PLC Ladder Logic - memory and processing management - memory-management

I am beginning with ladder programing and english is not my first language. A professor of mine once said that I could not put more than one output on a same ladder rung, is that correct? And if so, is it preferable to put the outputs on other rungs or on the same one to save memory space and processing time?

This completely depends on the vendor providing the ladder logic implementation.
Rockwell (and I'm sure some other vendors) RLL allows OTEs and other actions anywhere in a rung. The output is controlled by the logic condition it is fed; it also (at least, OTEs) passes that value further in the rung unchanged to be processed by more of the rung.
It is a nice style to have only one output per rung. It is more efficient code-wise (and time wise) to have more than one output per rung, because the outputs can share the rung condition.

I have yet to see a PLC that can't handle multiple outputs on same rung.
Like #franji1 said, he might have said do not and not you can't. I would never recommend to have multiple outputs on a rung, but sometimes it can be necessary.
He could also have told you to not have the same output in multiple rungs since the PLC would always read the last rung.
So let's say you activate O:1.0 in rung 1, but in rung 20 O:1.0 is not active, then this output will never turn on, since the PLC handels output after each full scan.
AlwaysON O:0.0
---[]-------------()
AlwaysOFF O:0.0
---[]-------------()
Like her the last rung would never be true so O:0.0 will always be false even thought it is active in the earlier rung.
If you then swap the rungs around so the AlwaysON state is on the last rung with O:0.0 then it would always be active and the AlwaysOFF rung would be
redundant.
Hope this helps you out.

if you are using ladder(LAD), just like what T.Nesset said-
AlwaysON O:0.0
---[]-------------()
AlwaysOFF O:0.0
---[]-------------()
Q0.0 will turn "OFF" because PLC is scanning the program from then top to end.if you change a little bit just like this:
AlwaysOFF O:0.0
---[]-------------()
AlwaysON O:0.0
---[]-------------()
The result of Q0.0 will be "ON".
In Mitsubishi programming software just like GXWorks2, while you created the ladder program in this style, you will get a warning after complied. In Japanese the name of this style is "double coil".
If you would like to use in this style, please insert a jump instruction to separate these network/ separate in difference blocks and make sure only one block is running in each time.
Sorry for my poorly english.

I have very often seen two parallel outputs in one rung. This would be logical if two outputs shared all but one input condition, for example, with the different input condition leading to two different outputs.
I:0.00 I:0.01 I:0.02 O:1.00
---[/]-----[ ]-----[ ]-----O---
|
| I:0.03 O:1.01
---[ ]-----O---
If two output conditions have completely different logic branches, though, it would not make sense to put them in the same rung. In fact, some vendors (Omron CX-One, for example) will not allow disconnected branches to be placed in the same rung.
Perhaps, as #franji1 mentioned in his comment, your professor was referring to putting the same output in more than one rung.

