Create a list from zero down to a negative number - prolog

I want to make a program in which the user will give a negative number and it will return a list starting from zero till that number. Here is a desired output example
create(-5,L).
L = [0,-1,-2,-3,-4,-5]
could you help me in any way, please?

I would break it up into two auxiliary predicates. The auxiliary predicate is helpful for building the list in the direction you desire.
create(N, L) :-
N < 0,
create_neg(N, 0, L).
create(N, L) :-
N >= 0,
create_pos(N, 0, L).
create_neg(N, N, [N]).
create_neg(N, A, [A|T]) :-
A > N,
A1 is A - 1,
create_neg(N, A1, T).
create_pos(N, N, [N]).
create_pos(N, A, [A|T]) :-
A < N,
A1 is A + 1,
create_pos(N, A1, T).
This will put them in the right order as well:
| ?- create(-5, L).
L = [0,-1,-2,-3,-4,-5] ? a
no
| ?- create(5, L).
L = [0,1,2,3,4,5] ? a
no
| ?-

What you're after is not really a program, just an 'idiomatic' pattern:
?- findall(X, (between(0,5,T), X is -T), L).
L = [0, -1, -2, -3, -4, -5].
Note the parenthesis around the Goal. It's a compound one...
Another way:
?- numlist(-5,0,T), reverse(T,L).
...

Since you provided your code (which as mentioned in comments would be better to appear in your question), one problem I think is that with X>0 and X<0 clauses-cases you will have infinite recursion, maybe it would be better to use abs/1:
create(0,[0]).
create(X,[X|T]):- Y is abs(X), Y > 0,
(X>0 -> N is X-1 ; N is X+1),
create(N,T).
Though still one problem:
?- create(-5,L).
L = [-5, -4, -3, -2, -1, 0] ;
false.
?- create(5,L).
L = [5, 4, 3, 2, 1, 0] ;
false.
The list is built reversed so you could reverse it at the end like:
create_list(N,L):- create(N,L1), reverse(L1, L).
And now:
?- create_list(5,L).
L = [0, 1, 2, 3, 4, 5] ;
false.
?- create_list(-5,L).
L = [0, -1, -2, -3, -4, -5] ;
false.

Related

Turn List into number, increment the number, and then turn the number into a list

