I am following the cs61a spring 2015 class.
One of the problem in the scheme project is:
Implement the list-partitions procedure, which lists all of the ways to
partition a positive integer total without using consecutive integers. The
contents of each partition must be listed in decreasing order.
Hint: Define a helper procedure to construct partitions. The built-in append
procedure creates a list containing all the elements of two argument lists.
The cons-all procedure in questions.scm adds a first element to each list in a list of lists.
The number 5 has 4 partitions that do not contain consecutive integers:
5
4, 1
3, 1, 1
1, 1, 1, 1, 1
The following partitions of 5 are not included because of consecutive
integers:
3, 2
2, 2, 1
2, 1, 1, 1
I found one solution but cannot understand it
;; List all ways to partition TOTAL without using consecutive numbers.
(define (apply-to-all proc items)
(if (null? items)
'()
(cons (proc (car items))
(apply-to-all proc (cdr items)))))
(define (cons-all first rests)
(apply-to-all (lambda (rest) (cons first rest)) rests))
(define (caar x) (car (car x)))
(define (cadr x) (car (cdr x)))
(define (cddr x) (cdr (cdr x)))
(define (cadar x) (car (cdr (car x))))
(define (cdar x) (cdr (car x)))
(define (partitions-r a b)
(if (= a 0) nil
(append (cons-all a (list-partitions b))
(cons-f (partitions-r (- a 1) (+ b 1))
))
))
(define (cons-f lst)
(cond
((eq? lst nil) nil)
((eq? (cdar lst) nil) lst)
((< (caar lst) (cadar lst)) (cons-f (cdr lst)))
((= (caar lst) (+ 1 (cadar lst))) (cons-f (cdr lst)))
(else (cons (car lst) (cons-f (cdr lst))))
))
(define (list-partitions total)
(cond ((= total 1) '((1)) )
((= total 0) '(()) )
(else (append nil (partitions-r total 0)))
))
; For these two tests, any permutation of the right answer will be accepted.
(list-partitions 5)
; expect ((5) (4 1) (3 1 1) (1 1 1 1 1))
(list-partitions 7)
; expect ((7) (6 1) (5 2) (5 1 1) (4 1 1 1) (3 3 1) (3 1 1 1 1) (1 1 1 1 1 1 1))
What does the function partitions-r and cons-f do? Thank you very much!
Don't know Scheme, but recursive generation in pseudocode might look like:
function Partitions(N, LastValue, list):
if N = 0
print list
else
for i from Min(LastValue, N) downto 1
if (i != LastValue - 1) //reject consecutive number
Partitions(N - i, i, list + [i]);
Related
I'm trying to write a function in Scheme that returns the first n elements in a list. I'm want to do that without loops, just with this basic structure below.
What I've tried is:
(define n-first
(lambda (lst n)
(if (or(empty? lst) (= n 0))
(list)
(append (car lst) (n-first (cdr lst) (- n 1))))))
But I'm getting an error:
append: contract violation
expected: list?
given: 'in
I've tried to debug it and it looks that the tail of the recursion crashes it, meaning, just after returning the empty list the program crashes.
When replacing "append" operator with "list" I get:
Input: (n-first '(the cat in the hat) 3)
Output:
'(the (cat (in ())))
But I want to get an appended list.
A list that looks like (1 2 3) i constructed like (1 . (2 . (3 . ()))) or if you're more familiar with cons (cons 1 (cons 2 (cons 3 '()))). Thus (list 1 2 3)) does exactly that under the hood. This is crucial information in order to be good at procedures that works on them. Notice that the first cons cannot be applied before the (cons 2 (cons 3 '())) is finished so a list is always created from end to beginning. Also a list is iterated from beginning to end.