Related

How to cleanly tell a task to die in FreeRTOS

I'm making a light with an ESP32 and the HomeKit library I chose uses FreeRTOS and esp-idf, which I'm not familiar with.
Currently, I have a function that's called whenever the colour of the light should be changed, which just changes it in a step. I'd like to have it fade between colours instead, which will require a function that runs for a second or two. Having this block the main execution of the program would obviously make it quite unresponsive, so I need to have it run as a task.
The issue I'm facing is that I only want one copy of the fading function to be running at a time, and if it's called a second time before it's finished, the first copy should exit(without waiting for the full fade time) before starting the second copy.
I found vTaskDelete, but if I were to just kill the fade function at an arbitrary point, some variables and the LEDs themselves will be in an unknown state. To get around this, I thought of using a 'kill flag' global variable which the fading function will check on each of its loops.
Here's the pseudocode I'm thinking of:
update_light {
kill_flag = true
wait_for_fade_to_die
xTaskCreate fade
}
fade {
kill_flag = false
loop_1000_times {
(fading code involving local and global variables)
.
.
if kill_flag, vTaskDelete(NULL)
vTaskDelay(2 / portTICK_RATE_MS)
}
}
My main questions are:
Is this the best way to do this or is there a better option?
If this is ok, what is the equivalent of my wait_for_fade_to_die? I haven't been able to find anything from a brief look around, but I'm new to FreeRTOS.
I'm sorry to say that I have the impression that you are pretty much on the wrong track trying to solve your concrete problem.
You are writing that you aren't familiar with FreeRTOS and esp-idf, so I would suggest you first familiarize with freeRTOS (or with the idea of RTOS in general or with any other RTOS, transferring that knowledge to freeRTOS, ...).
In doing so, you will notice that (apart from some specific examples) a task is something completely different than a function which has been written for sequential "batch" processing of a single job.
Model and Theory
Usually, the most helpful model to think of when designing a good RTOS task inside an embedded system is that of a state machine that receives events to which it reacts, possibly changing its state and/or executing some actions whose starting points and payload depends on the the event the state machine received as well as the state it was in when the event is detected.
While there is no event, the task shall not idle but block at some barrier created by the RTOS function which is supposed to deliver the next relevant event.
Implementing such a task means programming a task function that consists of a short initialisation block followed by an infinite loop that first calls the RTOS library to get the next logical event (see right below...) and then the code to process that logical event.
Now, the logical event doesn't have to be represented by an RTOS event (while this can happen in simple cases), but can also be implemented by an RTOS queue, mailbox or other.
In such a design pattern, the tasks of your RTOS-based software exist "forever", waiting for the next job to perform.
How to apply the theory to your problem
You have to check how to decompose your programming problem into different tasks.
Currently, I have a function that's called whenever the colour of the light should be changed, which just changes it in a step. I'd like to have it fade between colours instead, which will require a function that runs for a second or two. Having this block the main execution of the program would obviously make it quite unresponsive, so I need to have it run as a task.
I hope that I understood the goal of your application correctly:
The system is driving multiple light sources of different colours, and some "request source" is selecting the next colour to be displayed.
When a different colour is requested, the change shall not be performed instantaneously but there shall be some "fading" over a certain period of time.
The system (and its request source) shall remain responsive even while a fade takes place, possibly changing the direction of the fade in the middle.
I think you didn't say where the colour requests are coming from.
Therefore, I am guessing that this request source could be some button(s), a serial interface or a complex algorithm (or random number generator?) running in background. It doesnt really matter now.
The issue I'm facing is that I only want one copy of the fading function to be running at a time, and if it's called a second time before it's finished, the first copy should exit (without waiting for the full fade time) before starting the second copy.
What you are essentially looking for is how to change the state (here: the target colour of light fading) at any time so that an old, ongoing fade procedure becomes obsolete but the output (=light) behaviour will not change in an incontinuous way.
I suggest you set up the following tasks:
One (or more) task(s) to generate the colour changing requests from ...whatever you need here.
One task to evaluate which colour blend shall be output currently.
That task shall be ready to receive
a new-colour request (changing the "target colour" state without changing the current colour blend value)
a periodical tick event (e.g., from a hardware or software timer)
that causes the colour blend value to be updated into the direction of the current target colour
Zero, one or multiple tasks to implement the colour blend value by driving the output features of the system (e.g., configuring GPIOs or PWMs, or transmitting information through a serial connection...we don't know).
If adjusting the output part is just assigning some registers, the "Zero" is the right thing for you here. Otherwise, try "one or multiple".
What to do now
I found vTaskDelete, but if I were to just kill the fade function at an arbitrary point, some variables and the LEDs themselves will be in an unknown state. To get around this, I thought of using a 'kill flag' global variable which the fading function will check on each of its loops.
Just don't do that.
Killing a task, even one that didn't prepare for being killed from inside causes a follow-up of requirements to manage and clean-up output stuff by your software that you will end up wondering why you even started using an RTOS.
I do know that starting to design and program in that way when you never did so is a huge endeavour, starting like a jump into cold water.
Please trust me, this way you will learn the basics how to design and implement great embedded systems.
Professional education companies offer courses about RTOS integration, responsive programming and state machine design for several thousands of $/€/£, which is a good indicator of this kind of working knowledge.
Good luck!
Along that way, you'll come across a lot of detail questions which you are welcome to post to this board (or find earlier answers on).

How to force a command in GRAFCET?

