We have a fairly big Greenplum v4.3 cluster. 18 hosts, each host has 3 segment nodes. Each host has approx 40 cores and 60G memory.
The table we have is 30 columns wide, which has 0.1 billion rows. The query we are testing has 3-10 secs response time when there is no concurrency pressure. As we increase the # of queries we fired in parallel, the latency is decreasing from avg 3 secs to 50ish secs as expected.
But we've found that regardless how many queries we fired in parallel, we only have like very low QPS(query per sec), almost just 3-5 queries/sec. We've set the max_memory=60G, memory_limit=800MB, and active_statments=100, hoping the CPU and memory can be highly utilized, but they are still poorly used, like 30%-40%.
I have a strong feeling, we tried to feed up the cluster in parallel badly, hoping to take the best out of the CPU and Memory utilization. But it doesn't work as we expected. Is there anything wrong with the settings? or is there anything else I am not aware of?
There might be multiple reasons for such behavior.
Firstly, every Greenplum query uses no more than one processor core on one logical segment. Say, you have 3 segments on every node with 40 physical cores. Running two parallel queries will utilize maximum 2 x 3 = 6 cores on every node, so you will need about 40 / 6 ~= 6 parallel queries to utilize all of your CPUs. So, maybe for your number of cores per node its better to create more segments (gpexpand can do this). By the way, are the tables that used in the queries compressed?
Secondly, it may be a bad query. If you will provide a plan for the query, it may help to understand. There some query types in Greenplum that may have master as a bottleneck.
Finally, that might be some bad OS or blockdev settings.
I think this document page Managing Resources might help you mamage your resources
You can use Resource Group limit/controll your resource especialy concurrency attribute(The maximum number of concurrent transactions, including active and idle transactions, that are permitted in the resource group).
Resouce queue help limits ACTIVE_STATEMENTS
Note: The ACTIVE_STATEMENTS will be the total statement current running, when you have 50s cost queries and next incoming queries, this could not be working, mybe 5 * 50 is better.
Also, you need config memory/CPU settings to enable your query can be proceed.
Related
I have 3 vms(one master two segment hosts of the opensource version), each has 32 cores 64 threads and the memory of 251G.
There is one big table,which have nearly 70 fields and one hundred million records.
The parts of definition as follows:
with (appendonly=true,compresslevel=5)
distributed by(record_id) partition by range(dt_date)
(partition p201012 start ('2021-01-01'::date) end ('2021-01-31'::date) every ('1 days'::interval))
The culster have 30 primary segments and 30 mirror segments.
Both insertion(<2000 records/s) and selection(about 25s) are too slow,since we have one hundred million records a day and more than one second is not allowed.
So my questions are: is there anyone using Gpdb? Are there anyways to speed it up?
Thank u!
My initial thought is that you have way too many primaries/mirrors (30) for that few cpus on the system. The general rule of thumb is 3-4 cpu/vcpu per segment (i.e., postgres database). Your system should be reconfigured to only have 2 primaries per host to better utilize the cpu and memory on the hosts; 1 might even be better with that small amount of memory on the segment hosts.
As it stands now, you are swamping the system with too many databases trying to utilize too few system resources.
Jim
We are in process of implementing Elasticsearch as a search solution in our organization. For the POC we implemented a 3-Node cluster ( each node with 16 VCores and 60 GB RAM and 6 * 375GB SSDs) with all the nodes acting as master, data and co-ordination node. As it was a POC indexing speeds were not a consideration we were just trying to see if it will work or not.
Note : We did try to index 20 million documents on our POC cluster and it took about 23-24 hours to do that which is pushing us to take time and design the production cluster with proper sizing and settings.
Now we are trying to implement a production cluster (in Google Cloud Platform) with emphasis on both indexing speed and search speed.
Our use case is as follows :
We will bulk index 7 million to 20 million documents per index ( we have 1 index for each client and there will be only one cluster). This bulk index is a weekly process i.e. we'll index all data once and will query it for whole week before refreshing it.We are aiming for a 0.5 million document per second indexing throughput.