So you want:
(define lst '(1 2 3 4 5))
(n-first lst 0) ; == '()
(n-first lst 1) ; == (cons (car lst) (n-first (- 1 1) (cdr lst)))
(n-first lst 2) ; == (cons (car lst) (n-first (- 2 1) (cdr lst)))
append works like this:
(define (append lst1 lst2)
(if (null? lst1)
lst2
(cons (car lst1)
(append (cdr lst1) lst2))))
append is O(n) time complexity so if you use that each iteration of n parts of a list then you get O(n^2). For small lists you won't notice it but even a medium sized lists of a hundred thousand elements you'll notice append uses about 50 times longer to complete than the cons one and for large lists you don't want to wait for the result since it grows exponentially.
try so
(define first-n
(lambda (l)
(lambda (n)
((lambda (s)
(s s l n (lambda (x) x)))
(lambda (s l n k)
(if (or (zero? n)
(null? l))
(k '())
(s s (cdr l) (- n 1)
(lambda (rest)
(k (cons (car l) rest))))))))))
(display ((first-n '(a b c d e f)) 4))
(display ((first-n '(a b)) 4))
In scheme you must compute mentally the types of each expression, as it does not have a type checker/ type inference included.
What I need to add to count the number of zeros only in the even lists?
For example,
(count-zeroes '((1 1 1) (1 0 0) (1 1 1) (1 0 0)))
4
it is for one list.
(define count-zeroes
(lambda (list)
(cond ((null? list) 0)
((= 0 (car list)) (+ 1 (count-zeroes (cdr list))))
(else (+ 0 (count-zeroes (cdr list))))
)
)
)
(define count-zeroes
(lambda (list)
(cond ((null? list) 0) ; a
((= 0 (car list)) (+ 1 (count-zeroes (cdr list)))) ; b
(else (+ 0 (count-zeroes (cdr list))))))) ; c
If list is initially a list of lists, then (null? list) in line a can be true (when you get to the end of the list), but the condition (= 0 (car list)) in the line b will never be true, since (car list) will always be another list, and 0 isn't a list.
A better way to break this down would probably be to first extract the even positioned sublists, then flatten them into a single list, and then count the zeros in those. That's not the most efficient way to do it (you'll create some intermediate storage), but you should probably implement something like that first, and then gradually optimize it afterward.
It's also worth noting that lists are typically indexed starting with position zero, so the second, fourth, etc., elements in the list are the ones with odd positions, not even positions. Here's the kind of abstraction that might help you in getting started with this kind of approach:
(define first car)
(define rest cdr)
(define list* cons)
(define (odds list)
(if (null? list) '()
(evens (cdr list))))
(define (evens list)
(if (null? list) '()
(list* (first list)
(odds (rest list)))))
(define sample '((0 0 1) (0 1 0) (0 1 1) (1 0 0) (1 0 1) (1 1 0) (1 1 1)))
;; (display (odds sample))
;; => ((0 1 0) (1 0 0) (1 1 0))
An interesting question. If you are operating on a lists of lists you need to add car-cdr recuresion.
(define (count-zeroes lst) ;;don't override core function names with a variable
(cond ((null? lst) 0)
((pair? (car lst))
(+ (count-zeroes (car lst))
(count-zeroes (cdr lst))))
((= 0 (car lst))
(+ 1 (count-zeroes (cdr lst))))
(else (count-zeroes (cdr lst))))))
No as to only evens you are no longer counting zeros, so a new function name is in order. You could make up a higher order function like this.
(define (count-zeros-of selector lst)
(count-zeroes (selector lst)))
And make a general selector
(define (take-every-Xnth-at-y x y lst)
(cond ((null? lst) '())
((= y 0) (cons (car lst)
(take-every x (- x 1) (cdr lst))))
(else (take-every x (- y 1) (cdr lst)))))
To put it all together
(define (count-zeroes-of-even lst)
(count-zeroes-of
(lambda (lst) ;;to bad we can't do partial application
(take-every-Xnth-at-y 2 1 lst))
lst)
Note each of these parts do their one thing and do it well.
I'm working on implementing a bubble sorting algorithm in Scheme, and I must say that the functional way of programming is a strange concept and I am struggling a bit to grasp it.
I've successfully created a function that will bubble up the first largest value we come across, but that's about all it does.
(bubbleH '(5 10 9 8 7))
(5 9 8 7 10)
I am struggling with the helper function that is required to completely loop through the list until no swaps have been made.
Here's where I am at so far, obviously it is not correct but I think I am on the right track. I know that I could pass in the number of elements in the list myself, but I am looking for a solution different from that.
(define bubbaS
(lambda (lst)
(cond (( = (length lst) 1) (bubba-help lst))
(else (bubbaS (bubba-help lst))))))
Using the bubble-up and bubble-sort-aux implementations in the possible-duplicate SO question I referenced...