I'm trying to force a command in my grafcet using Fluid SIM.
If state no. 80 is currently active only G90 partial grafcet should run
If state no. 81 is currently active only G90 partial grafcet should run
I'm following this tutorial. The problem is that I can't block my partial grafcets. I don't know why, but the problem in my case is that they both execute in parallel even though the G82 grafcet should be blocked on INIT by state no. 80.
CLAIM : "the problem…is that they both execute in parallel…though the G82 grafcet should be blocked on INIT by state no. 80."
The claim is principally false.
They may, upon T1-condition was met, happen to start executing G90{state:INIT} , some nonzero time after G82{state:90} was started, so just co-incidentally appearing to concurrently do something in the environment. Definitely not a True-[PARALLEL]-execution and expect no explicit blocking from the top-left FSA (unless some indeed nasty tricks were hidden inside FSA-state-transition variables effectively causing a mutual-(dead)-block for the otherwise just time-constrained (if present) Finite-State-Automata having conditional-variables in control of the pure-SEQUENCE of the designed state-transitions.
The Grafcet "front-end" for a PLC-programming ( masking the principal properties of SEQUENTIAL, weakly-coordinated at maximum, Finite-State-Automata ) has some principles, that must get reflected in the easy-to-sketch (yet, complicated)-FSA design-rules. One of which is "How to block, alike MUTEX" :
If several transitions are to follow a step, then an alternative branch is used. As the name implies, alternative sequences can be realised with this. Only one process is ever performed, however. For this reason, the transition conditions for the transitions that branch into the individual sequences need to be mutually exclusive. The individual sequences of an alternative branch are also called partial sequences.......the programmer must define each of the following transition conditions so that only one condition can be fulfilled. The transition conditions therefore must be mutually exclusive. If this is not the case, then the behaviour remains undefined, i.e. no prediction can be made as to which partial sequence will be performed. In Grafcet-Studio, the partial sequence whose transition first initiates the transition would be performed.
How to make the autonomous FSA-s to run at least somewhat in [PARALLEL]?
Kindly notice both of the "blocking" BARRIERS, and rigorously put, expect no explicit timing-coordination / state-transition conditional-variables' caused mutual-deadlocks checks / collision avoidance inside the just co-"parallel" FSA-control [SEQUENCE]-s :
A parallel sequence is used when several partial sequences are to be started simultaneously after a transition. The first steps in the partial sequences are activated simultaneously by a transition here. The partial sequences are thus started synchronously, which is the reason why the symbol for a parallel branch is also referred to as a synchronisation symbol. The partial sequences then remain independent from one another, i.e. they run in parallel. At the end, the partial sequences flow back to a synchronisation symbol and a subsequent transition. This transition is only released once all the partial sequences have been processed in full. Therefore, the partial sequences are also synchronised at the end.
RESUMÉ :
The top-left FSA introduces a mandatory,self-repeatingflow of SEQUENCE of steps :firstforcing SEQ_G82-(jump_into_state:82),next, only after this and based on meeting the FSA-state-transition "variable" T1 condition,forcing SEQ_G80-(jump_into_state:INIT)nextloop-to-"first"

TDD strategy when implementing a multi-stage process?

At the moment I'm developing a piece of code which first gathers sentences from a set of documents, then tokenises these, then uses the results to analyse recurring frequencies of token sequences, including case variations (upper case/lower case/leading cap/other), then prints out the results.
Now I want to introduce two more stages before printing out the results:
1. firstly, removing "stop words" (i.e. words or short sequences the frequency of which can never be of interest, such as, in English, "the", "of the", "of which", etc.) - these stop words/"stop sequences" to be taken from a database table
2. secondly, bringing up a dialog enabling the user to identify sequences of new stop words, which would then remove the token sequences involved and also add the sequence in question to the database table.
The thing is, this is a multi-stage process, and I'm just wondering what TDD experts do faced with a situation like this: do I create a new test method for each individual stage...? The problem being that each individual stage requires the use of "live memory data" from the previous stage: another possibility could be to somehow serialise this data and then deserialise it when testing for the next stage... but then this would involve the app code doing things which were of benefit only for the testing code, i.e. it would mean tweaking ("distorting"?) the app code for the benefit of the testing code, which seems wrong in principle...
Also, if anyone can point me in the direction of a book or site which helps TDD newbs like myself go to "the next level" I would be very grateful.
later
To the person who marked this as "favorite": I've now got hold of a book called "Growing Object-Oriented Software, Guided by Tests", which is well-reviewed and appears to be for someone wanting to move from beginner to intermediate. First impressions good.
Any views on this book by experts also welcome, of course...
On the face of it, you seem to be building a pipeline. From what I can tell, you're currently implementing all of it within a single class, which stores both the data that's being worked on and implements the methods that do the processing. One approach that you could take would be to break down the problem into smaller chunks. Rather than having a single class, you have a class for each stage of the pipeline and another class for orchestrating the process which is responsible for plugging the stages together in the correct order.
So, scanning through what you've described, you appear to have the following processors:
DocumentReader (reads documents from somewhere into in memory document)
SentenceExtractor (document/list of documents in, list of sentences out)
1 or more SentenceAnalysers (sentences in, statistics out), you might want to break this down depending on the type of analysis and how complex it is.
StopWordExtractor (StopWordProvider and sentences in, sentences out)
There are additional supporting classes that would be needed, to support writing of new stopwords to the database and depending on how the stopwordprovider was implemented keeping it in sync as the user selects new ones.
Essentially, what I'm saying is that you appear to be doing too much in a single location. If you're really happy that the code as you've described it is a single unit, then there is nothing wrong with you testing it all in one place, but then your inputs will be your starting documents/sentences and your outputs will be the end of the process. If you agree with me that really, there are several distinct components involved in the process that could change independently, then I would suggest breaking the process down into smaller classes and testing that those perform as expected for given sets of inputs/outputs...