We are also looking for a strategy to horizontally scale when we add more clients. I have mentioned the strategy in subsequent sections.
Our data model has nested document structure and lot of queries on nested documents which according to me are CPU, Memory and IO intensive. We are aiming for sub second query times for 95th percentile of queries.
I have done quite a bit of reading around this forum and other blogs where companies have high performing Elasticsearch clusters running successfully.
Following are my learnings :
Have dedicated master nodes (always odd number to avoid split-brain). These machines can be medium sized ( 16 vCores and 60 Gigs ram) .
Give 50% of RAM to ES Heap with an exception of not exceeding heap size above 31 GB to avoid 32 bit pointers. We are planning to set it to 28GB on each node.
Data nodes are the workhorses of the cluster hence have to be high on CPUs, RAM and IO. We are planning to have (64 VCores, 240 Gb RAM and 6 * 375 GB SSDs).
Have co-ordination nodes as well to take bulk index and search requests.
Now we are planning to begin with following configuration:
3 Masters - 16Vcores, 60GB RAM and 1 X 375 GB SSD
3 Cordinators - 64Vcores, 60GB RAM and 1 X 375 GB SSD (Compute Intensive machines)
6 Data Nodes - 64 VCores, 240 Gb RAM and 6 * 375 GB SSDs
We have a plan to adding 1 Data Node for each incoming client.
Now since hardware is out of windows, lets focus on indexing strategy.
Few best practices that I've collated are as follows :
Lower number of shards per node is good of most number of scenarios, but have good data distribution across all the nodes for a load balanced situation. Since we are planning to have 6 data nodes to start with, I'm inclined to have 6 shards for the first client to utilize the cluster fully.
Have 1 replication to survive loss of nodes.
Next is bulk indexing process. We have a full fledged spark installation and are going to use elasticsearch-hadoop connector to push data from Spark to our cluster.
During indexing we set the refresh_interval to 1m to make sure that there are less frequent refreshes.
We are using 100 parallel Spark tasks which each task sending 2MB data for bulk request. So at a time there is 2 * 100 = 200 MB of bulk requests which I believe is well within what ES can handle. We can definitely alter these settings based on feedback or trial and error.
I've read more about setting cache percentage, thread pool size and queue size settings, but we are planning to keep them to smart defaults for beginning.
We are open to use both Concurrent CMS or G1GC algorithms for GC but would need advice on this. I've read pros and cons for using both and in dilemma in which one to use.
Now to my actual questions :
Is sending bulk indexing requests to coordinator node a good design choice or should we send it directly to data nodes ?
We will be sending query requests via coordinator nodes. Now my question is, lets say since my data node has 64 cores, each node has thread pool size of 64 and 200 queue size. Lets assume that during search data node thread pool and queue size is completely exhausted then will the coordinator nodes keep accepting and buffering search requests at their end till their queue also fill up ? Or will 1 thread on coordinator will also be blocked per each query request ?
Say a search request come up to coordinator node it blocks 1 thread there and send request to data nodes which in turn blocks threads on data nodes as per where query data is lying. Is this assumption correct ?
While bulk indexing is going on ( assuming that we do not run indexing for all the clients in parallel and schedule them to be sequential) how to best design to make sure that query times do not take much hit during this bulk index.
References
https://thoughts.t37.net/designing-the-perfect-elasticsearch-cluster-the-almost-definitive-guide-e614eabc1a87
https://thoughts.t37.net/how-we-reindexed-36-billions-documents-in-5-days-within-the-same-elasticsearch-cluster-cd9c054d1db8
https://www.elastic.co/guide/en/elasticsearch/reference/current/index.html
We did try to index 20 million documents on our POC cluster and it took about 23-24 hours
That is surprisingly little — like less than 250 docs/s. I think my 8GB RAM laptop can insert 13 million docs in 2h. Either you have very complex documents, some bad settings, or your bottleneck is on the ingestion side.
