If I have a pure virtual class InterfaceA that consists solely of a pure virtual destructor, why do I have to define the destructor as inline? I I don't I get an error when I try to link it.
Below is an admittedly contrived example, however it illustrates the point. The point does not compile for me using cmake and g++. However, if I change the InterfaceA destructor definition as follows - inline InterfaceA::~InterfaceA(){}; then it compiles.
Why is this? What does the inline keyword do?
// InterfaceA.h, include guards ommitted for clarity
class InterfaceA
{
public:
virtual ~InterfaceA() = 0;
};
InterfaceA::~InterfaceA(){};
// A.h, include guards ommitted for clarity
#include "InterfaceA.h"
class A : public InterfaceA
{
public:
A(int val)
: myVal(val){};
~A(){};
int myVal;
};
// AUser.h, include guards ommitted for clarity
#include "InterfaceA.h"
class AUser
{
public:
AUser(InterfaceA& anA)
: myA(anA){};
~AUser(){};
int getVal() const;
private:
InterfaceA& myA;
};
// AUser.cpp
#include "AUser.h"
#include "A.h"
int AUser::getVal() const
{
A& anA = static_cast<A&>(myA);
return anA.myVal;
}
// main.cpp
#include "AUser.h"
#include "A.h"
#include <iostream>
int main(){
A anA(1);
AUser user(anA);
std::cout << "value = " << user.getVal() << std::endl;
return 0;
}
You have to use the inline keyword when defining functions in header files. If you do not, and the file is included in more than one translation unit, the function will be defined twice (or more times).
The linker error is probably something like "Symbol ... is multiply defined" right?
If you defined the member function in the body of the class, it would be implicitly inline and it would also work.
See this answer
To answer the question "What does the inline keyword do?":
In the old days it would be used to ask the compiler to inline functions i.e. insert the code whenever the function is used instead of adding a function call. Eventually it turned into a simple suggestion since compiler optimizers became more knowledgeable about which functions were inline candidates. These days it is used almost exclusively to define functions in header files that must have external linkage.
inline means that compiler is allowed to add code directly to where the function was called. It also removes function from external linkage, so both your compile units would have local version of.. pure destructor.
// InterfaceA.h, include guards ommitted for clarity
class InterfaceA
{
public:
virtual ~InterfaceA() = 0;
};
You declare destructor virtual, so compiler almost never would make it inline. Why? because virtual functions are called through vtable - a internal working of virtual functions system, vtable most likely implemented as an array of pointers to member functions. If function is inlined, it would have no address, no legal pointer. If attempt to get address of function is taken, then compiler silently disregards inline keyword. The other effect will be still in place: inlined destructor stops to be visible to linker.
It may look like declaring pure virtual destructor looks like oxymoron , but it isn't. The pure destructor is kind of destructor that would be always called without causing UB. Its presence would make class abstract, but the implicit call in sequence of destructor calls would still happen. If you didn't declare destructor body, it would lead to an UB, e.g. purecall exception on Windows.
If you don't need an abstract base class, then inline definition will suffice:
class InterfaceA
{
public:
virtual ~InterfaceA() {}
};
that is treated by compiler as inline as well, but mixing inline definition and pure member declaration is not allowed.
Related
Using C++11, g++ (GCC) 4.4.7 20120313 (Red Hat 4.4.7-18).
Lets pretend I have a templated function (pardon my terminology if it isn't quite right).
I want to perform a "general" algorithm based on what was supposed to be compile-time instances of "field". Where the only things that really changed are these constants which I moved into trait classes (only added one here but imagine there are more). Originally I was declaring it as
constexpr field FIELD1{1};
However in C++11, non-type template params need to have external linkage (unlike C++14 which can have internal and external linkage?). So because not's in the same translation unit I needed to use extern in order to give it external linkage (sorry if I butchered that explanation also). But by defining it extern I can't define it using constexpr and it seems that losing that constexpr constructor this field is no longer a valid constant expression to qualify as a non-type template param.
Any suggestions if there is some way I can get around this? Open to a new method of doing things. Below is a simplified (incomplete, and non-compiling version to get the gist of the organization).
So the error I am seeing is along the lines of
error: the value of ‘FIELD1’ is not usable in a constant expression
note: ‘FIELD1’ was not declared ‘constexpr’
extern const field FIELD1;
Not quite sure what could be a best alternative.
I can get rid of the second error by removing the constexpr from the constructor. But then I don't know how to approach the constant expression issue.
field.H
struct field
{
int thingone;
constexpr field(int i):thingone(i){}
};
extern const field FIELD1;
field.C
#include "field.H"
const field FIELD1{0};
field_traits.H
#include "field.H"
template< const field& T >
class fieldTraits;
template< >
class fieldTraits<FIELD1>
{
public:
// Let's say I have common field names
// with different constants that I want to plug
// into the "function_name" algorithm
static constexpr size_t field_val = 1;
};
function.H
#include "field.H"
template< const field& T, typename TT = fieldTraits<T> >
void function_name()
{
// Let's pretend I'm doing something useful with that data
std::cout << T.thingone << std::endl;
std::cout << TT::field_val << std::endl;
}
So because not's in the same translation unit I needed to use extern in order to give it external linkage (sorry if I butchered that explanation also). But by defining it extern I can't define it using constexpr [...]