What's the best erlang approach to being able to identify a processes identity from its process id?

When I'm debugging, I'm usually looking at about 5000 processes, each of which could be one of about 100 gen_servers, fsms, etc. If I want to know WHAT an erlang process is, I can do:
process_info(pid(0,1,0), initial_call).
And get a result like:
{initial_call,{proc_lib,init_p,5}}
...which is all but useless.
More recently, I hit upon the idea (brace yourselves) of registering each process with a name that told me WHO that process represented. For example, player_1150 is the player process that represents player 1150. Yes, I end up making a couple million atoms over the course of a week-long run. (And I would love to hear comments on the drawbacks of boosting the limit to 10,000,000 atoms when my system runs with about 8GB of real memory unused, if there are any.) Doing this meant that I could, at the console of a live system, query all processes for how long their message queue was, find the top offenders, then check to see if those processes were registered and print out the atom they were registered with.
I've hit a snag with this: I'm moving processes from one node to another. Now a player process can have 3 different names; player_1158, player_1158_deprecating, player_1158_replacement. And I have to make absolutely sure I register and unregister these names with precision timing to make sure that a process is always named and that the appropriate names always exist, AND that I don't try to register a name that some dying process already holds. There is some slop room, since this is only used for console debugging of a live system Nonetheless, the moment I started feeling like this mechanism was affecting how I develop the system (the one that moves processes around) I felt like it was time to do something else.
There are two ideas on the table for me right now. An ets tables that associates process ids with their description:
ets:insert(self(), {player, 1158}).
I don't really like that one because I have to manually keep the tables clean. When a player exits (or crashes) someone is responsible for making sure that his data are removed from the ets table.
The second alternative was to use the process dictionary, storing similar information. When my exploration of a live system led me to wonder who a process is, I could just look at his process dictionary using process_info.
I realize that none of these solutions is functionally clean, but given that the system itself is never, EVER the consumer of these data, I'm not too worried about it. I need certain debugging tools to work quickly and easily, so the behavior described is not open for debate. Are there any convincing arguments to go one way or another (other than the academic "don't use the _, it's evil" canned garbage?) I'd be happy to hear other suggestions and their justifications.
You should try out gproc, it's a very convenient application for keeping process metadata.
A process can be registered with several names and you can associate arbitrary properties to a process (where the key and value can be any erlang term). Also gproc monitors the registered processes and unregisters them automatically if they crash.
If you're debugging gen_servers and gen_fsms while they're still running, I would implement the handle_info functions for these behaviors. When you send each process a {get_info, ReplyPid} tuple, the process in question can send back a term describing its own state, what it is, etc. That way you don't have to keep track of this information outside of the process itself.
Isac mentions there is already a built in way to do this

How does differential execution work?