I have my head stuck in this exercise in prolog, I ve been trying to do it on my own but it just won't work. Example: ?-succesor([1,9,9],X) -> X = [2,0,0]. Had tried first to reverse the list and increment it with 1 and then do a if %10 = 0 the next element should be incremented too. Thing is that I m too used with programming syntax and I can't get my head wrapped around this.Any help would be appreciated.
I have done this so far, but the output is false.
%[1,9,9] -> 199 +1 -> 200;
numbers_atoms([],[]).
numbers_atoms([X|Y],[C|K]) :-
atom_number(C, X),
numbers_atoms(Y,K).
%([1,2,3],X)
digits_number(Digits, Number) :-
numbers_atoms(Digits, Atoms),
number_codes(Number, Atoms).
number_tolist( 0, [] ).
number_tolist(N,[A|As]) :-
N1 is floor(N/10),
A is N mod 10,
number_tolist(N1, As).
addOne([X],[Y]):-
digits_number(X,Y1), %[1,9,9] -> 199
Y1 is Y1+1, % 199 -> 200
number_tolist(Y1,[Y]), % 200 -> [2,0,0]
!.
You can solve this problem similarly to how you would solve it manually: traverse the list of digits until you reach the rightmost digit; increment that digit and compute the carry-on digit, which must be recursively propagated to the left. At the end, prepend the carry-on digit if it is equal to 1 (otherwise, ignore it).
% successor(+Input, -Output)
successor([X0|Xs], L) :-
successor(Xs, X0, C, Ys),
( C = 1 % carry-on
-> L = [C|Ys]
; L = Ys ).
% helper predicate
successor([], X, C, [Y]) :-
Z is X + 1,
Y is Z mod 10,
C is Z div 10. % carry-on
successor([X1|Xs], X0, C, [Y|Ys]) :-
successor(Xs, X1, C0, Ys),
Z is X0 + C0,
Y is Z mod 10,
C is Z div 10. % carry-on
Examples:
?- successor([1,9,9], A).
A = [2, 0, 0].
?- successor([2,7],A), successor(A,B), successor(B,C), successor(C,D).
A = [2, 8],
B = [2, 9],
C = [3, 0],
D = [3, 1].
?- successor([7,9,9,8], A), successor(A, B).
A = [7, 9, 9, 9],
B = [8, 0, 0, 0].
?- successor([9,9,9,9], A), successor(A, B).
A = [1, 0, 0, 0, 0],
B = [1, 0, 0, 0, 1].
Here's a version which doesn't use is and can work both ways:
successor(ListIn, ListOut) :-
reverse(ListIn, ListInRev),
ripple_inc(ListInRev, ListOutRev),
reverse(ListOutRev, ListOut).
ripple_inc([], [1]).
ripple_inc([0|T], [1|T]).
ripple_inc([1|T], [2|T]).
ripple_inc([2|T], [3|T]).
ripple_inc([3|T], [4|T]).
ripple_inc([4|T], [5|T]).
ripple_inc([5|T], [6|T]).
ripple_inc([6|T], [7|T]).
ripple_inc([7|T], [8|T]).
ripple_inc([8|T], [9|T]).
ripple_inc([9|T], [0|Tnext]) :-
ripple_inc(T, Tnext).
e.g.
?- successor([1,9,9], X).
X = [2, 0, 0]
?- successor([1,9,9], [2,0,0]).
true
?- successor(X, [2,0,0]).
X = [1, 9, 9]
although it's nicely deterministic when run 'forwards', it's annoying that if run 'backwards' it finds an answer, then leaves a choicepoint and then infinite loops if that choicepoint is retried. I think what causes that is starting from the higher number then reverse(ListIn, ListInRev) has nothing to work on and starts generating longer and longer lists both filled with empty variables and never ends.
I can constrain the input and output to be same_length/2 but I can't think of a way to constrain them to be the same length or ListOut is one item longer ([9,9,9] -> [1,0,0,0]).
This answer tries to improve the previous answer by #TessellatingHacker, like so:
successor(ListIn, ListOut) :-
no_longer_than(ListIn, ListOut), % weaker than same_length/2
reverse(ListIn, ListInRev),
ripple_inc(ListInRev, ListOutRev),
reverse(ListOutRev, ListOut).
The definition of no_longer_than/2 follows. Note the similarity to same_length/2:
no_longer_than([],_). % same_length([],[]).
no_longer_than([_|Xs],[_|Ys]) :- % same_length([_|Xs],[_|Ys]) :-
no_longer_than(Xs,Ys). % same_length(Xs,Ys).
The following sample queries still succeed deterministically, as they did before:
?- successor([1,9,9], X).
X = [2,0,0].
?- successor([1,9,9], [2,0,0]).
true.
The "run backwards" use of successor/2 now also terminates universally:
?- successor(X, [2,0,0]).
X = [1,9,9]
; false.