Per my comment, you can. It wouldn't work for you, but it's a step that helps in coming up with something that would work:
extern constexpr int i = 10;
This is perfectly valid, gives i external linkage, and makes i usable in constant expressions.
But it doesn't allow multiple definitions, so it can't work in a header file which is included in multiple translation units.
Ordinarily, the way around that is with inline:
extern inline constexpr int i = 10;
But variables cannot be declared inline in C++11.
Except... when they don't need to be declared inline because the effect has already been achieved implicitly:
struct S {
static constexpr int i = 10;
};
Now, S::i has external linkage and is usable in constant expressions!
You may not even need to define your own class for this, depending on the constant's type: consider std::integral_constant. You can write
using i = std::integral_constant<int, 10>;
and now i::value will do exactly what you want.
When initializing an atomic class member it requires a 'deleted' function, but adding it would make it no longer trivially copyable which is a requirement for an object/struct to be atomic. Am I just not understanding how to do this correctly, or is this a problem in the c++ standard?
Take the example below:
#include <atomic>
#include <cstdint>
template<typename T>
struct A
{
T * data;
std::atomic<uintptr_t> next;
};
template<typename T>
class B
{
std::atomic<A<T>> myA;
public:
B ( A<T> & a ) noexcept
{
myA.store(a, std::memory_order_relaxed );
}
};
int main ()
{
A<int> a;
B<int> b(a);
return 0;
}
Trying to compile this with g++ gives error: use of deleted function 'A<int>::A(const A<int>&)' myA.store(a, std::memory_order_relaxed);. My understanding of this error is that the atomic::store method is looking for that constructor in my struct A but not finding it.
Now here is what happens when I add that constructor:
#include <atomic>
#include <cstdint>
template<typename T>
struct A
{
T * data;
std::atomic<uintptr_t> next;
A(const A<T>& obj) { }
A( ) { }
};
template<typename T>
class B
{
std::atomic<A<T>> myA;
public:
B ( A<T> & a ) noexcept
{
myA.store(a, std::memory_order_relaxed );
}
};
int main ()
{
A<int> a;
B<int> b(a);
return 0;
}
I no longer receive the above compiler error but a new one coming from the requirements of the atomic class required from 'class B<int>' .... error: static assertion failed: std::atomic requires a trivially copyable type ... In other words by adding the used-defined constructors I have made my struct A a non-trivially copyable object which cannot be initialized in class B. However, without the user-defined constructors I cannot use the store method in myA.store(a, std::memory_order_relaxed).
This seems like a flaw in the design of the std::atomic class. Now maybe I am just doing something wrong because I don't have a lot of experience using C++11 and up (I'm old school). Since 11 there have been a lot of changes and the requirements seem to be a lot stricter. I'm hoping someone can tell me how to achieve what I want to achieve.
Also I cannot change std::atomic<A<T>> myA; to std::atomic<A<T>> * myA; (changed to pointer) or std::atomic<A<T>*> myA;. I realize this will compile but it will destroy the fundamental design of a class I am trying to build.
The problem here resides in the fact that std::atomic requires a trivially copiable type. This because trivially copyable types are the only sure types in C++ which can be directly copied by copying their memory contents directly (eg. through std::memcpy). Also non-formerly trivially copyable types could be safe to raw copy but no assumption can be made on this.
This is indeed important for std::atomic since copy on temporary values is made through std::memcpy, see some implementation details for Clang for example.
Now at the same time std::atomic is not copy constructible, and this is for reasonable reasons, check this answer for example, so it's implicitly not trivially copyable (nor any type which contains them).
If, absurdly, you would allow a std::atomic to contain another std::atomic, and the implementation of std::atomic contains a lock, how would you manage copying it atomically? How should it work?
Inner.hpp
#pragma once
#include <vector>
class Outter
{
public:
Outter();
~Outter() = default;
private:
class Inner;
std::vector<Inner> list;
};
Inner.cpp
#include "Inner.hpp"
#include <iostream>
class Outter::Inner
{
public:
Inner() : x(0), y(0), z(0) {}
~Inner() {}
private:
int x, y, z;
};
Outter::Outter()
{
std::cout << "Constructor\n";
}
//Outter::~Outter()
//{
// std::cout << "Destructor\n";
//}
InnerMain.cpp
#include "Inner.hpp"
int main()
{
Outter test;
}
When I compile above codes, I got an 'unknown size' error for the class Outter::Inner.
But if I change the 'default' destructor of Outter class to the implementation in Inner.cpp (commented in the above), then the error is cleared.
Why does this happen when I use '=default' destructor?
Please let me know.
Thanks.
As a result, in this case, '=default' was not important.
The implementation should be placed in .cpp file to make the compiler know the size of class Outter::Inner.