I've seen a few mentions of this on Stack Overflow, but staring at Wikipedia (the relevant page has since been deleted) and at an MFC dynamic dialog demo did nothing to enlighten me. Can someone please explain this? Learning a fundamentally different concept sounds nice.
Based on the answers: I think I'm getting a better feel for it. I guess I just didn't look at the source code carefully enough the first time. I have mixed feelings about differential execution at this point. On the one hand, it can make certain tasks considerably easier. On the other hand, getting it up and running (that is, setting it up in your language of choice) is not easy (I'm sure it would be if I understood it better)...though I guess the toolbox for it need only be made once, then expanded as necessary. I think in order to really understand it, I'll probably need to try implementing it in another language.
Gee, Brian, I wish I had seen your question sooner. Since it's pretty much my
"invention" (for better or worse), I might be able to help.
Inserted: The shortest possible
explanation I can make is that if
normal execution is like throwing a
ball in the air and catching it, then
differential execution is like
juggling.
#windfinder's explanation is different from mine, and that's OK. This technique is not easy to wrap one's head around, and it's taken me some 20 years (off and on) to find explanations that work. Let me give it another shot here:
What is it?
We all understand the simple idea of a computer stepping along through a program, taking conditional branches based on the input data, and doing things. (Assume we are dealing only with simple structured goto-less, return-less code.) That code contains sequences of statements, basic structured conditionals, simple loops, and subroutine calls. (Forget about functions returning values for now.)
Now imagine two computers executing that same code in lock-step with each other, and able to compare notes. Computer 1 runs with input data A, and Computer 2 runs with input data B. They run step-by-step side by side. If they come to a conditional statement like IF(test) .... ENDIF, and if they have a difference of opinion on whether the test is true, then the one who says the test if false skips to the ENDIF and waits around for its sister to catch up. (This is why the code is structured, so we know the sister will eventually get to the ENDIF.)
Since the two computers can talk to each other, they can compare notes and give a detailed explanation of how the two sets of input data, and execution histories, are different.
Of course, in differential execution (DE) it is done with one computer, simulating two.
NOW, suppose you only have one set of input data, but you want to see how it has changed from time 1 to time 2. Suppose the program you're executing is a serializer/deserializer. As you execute, you both serialize (write out) the current data and deserialize (read in) the past data (which was written the last time you did this). Now you can easily see what the differences are between what the data was last time, and what it is this time.
The file you are writing to, and the old file you are reading from, taken together constitute a queue or FIFO (first-in-first-out), but that's not a very deep concept.
What is it good for?
It occurred to me while I was working on a graphics project, where the user could construct little display-processor routines called "symbols" that could be assembled into larger routines to paint things like diagrams of pipes, tanks, valves, stuff like that. We wanted to have the diagrams be "dynamic" in the sense that they could incrementally update themselves without having to redraw the entire diagram. (The hardware was slow by today's standards.) I realized that (for example) a routine to draw a bar of a bar-chart could remember its old height and just incrementally update itself.
This sounds like OOP, doesn't it? However, rather than "make" an "object", I could take advantage of the predictability of the execution sequence of the diagram procedure. I could write the bar's height in a sequential byte-stream. Then to update the image, I could just run the procedure in a mode where it sequentially reads its old parameters while it writes the new parameters so as to be ready for the next update pass.
This seems stupidly obvious and would seem to break as soon as the procedure contains a conditional, because then the new stream and the old stream would get out of sync. But then it dawned on me that if they also serialized the boolean value of the conditional test, they could get back in sync.
It took a while to convince myself, and then to prove, that this would always work, provided a simple rule (the "erase mode rule") is followed.
The net result is that the user could design these "dynamic symbols" and assemble them into larger diagrams, without ever having to worry about how they would dynamically update, no matter how complex or structurally variable the display would be.
In those days, I did have to worry about interference between visual objects, so that erasing one would not damage others. However, now I use the technique with Windows controls, and I let Windows take care of rendering issues.
So what does it achieve? It means I can build a dialog by writing a procedure to paint the controls, and I do not have to worry about actually remembering the control objects or dealing with incrementally updating them, or making them appear/disappear/move as conditions warrant. The result is much smaller and simpler dialog source code, by about an order of magnitude, and things like dynamic layout or altering the number of controls or having arrays or grids of controls are trivial. In addition, a control such as an Edit field can be trivially bound to the application data it is editing, and it will always be provably correct, and I never have to deal with its events. Putting in an edit field for an application string variable is a one-line edit.