(define (bubble-up L)
(if (null? (cdr L))
L
(if (< (car L) (cadr L))
(cons (car L) (bubble-up (cdr L)))
(cons (cadr L) (bubble-up (cons (car L) (cddr L)))))))
(define (bubble-sort-aux N L)
(cond ((= N 1) (bubble-up L))
(else (bubble-sort-aux (- N 1) (bubble-up L)))))
..., this is simple syntactic sugar:
(define (bubbleH L)
(bubble-sort-aux (length L) L))
With the final bit of syntactic sugar added, you should get exactly what you specified in your question:
(bubbleH '(5 10 9 8 7))
=> (5 7 8 9 10)
You can tinker with everything above in a repl.it session I saved & shared.
Here's my own tail-recursive version.
The inner function will bubble up the largest number just like your bubbleH procedure. But instead of returning a complete list, it will return 2 values:
the unsorted 'rest' list
the largest value that has bubbled up
such as:
> (bsort-inner '(5 1 4 2 8))
'(5 2 4 1)
8
> (bsort-inner '(1 5 4 2 8))
'(5 2 4 1)
8
> (bsort-inner '(4 8 2 5))
'(5 2 4)
8
Now the outer loop just has to cons the second value returned, and iterate on the remaining list.
Code:
(define (bsort-inner lst)
(let loop ((lst lst) (res null))
(let ((ca1 (car lst)) (cd1 (cdr lst)))
(if (null? cd1)
(values res ca1)
(let ((ca2 (car cd1)) (cd2 (cdr cd1)))
(if (<= ca1 ca2)
(loop cd1 (cons ca1 res))
(loop (cons ca1 cd2) (cons ca2 res))))))))
(define (bsort lst)
(let loop ((lst lst) (res null))
(if (null? lst)
res
(let-values (((ls mx) (bsort-inner lst)))
(loop ls (cons mx res))))))
For a recursive version, I prefer one where the smallest value bubbles in front:
(define (bsort-inner lst)
; after one pass, smallest element is in front
(let ((ca1 (car lst)) (cd1 (cdr lst)))
(if (null? cd1)
lst ; just one element => sorted
(let ((cd (bsort-inner cd1))) ; cd = sorted tail
(let ((ca2 (car cd)) (cd2 (cdr cd)))
(if (<= ca1 ca2)
(cons ca1 cd)
(cons ca2 (cons ca1 cd2))))))))
(define (bsort lst)
(if (null? lst)
null
(let ((s (bsort-inner lst)))
(cons (car s) (bsort (cdr s))))))
I'm trying to create a function to count all the elements in a list, including the elements of its sublists. initially, to get started, i came up with a basic function myList:
(define myLength
(lambda (L)
(cond
((null? L) 0)
(else (+ 1 (myLength (cdr L)))))))
However, it doesn't help me account for function calls like:
(numAtoms '()) "...should be 0"
(numAtoms '(())) "...should be 0"
(numAtoms '(1 1)) "...should be 2"
(numAtoms '(1 (1 1) 1)) "...should be 4"
(numAtoms '(1 (1 (1 1)) 1)) "...should be 5"
I'm trying to use basic functions like length, null?, and list?.
I think the trick here is to imagine how you can transform your input into the code that you'd want to use to compute the sum. Let's write each of your inputs in the fully expanded form, in terms of cons and '() and whatever other atoms appear in your data:
'() == '()
'(()) == (cons '() '())
'(1 1) == (cons 1 (cons 1 '()))
'(1 (1 1) 1) == (cons 1 (cons 1 (cons 1 '())) (cons 1 '()))
'(1 (1 (1 1)) 1) == ...
Now, look what would happen if you replaced each occurrence of cons with +, and each occurrence of '() with 0, and each occurrence of something that's not '() with 1. You'd have:
'() => 0 == 0
(cons '() '()) => (+ 0 0) == 0
(cons 1 (cons 1 '())) => (+ 1 (+ 1 0)) == 2
(cons 1 (cons 1 (cons 1 '())) (cons 1 '())) => (+ 1 (+ 1 (+ 1 0)) (+ 1 0)) == 4
... => ... == ...