About your nodes: I think you could easily get away with less memory on the master nodes (like 32GB should be plenty). Also the memory on data nodes is pretty high; I'd normally expect heap in relation to the rest of the memory to be 1:1 or for lots of "hot" data maybe 1:3. Not sure you'll get the most out of that 1:7.5 ratio.
CMS vs G1GC: If you have a current Elasticsearch and Java version, both are an option, otherwise CMS. You're generally trading throughput for (GC) latency, so if you benchmark be sure to have a long enough timeframe to properly hit GC phases and run as close to production queries in parallel as possible.
Is sending bulk indexing requests to coordinator node a good design choice or should we send it directly to data nodes ?
I'd say the coordinator is fine. Unless you use a custom routing key and the bulk only contains data for that specific data node, 5/6th of the documents would need to be forwarded to other data nodes anyway (if you have 6 data nodes). And you can offload the bulk processing and coordination handling to non data nodes.
However, overall it might make more sense to have 3 additional data nodes and skip the dedicated coordinating node. Though this is something you can only say for certain by benchmarking your specific scenario.
Now my question is, lets say since my data node has 64 cores, each node has thread pool size of 64 and 200 queue size. Lets assume that during search data node thread pool and queue size is completely exhausted then will the coordinator nodes keep accepting and buffering search requests at their end till their queue also fill up ? Or will 1 thread on coordinator will also be blocked per each query request ?
I'm not sure I understand the question. But have you looked into https://www.elastic.co/blog/why-am-i-seeing-bulk-rejections-in-my-elasticsearch-cluster, which might shed some more light on this topic?
While bulk indexing is going on ( assuming that we do not run indexing for all the clients in parallel and schedule them to be sequential) how to best design to make sure that query times do not take much hit during this bulk index.
While there are different queues for different query operations, there is otherwise no clear separation of tasks (like "only use 20% of the resources for indexing). Maybe go a little more conservative on the parallel bulk requests to avoid overloading the node.
If you are not reading from an index while it's being indexed (ideally you flip an alias once done): You might want to disable the refresh rate entirely and let Elasticsearch create segments as needed, but do a force refresh and change the setting once done. Also you could try running with 0 replicas while indexing, change replicas to 1 once done, and then wait for it to finish — though I'd benchmark if this is helping overall and if it's worth the added complexity.
Pardon my ignorance if this question is too broad or vague. I'm playing with Elasticsearch with out-of-the-box settings on my laptop and it works just great.
It's a 8 core Macbook and 6G of heap is given to Elasticsearch and it works pretty well for a large dataset (just over 7 Million documents).
I'm keen to set up a multinode cluster (2 machines) and before I assume a few things, I would like to get expert views on a few key points.
I understand "How many shards per node" is a very subjective question and one answer will not fit all situations.
I understand that sharding helps to distribute the indices to multiple nodes so that the storage footprint is optimal per node.
But mainly, I'd like to understand how the sharding effects on the query speed & effective CPU cores utilization.
When a single search query comes in, does ES fire internal subqueries to all the shards in parallel, and therefore it can keep all the cores busy (if the no of shards equals no of cores)?
Can I also be pointed to a few useful links that will help me? Thanks.
Your understanding is pretty much spot on.
The basic concept to understand is that one query on a single shard will use one thread. One thread boils down to one core CPU. If the query needs to touch multiple shards, then ES will make sure the shards involved are queried. This means each shard will do its part of the job using one thread.
The size of the shard and the complexity of the query translates to how much time is being spent in that thread. But the OS will not give one CPU core to that thread all the time, the OS it's scheduling jobs and other processes get a slice of the CPU core.
Ideally, yes, you would have number of shards = number of cores, but rarely clusters out there use this setup. Mainly those clusters that have a lot of concurrent requests per seconds and they demand a strict response time.
Thanks for the response.
Just a summary of my understanding to get it validated.
No of shards == No of cores
(-)
Bigger shards.
A thread could take more time to search a single shard
therefore other threads could be queued up and made to wait?
(+)
Optimal core utilization.
Less chances of context switching overhead as the no of threads are limited.