Why is it hard to understand?
What I have found hardest to explain is that it requires thinking differently about software. Programmers are so firmly wedded to the object-action view of software that they want to know what are the objects, what are the classes, how do they "build" the display, and how do they handle the events, that it takes a cherry bomb to blast them out of it. What I try to convey is that what really matters is what do you need to say? Imagine you are building a domain-specific language (DSL) where all you need to do is tell it "I want to edit variable A here, variable B there, and variable C down there" and it would magically take care of it for you. For example, in Win32 there is this "resource language" for defining dialogs. It is a perfectly good DSL, except it doesn't go far enough. It doesn't "live in" the main procedural language, or handle events for you, or contain loops/conditionals/subroutines. But it means well, and Dynamic Dialogs tries to finish the job.
So, the different mode of thinking is: to write a program, you first find (or invent) an appropriate DSL, and code as much of your program in that as possible. Let it deal with all the objects and actions that only exist for implementation's sake.
If you want to really understand differential execution and use it, there are a couple of tricky issues that can trip you up. I once coded it in Lisp macros, where these tricky bits could be handled for you, but in "normal" languages it requires some programmer discipline to avoid the pitfalls.
Sorry to be so long-winded. If I haven't made sense, I'd appreciate it if you'd point it out and I can try and fix it.
Added:
In Java Swing, there is an example program called TextInputDemo. It is a static dialog, taking 270 lines (not counting the list of 50 states). In Dynamic Dialogs (in MFC) it is about 60 lines:
#define NSTATE (sizeof(states)/sizeof(states[0]))
CString sStreet;
CString sCity;
int iState;
CString sZip;
CString sWholeAddress;
void SetAddress(){
CString sTemp = states[iState];
int len = sTemp.GetLength();
sWholeAddress.Format("%s\r\n%s %s %s", sStreet, sCity, sTemp.Mid(len-3, 2), sZip);
}
void ClearAddress(){
sWholeAddress = sStreet = sCity = sZip = "";
}
void CDDDemoDlg::deContentsTextInputDemo(){
int gy0 = P(gy);
P(www = Width()*2/3);
deStartHorizontal();
deStatic(100, 20, "Street Address:");
deEdit(www - 100, 20, &sStreet);
deEndHorizontal(20);
deStartHorizontal();
deStatic(100, 20, "City:");
deEdit(www - 100, 20, &sCity);
deEndHorizontal(20);
deStartHorizontal();
deStatic(100, 20, "State:");
deStatic(www - 100 - 20 - 20, 20, states[iState]);
if (deButton(20, 20, "<")){
iState = (iState+NSTATE - 1) % NSTATE;
DD_THROW;
}
if (deButton(20, 20, ">")){
iState = (iState+NSTATE + 1) % NSTATE;
DD_THROW;
}
deEndHorizontal(20);
deStartHorizontal();
deStatic(100, 20, "Zip:");
deEdit(www - 100, 20, &sZip);
deEndHorizontal(20);
deStartHorizontal();
P(gx += 100);
if (deButton((www-100)/2, 20, "Set Address")){
SetAddress();
DD_THROW;
}
if (deButton((www-100)/2, 20, "Clear Address")){
ClearAddress();
DD_THROW;
}
deEndHorizontal(20);
P((gx = www, gy = gy0));
deStatic(P(Width() - gx), 20*5, (sWholeAddress != "" ? sWholeAddress : "No address set."));
}
Added:
Here's example code to edit an array of hospital patients in about 40 lines of code. Lines 1-6 define the "database". Lines 10-23 define the overall contents of the UI. Lines 30-48 define the controls for editing a single patient's record. Note the form of the program takes almost no notice of events in time, as if all it had to do was create the display once. Then, if subjects are added or removed or other structural changes take place, it is simply re-executed, as if it were being re-created from scratch, except that DE causes incremental update to take place instead. The advantage is that you the programmer do not have to give any attention or write any code to make the incremental updates of the UI happen, and they are guaranteed correct. It might seem that this re-execution would be a performance problem, but it is not, since updating controls that do not need to be changed takes on the order of tens of nanoseconds.
1 class Patient {public:
2 String name;
3 double age;
4 bool smoker; // smoker only relevant if age >= 50
5 };
6 vector< Patient* > patients;
10 void deContents(){ int i;
11 // First, have a label
12 deLabel(200, 20, “Patient name, age, smoker:”);
13 // For each patient, have a row of controls
14 FOR(i=0, i<patients.Count(), i++)
15 deEditOnePatient( P( patients[i] ) );
16 END
17 // Have a button to add a patient
18 if (deButton(50, 20, “Add”)){
19 // When the button is clicked add the patient
20 patients.Add(new Patient);
21 DD_THROW;
22 }
23 }
30 void deEditOnePatient(Patient* p){
31 // Determine field widths
32 int w = (Width()-50)/3;
33 // Controls are laid out horizontally
34 deStartHorizontal();
35 // Have a button to remove this patient
36 if (deButton(50, 20, “Remove”)){
37 patients.Remove(p);
37 DD_THROW;
39 }
40 // Edit fields for name and age
41 deEdit(w, 20, P(&p->name));
42 deEdit(w, 20, P(&p->age));
43 // If age >= 50 have a checkbox for smoker boolean
44 IF(p->age >= 50)
45 deCheckBox(w, 20, “Smoker?”, P(&p->smoker));
46 END
47 deEndHorizontal(20);
48 }
Added: Brian asked a good question, and I thought the answer belonged in the main text here:
#Mike: I'm not clear on what the "if (deButton(50, 20, “Add”)){" statement is actually doing. What does the deButton function do? Also, are your FOR/END loops using some sort of macro or something? – Brian.
#Brian: Yes, the FOR/END and IF statements are macros. The SourceForge project has a complete implementation. deButton maintains a button control. When any user input action takes place, the code is run in "control event" mode, in which deButton detects that it was pressed and signifies that it was pressed by returning TRUE. Thus, the "if(deButton(...)){... action code ...} is a way of attaching action code to the button, without having to create a closure or write an event handler. The DD_THROW is a way of terminating the pass when the action is taken because the action may have modified application data, so it is invalid to continue the "control event" pass through the routine. If you compare this to writing event handlers, it saves you writing those, and it lets you have any number of controls.
Added: Sorry, I should explain what I mean by the word "maintains". When the procedure is first executed (in SHOW mode), deButton creates a button control and remembers its id in the FIFO. On subsequent passes (in UPDATE mode), deButton gets the id from the FIFO, modifies it if necessary, and puts it back in the FIFO. In ERASE mode, it reads it from the FIFO, destroys it, and does not put it back, thereby "garbage collecting" it. So the deButton call manages the entire lifetime of the control, keeping it in agreement with application data, which is why I say it "maintains" it.
The fourth mode is EVENT (or CONTROL). When the user types a character or clicks a button, that event is caught and recorded, and then the deContents procedure is executed in EVENT mode. deButton gets the id of its button control from the FIFO and askes if this is the control that was clicked. If it was, it returns TRUE so the action code can be executed. If not, it just returns FALSE. On the other hand, deEdit(..., &myStringVar) detects if the event was meant for it, and if so passes it to the edit control, and then copies the contents of the edit control to myStringVar. Between this and normal UPDATE processing, myStringVar always equals the contents of the edit control. That is how "binding" is done. The same idea applies to scroll bars, list boxes, combo boxes, any kind of control that lets you edit application data.
Here's a link to my Wikipedia edit: http://en.wikipedia.org/wiki/User:MikeDunlavey/Difex_Article
Differential execution is a strategy for changing the flow of your code based on external events. This is usually done by manipulating a data structure of some kind to chronicle the changes. This is mostly used in graphical user interfaces, but is also used for things like serialization, where you are merging changes into an existing "state."
The basic flow is as follows:
Start loop:
for each element in the datastructure:
if element has changed from oldDatastructure:
copy element from datastructure to oldDatastructure
execute corresponding subroutine (display the new button in your GUI, for example)
End loop:
Allow the states of the datastructure to change (such as having the user do some input in the GUI)
The advantages of this are a few. One, it is separation
of the execution of your changes, and the actual
manipulation of the supporting data. Which is nice for
multiple processors. Two, it provides a low bandwidth method
of communicating changes in your program.
Think of how a monitor works:
It is updated at 60 Hz -- 60 times a second. Flicker flicker flicker 60 times, but your eyes are slow and can't really tell. The monitor shows whatever is in the output buffer; it just drags this data out every 1/60th of a second no matter what you do.
Now why would you want your program to update the whole buffer 60 times a second if the image shouldn't change that often? What if you only change one pixel of the image, should you rewrite the entire buffer?
This is an abstraction of the basic idea: you want to change the output buffer based on what information you want displayed on the screen. You want to save as much CPU time and buffer write time as possible, so you don't edit parts of the buffer that need not be changed for the next screen pull.
The monitor is separate from your computer and logic (programs). It reads from the output buffer at whatever rate it updates the screen. We want our computer to stop synchronizing and redrawing unnecessarily. We can solve this by changing how we work with the buffer, which can be done in a variety of ways. His technique implements a FIFO queue that is on delay -- it holds what we just sent to the buffer. The delayed FIFO queue does not hold pixel data, it holds "shape primitives" (which might be pixels in your application, but it could also be lines, rectangles, easy-to-draw things because they are just shapes, no unnecessary data is allowed).
So you want to draw/erase things from the screen? No problem. Based on the contents of the FIFO queue I know what the monitor looks like at the moment. I compare my desired output (to erase or draw new primitives) with the FIFO queue and only change values that need to be changed/updated. This is the step which gives it the name Differential Evaluation.
Two distinct ways in which I appreciate this:
The First:
Mike Dunlavey uses a conditional-statement extension. The FIFO queue contains a lot of information (the "previous state" or the current stuff on monitor or time-based polling device). All you have to add to this is the state you want to appear on screen next.