Exclude variants/rotations of lists in solutions SWI-Prolog

I want to exclude multiple rotations/mirrors of a list in my solutions of the predicate. I'll give an example of what I understand are rotations/mirrors of a list:
[1,2,3,4,5]
[2,3,4,5,1]
[3,4,5,1,2]
[5,4,3,2,1]
I have to find a predicate that delivers unique sequence of numbers from 1 to N, according to some constraints. I already figured out how to compute the right sequence but I can't find out how to exclude all the rotations and mirrors of 1 list. Is there an easy way to do this?
Edit:
Full predicate. clock_round(N,Sum,Yf) finds a sequence of the numbers 1 to N in such a way that no triplet of adjacent numbers has a sum higher than Sum.
clock_round(N,Sum,Yf) :-
generate(1,N,Xs),
permutation(Xs,Ys),
nth0(0,Ys,Elem1),
nth0(1,Ys,Elem2),
append(Ys,[Elem1,Elem2],Ym),
safe(Ym,Sum),
remove_duplicates(Ym,Yf).
remove_duplicates([],[]).
remove_duplicates([H | T], List) :-
member(H, T),
remove_duplicates( T, List).
remove_duplicates([H | T], [H|T1]) :-
\+member(H, T),
remove_duplicates( T, T1).
% generate/3 generates list [1..N]
generate(N,N,[N]).
generate(M,N,[M|List]) :-
M < N, M1 is M + 1,
generate(M1,N,List).
% permutation/2
permutation([],[]).
permutation(List,[Elem|Perm]) :-
select(Elem,List,Rest),
permutation(Rest,Perm).
safe([],_).
safe(List,Sum) :-
( length(List,3),
nth0(0,List,Elem1),
nth0(1,List,Elem2),
nth0(2,List,Elem3),
Elem1 + Elem2 + Elem3 =< Sum
; [_|RestList] = List, % first to avoid redundant retries
nth0(0,List,Elem1),
nth0(1,List,Elem2),
nth0(2,List,Elem3),
Elem1 + Elem2 + Elem3 =< Sum,
safe(RestList,Sum)
).
So what you want is to identify certain symmetries. At first glance you would have to compare all possible solutions with such. That is, in addition of paying the cost of generating all possible solutions you will then compare them to each other which will cost you a further square of the solutions.
On the other hand, think of it: You are searching for certain permutations of the numbers 1..n, and thus you could fix one number to a certain position. Let's fix 1 to the first position, that is not a big harm, as you can generate the remaining n-1 solutions by rotation.
And then mirroring. What happens, if one mirrors (or reverses) a sequence? Another sequence which is a solution is produced. The open question now, how can we exclude certain solutions and be sure that they will show up upon mirroring? Like: the number after 1 is larger than the number before 1.
At the end, rethink what we did: First all solutions were generated and only thereafter some were removed. What a waste! Why not avoid to produce useless solutions first?
And even further at the end, all of this can be expressed much more efficiently with library(clpfd).
:- use_module(library(clpfd)).
clock_round_(N,Sum,Xs) :-
N #=< Sum, Sum #=< 3*N -2-1,
length(Xs, N),
Xs = [D,E|_],
D = 1, append(_,[L],Xs), E #> L, % symmetry breaking
Xs ins 1..N,
all_different(Xs),
append(Xs,[D,E],Ys),
allsums(Ys, Sum).
allsums([], _).
allsums([_], _).
allsums([_,_], _).
allsums([A,B,C|Xs], S) :-
A+B+C #=< S,
allsums([B,C|Xs], S).
?- clock_round_(N, Sum, Xs), labeling([], [Sum|Xs]).
N = 3, Sum = 6, Xs = [1,3,2]
; N = 4, Sum = 9, Xs = [1,3,4,2]
; N = 4, Sum = 9, Xs = [1,4,2,3]
; N = 4, Sum = 9, Xs = [1,4,3,2]
; N = 5, Sum = 10, Xs = [1,5,2,3,4]
; ... .
Here is a possibility do do that :
is_rotation(L1, L2) :-
append(H1, H2, L1),
append(H2, H1, L2).
is_mirror(L1, L2) :-
reverse(L1,L2).
my_filter([H|Tail], [H|Out]):-
exclude(is_rotation(H), Tail, Out_1),
exclude(is_mirror(H), Out_1, Out).
For example
?- L = [[1,2,3,4,5],[2,3,4,5,1],[3,4,5,1,2],[5,4,3,2,1], [1,3,2,4,5]],my_filter(L, Out).
L = [[1, 2, 3, 4, 5], [2, 3, 4, 5, 1], [3, 4, 5, 1, 2], [5, 4, 3, 2, 1], [1, 3, 2, 4|...]],
Out = [[1, 2, 3, 4, 5], [1, 3, 2, 4, 5]].