No of shards > No of cores
(-)
More threads will be spawned for queries and context switching overhead may apply.
More threads perhaps need more memory for thread stack etc.
More shards could potentially need more housekeeping (ie managing file handles etc) by elasticsearch.
(+)
A thread could take less time(relatively) to search a single shard
Could process more concurrent requests (as the no of threads are more).
Eventually, it depends on which one of these gives a best balance between:
Available Hardware, Query Speed and Concurrency factor and I think it requires quite a bit of experimenting. Or in otherwords, which hurts little.
We are experiencing some performance issues or anomalies on a elasticsearch specifically on a system we are currently building.
The requirements:
We need to capture data for multiple of our customers, who will query and report on them on a near real time basis. All the documents received are the same format with the same properties and are in a flat structure (all fields are of primary type and no nested objects). We want to keep each customer’s information separate from each other.
Frequency of data received and queried:
We receive data for each customer at a fluctuating rate of 200 to 700 documents per second – with the peak being in the middle of the day.
Queries will be mostly aggregations over around 12 million documents per customer – histogram/percentiles to show patterns over time and the occasional raw document retrieval to find out what happened a particular point in time. We are aiming to serve 50 to 100 customer at varying rates of documents inserted – the smallest one could be 20 docs/sec to the largest one peaking at 1000 docs/sec for some minutes.
How are we storing the data:
Each customer has one index per day. For example, if we have 5 customers, there will be a total of 35 indexes for the whole week. The reason we break it per day is because it is mostly the latest two that get queried with occasionally the remaining others. We also do it that way so we can delete older indexes independently of customers (some may want to keep 7 days, some 14 days’ worth of data)
How we are inserting:
We are sending data in batches of 10 to 2000 – every second. One document is around 900bytes raw.
Environment
AWS C3-Large – 3 nodes
All indexes are created with 10 shards with 2 replica for the test purposes
Both Elasticsearch 1.3.2 and 1.4.1
What we have noticed:
If I push data to one index only, Response time starts at 80 to 100ms for each batch inserted when the rate of insert is around 100 documents per second. I ramp it up and I can reach 1600 before the rate of insert goes to close to 1sec per batch and when I increase it to close to 1700, it will hit a wall at some point because of concurrent insertions and the time will spiral to 4 or 5 seconds. Saying that, if I reduce the rate of inserts, Elasticsearch recovers nicely. CPU usage increases as rate increases.
If I push to 2 indexes concurrently, I can reach a total of 1100 and CPU goes up to 93% around 900 documents per second.
If I push to 3 indexes concurrently, I can reach a total of 150 and CPU goes up to 95 to 97%. I tried it many times. The interesting thing is that response time is around 109ms at the time. I can increase the load to 900 and response time will still be around 400 to 600 but CPU stays up.
Question:
Looking at our requirements and findings above, is the design convenient for what’s asked? Are there any tests that I can do to find out more? Is there any setting that I need to check (and change)?
I've been hosting thousands of Elasticsearch clusters on AWS over at https://bonsai.io for the last few years, and have had many a capacity planning conversation that sound like this.
First off, it sounds to me like you have a pretty good cluster design and test rig going here. My first intuition here is that you are legitimately approaching the limits of your c3.large instances, and will want to bump up to a c3.xlarge (or bigger) fairly soon.
An index per tenant per day could be reasonable, if you have relatively few tenants. You may consider an index per day for all tenants, using filters to focus your searches on specific tenants. And unless there are obvious cost savings to discarding old data, then filters should suffice to enforce data retention windows as well.
The primary benefit of segmenting your indices per tenant would be to move your tenants between different Elasticsearch clusters. This could help if you have some tenants with wildly larger usage than others. Or to reduce the potential for Elasticsearch's cluster state management to be a single point of failure for all tenants.
A few other things to keep in mind that may help explain the performance variance you're seeing.
Most importantly here, indexing is incredibly CPU bottlenecked. This makes sense, because Elasticsearch and Lucene are fundamentally just really fancy string parsers, and you're sending piles of strings. (Piles are a legitimate unit of measurement here, right?) Your primary bottleneck is going to be the number and speed of your CPU cores.
