Threejs - can you use circleBufferGeometry with Points material? - three.js

I am setting up a particle system in threejs by adapting the buffer geometry drawcalls example in threejs. I want to create a series of points, but I want them to be round.
The documentation for threejs points says it accepts geometry or buffer geometry, but I also noticed there is a circleBufferGeometry. Can I use this?
Or is there another way to make the points round besides using sprites? I'm not sure, but it seems like loading an image for each particle would cause a lot of unnecessary overhead.
So, in short, is there a more performant or simple way to make a particle system of round particles (spheres or discs) in threejs without sprites?

If you want to draw each "point"/"particle" as a geometric circle, you can use THREE.InstancedBufferGeometry or take a look at this

The geometry of a Points object defines where the points exist in 3D space. It does not define the shape of the points. Points are also drawn as quads, so they're always going to be a square, though they don't have to appear that way.
Your first option is to (as you pointed out) load a texture for each point. I don't really see how this would introduce "a lot" of overhead, because the texture would only be loaded once, and would be applied to all points. But, I'm sure you have your reasons.
Your other option is to create your own shader to draw the point as a circle. This method takes the point as a square, and discards any fragments (multiple fragments make up a pixel) outside the circle.

Related

Creating Heatmap Over 3D Model From Vector 3 Point Data

I am attempting to render a flat, dynamically created heatmap on top of a 3D model that is loaded from an OBJ (or STL).
I am currently loading and rendering an OBJ with Three.js. I have vector3 points that I am currently drawing as simple red cubes (image below). These data points are all raycasted to my OBJs mesh and are lying on the surface. The vector3 points are loaded from an external data source and will change depending on what data is being viewed/collected.
I would like to render my vector3 point data into a heatmap on the surface of my OBJ. Here are some examples illustrating the type of visual effects I am trying to achieve:
I feel like vertex coloring is the method of achieving this, but my issue is that my OBJ model does not have enough tessellation to do this. As you can see many red dots fall on each face. I am struggling to find a way to draw over my object's mesh with colors exactly where my red point data is. I was assuming I would need to convert my random vector3 points into a mesh, but cannot find a method to do so.
I've looked at the possibility of generating a texture, but 1) I do not have a UV map for my OBJs and do not see a way to programmatically generate them and 2) I am a bit lost on how I would correlate vector3 point data to UV points.
I've looked at using shaders, but my vector3 point data appears to be too large for using a shader (could be hundreds of thousands of points). I also feel it is not the right approach to render the heatmap every frame and would rather only render it once on load.
I've looked into isosurfaces with point clouds and the marching cubes algorithm, but I didn't think this was the right direction since only my data is a bit like a point cloud, and I am unsure as to how I would keep this smooth along the surface of my OBJ mesh.
Although I would prefer to keep everything in JavaScript for viewing in the browser, I am open to doing server side processing in any language/program with REST so long as it can be automated without human intervention, and pushed back to the browser for rendering.
Any suggestions or guidance is appreciated.
I'm only guessing but it seems like first you need to have UV coordinates that map every triangle to a texture. Rather than do this by hand I'd suggest using a modeling package. Most modeling packages have some way of automatically and uniformly mapping every triangle to a texture. For example in Blender
Next to put the heatmap in the texture by computing which triangles are affected by each dot (your raycasting), looking up their texture coordinates, projecting that dot into texture space and then putting the colors in that part of the texture. I'm only guessing that you need to not just do exact points but probably need to consider adjacent triangles since some heat info that hits near the edge of a triangle needs to bleed over into the adjacent triangle but that adjacent triangle might be using a completely different part of the texture.

Using three.js, how would you project a globe world to a map on the screen?

I am curious about the limits of three.js. The following question is asked mainly as a challenge, not because I actually need the specific knowledge/code right away.
Say you have a game/simulation world model around a sphere geometry representing a planet, like the worlds of the game Populous. The resolution of polygons and textures is sufficient to look smooth when the globe fills the view of an ordinary camera. There are animated macroscopic objects on the surface.
The challenge is to project everything from the model to a global map projection on the screen in real time. The choice of projection is yours, but it must be seamless/continuous, and it must be possible for the user to rotate it, placing any point on the planet surface in the center of the screen. (It is not an option to maintain an alternative model of the world only for visualization.)
There are no limits on the number of cameras etc. allowed, but the performance must be expected to be "realtime", say two-figured FPS or more.
I don't expect ayn proof in the form of a running application (although that would be cool), but some explanation as to how it could be done.
My own initial idea is to place a lot of cameras, in fact one for every pixel in the map projection, around the globe, within a Group object that is attached to some kind of orbit controls (with rotation only), but I expect the number of object culling operations to become a huge performance issue. I am sure there must exist more elegant (and faster) solutions. :-)
why not just use a spherical camera-model (think a 360° camera) and virtually put it in the center of the sphere? So this camera would (if it were physically possible) be wrapped all around the sphere, looking toward the center from all directions.
This camera could be implemented in shaders (instead of the regular projection-matrix) and would produce an equirectangular image of the planet-surface (or in fact any other projection you want, like spherical mercator-projection).
As far as I can tell the vertex-shader can implement any projection you want and it doesn't need to represent a camera that is physically possible. It just needs to produce consistent clip-space coordinates for all vertices. Fragment-Shaders for lighting would still need to operate on the original coordinates, normals etc. but that should be achievable. So the vertex-shader would just need compute (x,y,z) => (phi,theta,r) and go on with that.
Occlusion-culling would need to be disabled, but iirc three.js doesn't do that anyway.

Can points or meshes be drawn at infinite distance?