Calculate whether the sum of exactly three values in a list is equal to N

Examples: ([1,2,3,7,6,9], 6). should print True, as 1+2+3=6.
([1,2,3,7,6,9], 5). should print False as there are no three numbers whose sum is 5.
([],N) where N is equal to anything should be false.
Need to use only these constructs:
A single clause must be defined (no more than one clause is allowed).
Only the following is permitted:
+, ,, ;, ., !, :-, is, Lists -- Head and Tail syntax for list types, Variables.
I have done a basic coding as per my understanding.
findVal([Q|X],A) :-
[W|X1]=X,
[Y|X2]=X,
% Trying to append the values.
append([Q],X1,X2),
% finding sum.
RES is Q+W+Y,
% verify here.
(not(RES=A)->
% finding the values.
(findVal(X2,A=)->
true
;
(findVal(X,A)->
% return result.
true
;
% return value.
false))
;
% return result.
true
).
It does not seem to run throwing the following error.
ERROR:
Undefined procedure: findVal/2 (DWIM could not correct goal)
Can someone help with this?
You can make use of append/3 [swi-doc] here to pick an element from a list, and get access to the rest of the elements (the elements after that element). By applying this technique three times, we thus obtain three items from the list. We can then match the sum of these elements:
sublist(L1, S) :-
append(_, [S1|L2], L1),
append(_, [S2|L3], L2),
append(_, [S3|_], L3),
S is S1 + S2 + S3.
Well, you can iterate (via backtracking) over all the sublists of 3 elements from the input list and see which ones sum 3:
sublist([], []).
sublist([H|T], [H|S]) :- sublist(T, S).
sublist([_|T], S) :- sublist(T, S).
:- length(L, 3), sublist([1,2,3,7,6,9], L), sum_list(L, 6).
I'm giving a partial solution here because it is an interesting problem even though the constraints are ridiculous.
First, I want something like select/3, except that will give me the tail of the list rather than the list without the item:
select_from(X, [X|R], R).
select_from(X, [_|T], R) :- select_from(X, T, R).
I want the tail, rather than just member/2, so I can recursively ask for items from the list without getting duplicates.
?- select_from(X, [1,2,3,4,5], R).
X = 1,
R = [2, 3, 4, 5] ;
X = 2,
R = [3, 4, 5] ;
X = 3,
R = [4, 5] ;
X = 4,
R = [5] ;
X = 5,
R = [] ;
false.
Yeah, this is good. Now I want to build a thing to give me N elements from a list. Again, I want combinations, because I don't want unnecessary duplicates if I can avoid it:
select_n_from(1, L, [X]) :- select_from(X, L, _).
select_n_from(N, L, [X|R]) :-
N > 1,
succ(N0, N),
select_from(X, L, Next),
select_n_from(N0, Next, R).
So the idea here is simple. If N = 1, then just do select_from/3 and give me a singleton list. If N > 1, then get one item using select_from/3 and then recur with N-1. This should give me all the possible combinations of items from this list, without giving me a bunch of repetitions I don't care about because addition is commutative and associative:
?- select_n_from(3, [1,2,3,4,5], R).
R = [1, 2, 3] ;
R = [1, 2, 4] ;
R = [1, 2, 5] ;
R = [1, 3, 4] ;
R = [1, 3, 5] ;
R = [1, 4, 5] ;
R = [2, 3, 4] ;
R = [2, 3, 5] ;
R = [2, 4, 5] ;
R = [3, 4, 5] ;
false.
We're basically one step away now from the result, which is this:
sublist(List, N) :-
select_n_from(3, List, R),
sumlist(R, N).
I'm hardcoding 3 here because of your problem, but I wanted a general solution. Using it:
?- sublist([1,2,3,4,5], N).
N = 6 ;
N = 7 ;
N = 8 ;
N = 8 ;
N = 9 ;
N = 10 ;
N = 9 ;
N = 10 ;
N = 11 ;
N = 12 ;
false.
You can also check:
?- sublist([1,2,3,4,5], 6).
true ;
false.
?- sublist([1,2,3,4,5], 5).
false.
?- sublist([1,2,3,4,5], 8).
true ;
true ;
false.
New users of Prolog will be annoyed that you get multiple answers here, but knowing that there are multiple ways to get 8 is probably interesting.