In order to take the best advantage of your CPU resources while indexing, you should consider the number of primary shards you're using. I'd recommend starting with three primary shards to distribute the CPU load evenly across the three nodes in your cluster.
For production, you'll almost certainly end up on larger servers. The goal is for your total CPU load for your peak indexing requirements ends up under 50%, so you have some additional overhead for processing your searches. Aggregations are also fairly CPU hungry. The extra performance overhead is also helpful for gracefully handling any other unforeseen circumstances.
You mention pushing to multiple indices concurrently. I would avoid concurrency when bulk updating into Elasticsearch, in favor of batch updating with the Bulk API. You can bulk load documents for multiple indices with the cluster-level /_bulk endpoint. Let Elasticsearch manage the concurrency internally without adding to the overhead of parsing more HTTP connections.
That's just a quick introduction to the subject of performance benchmarking. The Elasticsearch docs have a good article on Hardware which may also help you plan your cluster size.
I setup 3 nodes of Cassandra (1.2.10) cluster on 3 instances of EC2 m1.xlarge.
Based on default configuration with several guidelines included, like:
datastax_clustering_ami_2.4
not using EBS, raided 0 xfs on ephemerals instead,
commit logs on separate disk,
RF=3,
6GB heap, 200MB new size (also tested with greater new size/heap values),
enhanced limits.conf.
With 500 writes per second, the cluster works only for couple of hours. After that time it seems like not being able to respond because of CPU overload (mainly GC + compactions).
Nodes remain Up, but their load is huge and logs are full of GC infos and messages like:
ERROR [Native-Transport-Requests:186] 2013-12-10 18:38:12,412 ErrorMessage.java (line 210) Unexpected exception during request java.io.IOException: Broken pipe
nodetool shows many dropped mutations on each node:
Message type Dropped
RANGE_SLICE 0
READ_REPAIR 7
BINARY 0
READ 2
MUTATION 4072827
_TRACE 0
REQUEST_RESPONSE 1769
Is 500 wps too much for 3-node cluster of m1.xlarge and I should add nodes? Or is it possible to further tune GC somehow? What load are you able to serve with 3 nodes of m1.xlarge? What are your GC configs?
Cassandra is perfectly able to handle tens of thousands small writes per second on a single node. I just checked on my laptop and got about 29000 writes/second from cassandra-stress on Cassandra 1.2. So 500 writes per second is not really an impressive number even for a single node.
However beware that there is also a limit on how fast data can be flushed to disk and you definitely don't want your incoming data rate to be close to the physical capabilities of your HDDs. Therefore 500 writes per second can be too much, if those writes are big enough.
So first - what is the average size of the write? What is your replication factor? Multiply number of writes by replication factor and by average write size - then you'll approximately know what is required write throughput of a cluster. But you should take some safety margin for other I/O related tasks like compaction. There are various benchmarks on the Internet telling a single m1.xlarge instance should be able to write anywhere between 20 MB/s to 100 MB/s...
If your cluster has sufficient I/O throughput (e.g. 3x more than needed), yet you observe OOM problems, you should try to:
reduce memtable_total_space_mb (this will cause C* to flush smaller memtables, more often, freeing heap earlier)
lower write_request_timeout to e.g. 2 seconds instead of 10 (if you have big writes, you don't want to keep too many of them in the incoming queues, which reside on the heap)
turn off row_cache (if you ever enabled it)
lower size of the key_cache
consider upgrading to Cassandra 2.0, which moved quite a lot of things off-heap (e.g. bloom filters and index-summaries); this is especially important if you just store lots of data per node
add more HDDs and set multiple data directories, to improve flush performance
set larger new generation size; I usually set it to about 800M for a 6 GB heap, to avoid pressure on the tenured gen.
if you're sure memtable flushing lags behind, make sure sstable compression is enabled - this will reduce amount of data physically saved to disk, at the cost of additional CPU cycles