I'm interested in drawing a stardome in THREE.js using either mesh points or a particle system.
I don't want the camera to be able to move any closer to any part of the stardome, since the stars are effectively at infinite distance.
I can think of a couple of ways to do this:
A very large mesh (or very large point/particle distances)
Camera and stardome have their movement exactly linked.
Is there any way to specify a mesh, point, or particle system is automaticaly rendered at infinite distance so it is always drawn behind any foreground objects?
I haven't used three.js, but my guess is no. OpenGL camera's need a "near clipping plane" and "far clipping plane", which effectively denote the minimum and maximum distance that it'll render things in. If you've played video games where you move too close to a wall and start to see through it, or see things in the distance suddenly vanish as you move away, those were probably the clipping planes at work.
The workaround is usually one of 2 ways:
1) Set the far clipping plane distance as high as it'll let you go. I don't know what data type three.js would use for this, but my guess is a 32-bit float.
2) Render it in "layers". Render all the stars first before anything else in the scene.
Option 2 is the one I usually use.
Even if you used option 1, you would still synchronize the position of the camera and skybox.
If you do not depth cull, draw the skybox first and match its position, but not rotation, to the camera.
Also disable lighting on the skybox. Instead, bake an ambience directly into its texture.
You're don't want things infinitely away, you just want them not to move with respect to the viewer and to not appear in front of things. The best way to do that is to prevent the viewer from getting closer to them which produces the illusion of the object being far away. The second thing is to modify your depth culling function so that the skybox is always considered further away than whatever you are currently drawing.
If you create a very large mesh object, you'll have to set your camera's far plane large enough to include the mesh which means you'll end up drawing things that you really do want to cull.

What is the fastest shadowing algorithm (CPU only)?

Suppose I have a 3D model:
The model is given in the form of vertices, faces (all triangles) and normal vectors. The model may have holes and/or transparent parts.
For an arbitrarily placed light source at infinity, I have to determine:
[required] which triangles are (partially) shadowed by other triangles
Then, for the partially shadowed triangles:
[bonus] what fraction of the area of the triangle is shadowed
[superbonus] come up with a new mesh that describe the shape of the shadows exactly
My final application has to run on headless machines, that is, they have no GPU. Therefore, all the standard things from OpenGL, OpenCL, etc. might not be the best choice.
What is the most efficient algorithm to determine these things, considering this limitation?
Do you have single mesh or more meshes ?
Meaning if the shadow is projected on single 'ground' surface or on more like room walls or even near objects. According to this info the solutions are very different
for flat ground/wall surfaces
is usually the best way a projected render to this surface
camera direction is opposite to light normal and screen is the render to surface. Surface is not usually perpendicular to light so you need to use projection to compensate... You need 1 render pass for each target surface so it is not suitable if shadow is projected onto near mesh (just for ground/walls)
for more complicated scenes
You need to use more advanced approach. There are quite a number of them and each has its advantages and disadvantages. I would use Voxel map but if you are limited by space than some stencil/vector approach will be better. Of course all of these techniques are quite expensive and without GPU I would not even try to implement them.
This is how Voxel map looks like:
if you want just self shadowing then voxel map size can be only some boundig box around your mesh and in that case you do not incorporate whole mesh volume instead just projection of each pixel into light direction (ignore first voxel...) to avoid shadow on lighted surface

Is it possible to use GIS terrain vector data in three.js?

I'm new to three.js and WebGL in general.
The sample at http://css.dzone.com/articles/threejs-render-real-world shows how to use raster GIS terrain data in three.js
Is it possible to use vector GIS data in a scene? For example, I have a series of points representing locations (including height) stored in real-world coordinates (meters). How would I go about displaying those in three.js?
The basic sample at http://threejs.org/docs/59/#Manual/Introduction/Creating_a_scene shows how to create a geometry using coordinates - could I use a similar approach with real-world coordinates such as
"x" : 339494.5,
"y" : 1294953.7,
"z": 0.75
or do I need to convert these into page units? Could I use my points to create a surface on which to drape an aerial image?
I tried modifying the simple sample but I'm not seeing anything (or any error messages): http://jsfiddle.net/slead/KpCfW/
Thanks for any suggestions on what I'm doing wrong, or whether this is indeed possible.
I did a number of things to get the JSFiddle show something.. here: http://jsfiddle.net/HxnnA/
You did not specify any faces in your geometry. In this case I just hard-coded a face with all three of your data points acting as corner. Alternatively you can look into using particles to display your data as points instead of faces.
Set material to THREE.DoubleSide. This is not usually needed or recommended, but helps debugging in early phases, when you can see both sides of a face.
Your camera was probably looking in a wrong direction. Added a lookAt() to point it to the center and made the field of view wider (this just makes it easier to find things while coding).
Your camera near and far planes were likely off-range for the camera position and terrain dimensions. So I increased the far plane distance.
Your coordinate values were quite huge, so I just modified them by hand a bit to make sense in relation to the camera, and to make sure they form a big enough triangle for it to be seen in camera. You could consider dividing your coordinates with something like 100 to make the units smaller. But adjusting the camera to account for the huge scale should be enough too.
Nothing wrong with your approach, just make sure you feed the data so that it makes sense considering the camera location, direction and near + far planes. Pay attention to how you make the faces. The parameters to Face3 is the index of each point in your vertices array. Later on you might need to take winding order, normals and uvs into account. You can study the geometry classes included in Three.js for reference.
Three.js does not specify any meaning to units. Its just floating point numbers, and you can decide yourself what a unit (1.0) represents. Whether it's 1mm, 1 inch or 1km, depends on what makes the most sense considering the application and the scale of it. Floating point numbers can bring precision problems when the actual numbers are extremely small or extremely big. My own applications typically deal with stuff in the range from a couple of centimeters to couple hundred meters, and use units in such a way that 1.0 = 1 meter, that has been working fine.

Resources