Forward declaration is not enough here. std::vector needs to know exactly what is the size of the inner class at compile time. Actually, the std::vector destructor who needs to know what is the real size of the inner class.
You have some solutions like using pointers to Inner class (if you want to keep your destructor in hpp):
std::vector<Inner*> list;
Or alternatively, move your destructor to the cpp class like what you did in the commented code. BTW, please be aware that you can set your destructor to default in the cpp file:
Outter::~Outter()=default;
Why does this happen when I use '=default' destructor?
Because of the destructor of std::vector needs to know the size. You defined the destructor of the class containing the std::vector in the header file where no information about the real size of the inner. However, when you put the definition of the destructor in the cpp file, the compiler now knows what is the actual size of inner and std::vector destructor will not complain.
In C++11 a default implementation of constructor(s), destructor and copy/move operators can be specified with "= default". Where to put the "= default", in header file, where the class definition is, or in the source file (cpp)?
In header file Test.h:
class Test
{
public:
~Test() = default;
};
In source file Test.cpp:
class Test
{
public:
~Test();
};
#include "Test.h"
Test::~Test() = default;
I have to disagree with rubenvb. You aren't forced to put the explicit default destructor in the header file.
In fact, there is a use case for which it's perfectly valid (and necessary) to put the explicit default destructor in the .cpp file.
Consider the case where you forward declare a class in the header file, and use it with one of the smart pointers templates. As the implicit destructor doesn't have the complete declaration of the forward declared class, it cannot properly do its deletion. Therefore, you need to move the destructor definition to the C++ file, where you should have access to the complete declaration.
In A.hpp:
#pragma once
#include <memory>
class B;
class A
{
private:
std::unique_ptr<B> my_b;
public:
// ~A() = default;
// defining the default destructor would fail as
// class B is still a partial class here
~A();
};
In A.cpp:
#include "A.hpp"
// the previously forward declared class B is now included here
#include "B.hpp"
// we can use the default destructor here as B is
// no longer a partial class
A::~A() = default;
You can do both:
in the first case (header) the destructor will be considered as non-user defined
in the second case (cpp) the compiler will consider it as user defined.
A user-provided destructor is non-trivial, making the class itself necessarily non-trivial.
Unless you have a good reason to for the second option, putting it in the header is the usual way to go.
You must put it in the header (well, wherever the class definition is located and the destructor is declared) or else anyone using your class won't know about this behaviour, including the compiler, which leads to obvious wrong behaviour on its part.
I wanted to test a simple thing like the following:
#include <iostream>
#include <boost/variant.hpp>
template<typename T1,typename T2>
std::ostream& operator<<(std::ostream& os, const std::pair<T1,T2>& dt){
os << dt.first << dt.second;
return os;
}
int main(){
boost::variant<int, std::pair<int,int>, bool> v;
v = std::pair<int,int>(3,3);
std::cout << v << std::endl;
}
This should actually work, because for normal types, like int, double and so on, it compiles.
boost::variant has a printer vistor which it uses internally to output the content to the stream.
Actually this fails to compile, but I do not really know the problem:
The codes fails here: in variant_io.hpp
template <typename OStream>
class printer
: public boost::static_visitor<>
{
private: // representation
OStream& out_;
public: // structors
explicit printer(OStream& out)
: out_( out )
{
}
public: // visitor interface
template <typename T>
void operator()(const T& operand) const
{
out_ << operand; // HEEEEEEERRRRREE!!!!!!!!!!!!
}
private:
printer& operator=(const printer&);
};
With the message:
/usr/local/include/boost/variant/detail/variant_io.hpp|64|error: cannot bind 'std::basic_ostream<char>' lvalue to 'std::basic_ostream<char>&&'
Does someone know what I did wrong, and why?
Thanks a lot!
Most likely it's not finding your overload of operator <<, and then gets confused trying to match some other overload, leading to whatever message you're getting.
What you did wrong: You overloaded the stream operator in the global namespace instead of the namespace the right-hand-side class is defined in, so it's not found by ADL.
Trying to overload the stream operator for a standard class is a doomed exercise in the first place, unfortunately. You can't actually do that. I'm not sure if there is an explicit rule against it. However, if you place the operator in namespace std as you have to in order to make it properly findable by ADL, you violate the rule that you can't add your own stuff to namespace std except in very specific cases, this not being one of them.
The bottom line is that std::pair doesn't have a stream operator, and it's not possible to legally add a generic one that is useful. You can add one for a specific instantiation, if one of the parameters is a class you defined yourself; in this case the operator needs to be placed next to your own class.
Overloaded operator<< must be findable by argument dependent lookup. That means you have to put it in associated namespace of one of the arguments.
The first argument has only one associated namespace, std. The second also has only one associated namespace, std. However it is only permitted to overload symbols in std for user-defined types. Since std::pair<int, int> is not user-defined type, this is not allowed. However it is allowed for a structure or class you define yourself. Obviously in that case it is easier to place the overload to your namespace, not std.
That said if you put that overload in namespace std, it will actually work.
Also note, that boost::tuple does have operator<< (in separate header that you have to include, but it does), so you can use that instead.