A conditional bit is added to every slot that can hold a primitive in the FIFO queue.
0 means erase
1 means draw
However, we have previous state:
Was 0, now 0: don't do anything;
Was 0, now 1: add it to the buffer (draw it);
Was 1, now 1: don't do anything;
Was 1, now 0: erase it from the buffer (erase it from the screen);
This is elegant, because when you update something you really only need to know what primitives you want to draw to the screen -- this comparison will find out if it should erase a primitive or add/keep it to/in the buffer.
The Second:
This is just one example, and I think that what Mike is really getting at is something that should be fundamental in design for all projects: Reduce the (computational) complexity of design by writing your most computationally intense operations as computerbrain-food or as close as you can get. Respect the natural timing of devices.
A redraw method to draw the entire screen is incredibly costly, and there are other applications where this insight is incredibly valuable.
We are never "moving" objects around the screen. "Moving" is a costly operation if we are going to mimic the physical action of "moving" when we design code for something like a computer monitor. Instead, objects basically just flicker on and off with the monitor. Every time an object moves, it's now a new set of primitives and the old set of primitives flickers off.
Every time the monitor pulls from the buffer we have entries that look like
Draw bit primitive_description
0 Rect(0,0,5,5);
1 Circ(0,0,2);
1 Line(0,1,2,5);
Never does an object interact with the screen (or time-sensitive polling device). We can handle it more intelligently than an object will when it greedily asks to update the whole screen just to show a change specific to only itself.
Say we have a list of all possible graphical primitives our program is capable of generating, and that we tie each primitive to a set of conditional statements
if (iWantGreenCircle && iWantBigCircle && iWantOutlineOnMyCircle) ...
Of course, this is an abstraction and, really, the set of conditionals that represents a particular primitive being on/off could be large (perhaps hundreds of flags that must all evaluate to true).
If we run the program, we can draw to the screen at essentially the same rate at which we can evaluate all these conditionals. (Worst case: how long it takes to evaluate the largest set of conditional statements.)
Now, for any state in the program, we can simply evaluate all the conditionals and output to the screen lightning-quick! (We know our shape primitives and their dependent if-statements.)
This would be like buying a graphically-intense game. Only instead of installing it to your HDD and running it through your processor, you buy a brand-new board that holds the entirety of the game and takes as input: mouse, keyboard, and takes as output: monitor. Incredibly condensed conditional evaluation (as the most fundamental form of a conditional is logic gates on circuit boards). This would, naturally, be very responsive, but it offers almost no support in fixing bugs, as the whole board design changes when you make a tiny design change (because the "design" is so far-removed from the nature of the circuit board). At the expense of flexibility and clarity in how we represent data internally we have gained significant "responsiveness" because we are no longer doing "thinking" in the computer; it is all just reflex for the circuit board based on the inputs.
The lesson, as I understand it, is to divide labor such that you give each part of the system (not necessarily just computer and monitor) something it can do well. The "computer thinking" can be done in terms of concepts like objects... The computer brain will gladly try and think this all through for you, but you can simplify the task a great deal if you are able to let the computer think in terms of data_update and conditional_evals. Our human abstractions of concepts into code are idealistic, and in the case of internal program draw methods a little overly idealistic. When all you want is a result (array of pixels with correct color values) and you have a machine that can easily spit out an array that big every 1/60th of a second, try and eliminate as much flowery thinking from the computer brain as possible so that you can focus on what you really want: to synchronize your graphical updates with your (fast) inputs and the natural behavior of the monitor.
How does this map to other applications?
I'd like to hear of other examples, but I'm sure there are many. I think anything that provides a real-time "window" into the state of your information (variable state or something like a database... a monitor is just a window into your display buffer) can benefit from these insights.
I find this concept very similar to the state machines of classic digital electronics. Specially the ones which remember their previous output.
A machine whose next output depends on current input and previous output according to (YOUR CODE HERE). This current input is nothing but previous output + (USER, INTERACT HERE).
Fill up a surface with such machines, and it will be user interactive and at the same time represent a layer of changeable data. But at this stage it will still be dumb, just reflecting user interaction to underlying data.
Next, interconnect the machines on your surface, let them share notes, according to (YOUR CODE HERE), and now we make it intelligent. It will become an interactive computing system.
So you just have to provide your logic at two places in the above model; the rest is taken care of by the machine design itself. That's what good about it.

Resources