Notice that those sums are exactly the values that you want! Based on this, it seems like you might not want to treat your input as a list so much as a tree built from cons cells. In general, you can map over a tree by specifying a function to apply to the recursive results of processing a pair, and a function to process the atoms of the tree:
(define (treeduce pair-fn atom-fn tree)
(if (pair? tree)
(pair-fn (treeduce pair-fn atom-fn (car tree))
(treeduce pair-fn atom-fn (cdr tree)))
(atom-fn tree)))
You could then implement that mapping of cons to + and everything else to 1 if it's a list and 0 if it's not by:
(define (non-null-atoms tree)
(treeduce +
(lambda (atom)
(if (not (null? atom))
1
0))
tree))
This yields the kinds of results you'd expect:
(non-null-atoms '()) ;=> 0
(non-null-atoms '(())) ;=> 0
(non-null-atoms '(1 1)) ;=> 2
(non-null-atoms '(1 (1 1) 1)) ;=> 4
(non-null-atoms '(1 (1 (1 1)) 1)) ;=> 5
Here is a recursive template you can use:
(define (num-atoms lst)
(cond ((pair? lst) (+ (num-atoms <??>)
(num-atoms <??>)))
((null? lst) <??>) ; not an atom
(else <??>))) ; an atom
This next example uses a helper that has the accumulated value (num) as an argument.
(define (num-atoms lst)
;; locally defined helper
(define (helper num lst)
(cond ((pair? lst) (helper (helper <??> <??>) <??>)) ; recurse with the sum of elements from car
((null? lst) <??>) ; return accumulated value
(else (helper <??> <??>)))) ; recurse with add1 to num
;; procedure starts here
(helper 0 lst))
Hope it helps
Make my-length work for any argument type, list or 'atom'; then the recursive algorithm becomes almost trivial:
(define (my-length l)
(cond ((null? l) 0)
((list? l) (+ (my-length (car l)) (my-length (cdr l))))
(else 1))) ; atom
> (my-length '(1 (1 (1 1)) 1)))
5
I don't fully understand what the append-map command does in racket, nor do I understand how to use it and I'm having a pretty hard time finding some decently understandable documentation online for it. Could someone possibly demonstrate what exactly the command does and how it works?
The append-map procedure is useful for creating a single list out of a list of sublists after applying a procedure to each sublist. In other words, this code:
(append-map proc lst)
... Is semantically equivalent to this:
(apply append (map proc lst))
... Or this:
(append* (map proc lst))
The applying-append-to-a-list-of-sublists idiom is sometimes known as flattening a list of sublists. Let's look at some examples, this one is right here in the documentation:
(append-map vector->list '(#(1) #(2 3) #(4)))
'(1 2 3 4)
For a more interesting example, take a look at this code from Rosetta Code for finding all permutations of a list:
(define (insert l n e)
(if (= 0 n)
(cons e l)
(cons (car l)
(insert (cdr l) (- n 1) e))))
(define (seq start end)
(if (= start end)
(list end)
(cons start (seq (+ start 1) end))))
(define (permute l)
(if (null? l)
'(())
(apply append (map (lambda (p)
(map (lambda (n)
(insert p n (car l)))
(seq 0 (length p))))
(permute (cdr l))))))
The last procedure can be expressed more concisely by using append-map:
(define (permute l)
(if (null? l)
'(())
(append-map (lambda (p)
(map (lambda (n)
(insert p n (car l)))
(seq 0 (length p))))
(permute (cdr l)))))
Either way, the result is as expected:
(permute '(1 2 3))
=> '((1 2 3) (2 1 3) (2 3 1) (1 3 2) (3 1 2) (3 2 1))
In Common Lisp, the function is named "mapcan" and it is sometimes used to combine filtering with mapping:
* (mapcan (lambda (n) (if (oddp n) (list (* n n)) '()))
'(0 1 2 3 4 5 6 7))
(1 9 25 49)
In Racket that would be:
> (append-map (lambda (n) (if (odd? n) (list (* n n)) '()))
(range 8))
'(1 9 25 49)
But it's better to do it this way:
> (filter-map (lambda (n) (and (odd? n) (* n n))) (range 8))
'(1 9 25 49)