T> {};
struct D: B<D> {};
int main() {
std::shared_ptr<B<D>> b = std::make_shared<D>();
std::shared_ptr<D> d = b->shared_from_this();
std::weak_ptr<D> w = b->shared_from_this();
}
If you want to have a common, non-template base class, you can rely on techniques like the double dispatching, as in the following example:
#include <memory>
#include <iostream>
struct D1;
struct D2;
struct S {
void doSomething(std::weak_ptr<D1> weak) { std::cout << "D1" << std::endl; }
void doSomething(std::weak_ptr<D2> weak) { std::cout << "D2" << std::endl; }
};
struct B: std::enable_shared_from_this<B> {
virtual void dispatch(S &) = 0;
};
template<typename T>
struct M: B {
void dispatch(S &s) override {
auto ptr = std::static_pointer_cast<T>(shared_from_this());
s.doSomething(ptr);
}
};
struct D1: M<D1> {};
struct D2: M<D2> {};
int main() {
std::shared_ptr<B> b = std::make_shared<D1>();
S s;
b->dispatch(s);
}
As #Torbjörn said, using the dynamic_pointer_cast<Derived>(base_ptr) fixed this problem as it allowed me to convert shared_ptr's down in inheritance, something that isn't directly allowed.

c++11 dedicated "proxy constructors" delegating to private univeral reference constructor?

Reading Scott Meyer's book "Effective Modern C++", Item 24 (and following), and Item 41, I wonder that this book opposes:
the individual constructors for lvalue and rvalue parameters
to
a template'd universal constructor solution
It says, that 1. has the disadvantage to duplicate code.
Whereas 2. has the disadvantage to potentially being used for unwanted types.
I wonder why the book does not mention a mixed model - as in the example code shown below.
It uses type-safe dedicated constructors for lvalue and rvalue but delegates to a single (private) generic implementation for "universal reference".
This avoids unwanted template types of a public "universal reference" constructor.
So is there is anything wrong with the approach below? Something I missed?
#include <iostream>
#include <string>
class MyClass
{
private:
enum class Dummy { Nop = 0 } ;
template <class T>
MyClass(Dummy, T&& data)
: _data(std::forward<T>(data))
{
std::cout << "MyClass universal reference template c'tor" << std::endl;
}
public:
// proxy c'tors delegating to universal reference c'tor
MyClass (std::string const & data)
: MyClass(Dummy::Nop, data)
{
std::cout << "MyClass lvalue c'tor" << std::endl;
}
MyClass (std::string && data)
: MyClass(Dummy::Nop, std::move(data))
{
std::cout << "MyClass rvalue c'tor" << std::endl;
}
private:
std::string _data;
};
int main(int, char**)
{
{
std::string str("demo");
MyClass myClass(str);
}
{
MyClass myClass("hello, world");
}
return 0;
}
And now let's put the book down and do it the right way:
Pros:
Optimal efficiency
Correct type limitations
DRY
Cons:
None
-
#include <iostream>
#include <string>
#include <type_traits>
class MyClass
{
public:
template <class T, std::enable_if_t<std::is_constructible<std::string, T>::value>* = nullptr>
MyClass(T&& data)
: _data(std::forward<T>(data))
{
std::cout << "MyClass universal reference template c'tor" << std::endl;
}
private:
std::string _data;
};
int main()
{
using namespace std::string_literals;
auto a = MyClass("hello"s);
auto b = MyClass("world");
const auto s = "Hello, World"s;
auto s2 = "Hello, World";
auto c = MyClass(s);
auto d = MyClass(s2);
// won't compile
// auto e = MyClass(10);
}

What is the return type of this auto?

With some code left out, elsewhere on SOF there is code that looks like this:
// CRTP Abstract Base class for implementing static subject.
// Example Subclass Usage -- Printing Observer:
class Printer : public Observer<Printer> {
public:
Printer() : timesTriggered_(0) {}
template <typename... Args>
void OnNotify(Pressure<Args...> &subject, EventType event) {
std::cout << "Observer ID: " << this->GetID() << std::endl;
switch (event) {
case EventType::UNKNOWN: {
std::cout << "Unknown Event -- Event #" << timesTriggered_++
<< std::endl;
std::cout << "Pressure: " << subject.GetPressure() << std::endl;
break;
}
default: { break; }
}
}
private:
int timesTriggered_;
};
// CRTP Abstract Base class for implementing static subject.
// Example Subclass Usage -- Pressure Sensor:
template <typename... Obs>
class Pressure : public Subject<Pressure<Obs...>, Obs...> {
public:
typedef Subject<Pressure<Obs...>, Obs...> BaseType;
Pressure(std::tuple<Obs &...> &&observers, int pressure)
: BaseType(std::move(observers)), pressure_(pressure) {}
void Change(int value) {
pressure_ = value;
this->NotifyAll(EventType::UNKNOWN);
}
int GetPressure() const { return pressure_; }
private:
int pressure_;
};
// Binding function for use with MakeSubject
// Arguments: observer objects to observe subject notifications
// Return: tuple of references to observers
template <typename... Obs> std::tuple<Obs &...> BindObservers(Obs &... obs) {
return std::tuple<Obs &...>(obs...);
}
// Creator to ease subject creation
// Template Arguments: Subject subclass type
// Arguments: Result from BindObservers
// Any constructor arguments for Subject subclass
// Return: Subject subclass
// Example Usage:
// auto pressure = MakeSubject<Pressure>(BindObservers(printerObs), initialPressure);
template <template <typename...> class T, typename... Args, typename... Obs>
T<Obs...> MakeSubject(std::tuple<Obs &...> &&obs, Args &&... args) {
return T<Obs...>(std::move(obs), args...);
}
In main.cpp
int main() {
Printer printerObs1;
Printer printerObs2;
const int initialPressure = 1;
auto pressure = MakeSubject<Pressure>(
BindObservers(printerObs1, printerObs2), initialPressure);
pressure.Change(12);
}
I need to break out the BindObservers and the return type of MakeSubject, but I can't correctly figure out what to replace both **auto in the pseudo-code below:**
auto obs = BindObservers(printerObs1, printerObs2);
auto pressure = MakeSubject<Pressure>(obs, initialPressure);
What is the exapanded version return types of both auto above? I need to store the return values in std::vector and AFAIK, I can't say
std::vector<auto> vec
[Although I don't see why not since the compiler can probably figure it out]
You can use std::vector<decltype(pressure)>.
But the type should be Pressure<Printer, Printer>.

Resources