create a list in prolog in range of two numbers

I want to build list of numbers that are in range of two given numbers.
For example: betweenRange(1,5,X)
will give the answer: X=[1,2,3,4,5].
any idea how to do that?
I've tried something like:
elementsBetween(N1, N2, [N1|_]):-
N2 =:= N1.
elementsBetween(N1, N2, List):-
N2 > N1, N2New is N2-1,
elementsBetween(N1, N2New, [N2|List]).
but its not working, some problem with backtracking after the recursion.
betweenToList(X,X,[X]) :- !.
betweenToList(X,Y,[X|Xs]) :-
X =< Y,
Z is X+1,
betweenToList(Z,Y,Xs).
Output:
?- betweenToList(1,5,X).
X = [1, 2, 3, 4, 5].
?- betweenToList(1,2,X).
X = [1, 2].
?- betweenToList(1,8,X).
X = [1, 2, 3, 4, 5, 6, 7, 8].
?- betweenToList(1,1,X).
X = [1].
?- betweenToList(1,0,X).
false.
Same logic by decreasing Y you can use reverse/2 (Easy to implement):
betweenDecYAux(X,X,[X]) :- !.
betweenDecYAux(X,Y,[Y|Ys]) :-
X =< Y,
Z is Y-1,
betweenDecYAux(X,Z,Ys).
betweenDecY(X,Y,R) :-
betweenDecYAux(X,Y,L),
reverse(L, R). % reverse [c,b,a] to [a,b,c]
Output:
?- betweenDecY(1,6,X).
X = [1, 2, 3, 4, 5, 6].
?- betweenDecY(2,8,X).
X = [2, 3, 4, 5, 6, 7, 8].
?- betweenDecY(1,0,X).
false.
Here's a simple solution:
betweenRange(Lo, Hi, Range) :- findall(N, between(Lo, Hi, N), Range).
It puts all Ns that satisfy between(Lo,Hi,N) into a list Range.

Prolog - merge digits to number

I want to merge list of digits to number.
[1,2,3] -> 123
My predicate:
merge([X], X).
merge([H|T], X) :-
merge(T, X1),
X is X1 + H * 10.
But now I get:
[1,2,3] -> 33
Another way to do it would be to multiply what you've handled so far by ten, but you need an accumulator value.
merge(Digits, Result) :- merge(Digits, 0, Result).
merge([X|Xs], Prefix, Result) :-
Prefix1 is Prefix * 10 + X,
merge(Xs, Prefix1, Result).
merge([], Result, Result).
The math is off. You're rule says you have to multiply H by 10. But really H needs to be multiplied by a power of 10 equivalent to its position in the list. That would be * 100 for the 1, and * 10 for the 2. What you get now is: 10*1 + 10*2 + 3 which is 33. The problem is that your recursive clause doesn't know what numeric "place" the digit is in.
If you structure the code differently, and use an accumulator, you can simplify the problem. Also, by using CLP(FD) and applying some constraints on the digits, you can have a more general solution.
:- use_module(library(clpfd)).
digits_number(Digits, X) :-
digits_number(Digits, 0, X).
digits_number([], S, S).
digits_number([D|Ds], S, X) :-
D in 0..9,
S1 #= S*10 + D,
digits_number(Ds, S1, X).
?- digits_number([1,2,3], X).
X = 123
?- digits_number(L, 123).
L = [1, 2, 3] ;
L = [0, 1, 2, 3] ;
L = [0, 0, 1, 2, 3] ;
L = [0, 0, 0, 1, 2, 3] ;
L = [0, 0, 0, 0, 1, 2, 3]
...
?-

Resources